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Abstract

This paper provides an empirical description of the relationship between the trad-

ing system operated by a stock exchange and the transaction costs faced by het-

erogeneous investors who use the exchange. The recent introduction of SETS in

the London Stock Exchange provides an excellent opportunity to study the im-
pact of an electronic trading system upon transaction costs and the time taken
to carry out a trade. Using the cost-of-carry model of futures prices we estimate

(non-linearly) the transaction costs and trade speeds faced by arbitragers who
take advantage of mispricing of FTSE100 futures contracts relative to the spot

prices of the stocks that make up the FTSE100 stock index. We divide the sample
period into pre-SETS and post-SETS sample periods and conduct a comparative
study of arbitrager behaviour under di�erent trading systems. The results indi-

cate that there has been a signi�cant reduction in the level of transaction costs
faced by arbitragers and in the degree of transaction cost heterogeneity since the
introduction of SETS. Finally, generalised impulse response functions show that

both spot and futures prices adjust more quickly in the post-SETS period.
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1 Introduction

Exchanges throughout the world have introduced (for example, London and

Frankfurt) or are about to introduce (for example, Sydney) electronic trading

systems. There remains some uncertainty, however, concerning the bene�ts (or

otherwise) of such systems versus traditional trading systems. This paper pro-

vides empirical evidence on the cost and e�ciency improvements brought about

by electronic trading systems. More speci�cally, the paper will measure the trans-

action costs associated with arbitrage activity in spot and futures markets in the

UK before and after the introduction of an electronic trading system. These mea-

sures will be of particular importance to those who design trading systems with

the hope of exploiting ine�ciencies of asset markets.

On October 20, 1997, the London Stock Exchange introduced a new electronic

trading system (SETS). The system enables traders to place buy or sell orders
for any FTSE100 shares in an electronic order book. These orders are then au-

tomatically matched with other orders placed. Before the introduction of this
system orders were advertised on computer terminals but actual trades were car-

ried out over the telephone. Under this old system market-makers would absorb
the impact of large trades by putting their own capital at risk. Such generosity
was compensated for by large bid-ask spreads. Gemmill (1998) reports a 39 basis

point spread for large companies and a 79 basis point spread for small companies
before the introduction of SETS. By contrast, the respective spreads after the

introduction of SETS were 32 basis points and 53 basis points.
The reduction in average bid-ask spreads should have an e�ect on all arbitrage

activity. The activity examined in this paper concerns those trades that are

conducted in order to lock into risk-less pro�ts that arise because of perturbations
in the contemporaneous relationship between FTSE100 spot and futures prices.
Arbitrage activity involves simultaneous positions in both the spot and futures

index. The length of time these positions are held depends upon whether or
not it is pro�table to unwind the position before the maturity of the contract.

Brennan and Schwartz (1988, 1990) thus consider such a position as both an
arbitrage position and an option to unwind the position when positive pro�ts
can be obtained. As Neal (1992) and So�anos (1993) �nd that most arbitrage

positions are not held until maturity it follows that the option to unwind must

have some positive value. This additional value presumably lowers the absolute
value of the bounds outside which it is pro�table to trade. Moreover, as the cost

of exercising the option is the di�erence between the buy and sell prices of the
security then any decrease in bid-ask spread lowers the cost of unwinding the

position and, thus, the arbitrage bounds.

The introduction of SETS o�ers an opportunity to study how arbitrage activity
and stock price dynamics are a�ected by a change in transaction costs. In this
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paper we consider whether the introduction of SETS has changed the trading

bounds outside which arbitrage activity trades place.1 The paper is organised

as follows. The next section outlines an economic model of arbitrager behaviour

based on the cost-of-carry model. Section 3 describes the speci�c econometric

model used. Section 4 provides a description of the data used. The penultimate

section contains the empirical results while some concluding remarks are given in

the �nal section.

2 The Economic Model

The (contemporaneous) relationship between spot and forward prices can be

described by the cost-of-carry model. This model is also capable of describing the

relationship between spot and futures prices providing that the term structure
of interest rates is 
at and constant. Under the no-arbitrage condition with no
transaction costs, the model has the following speci�cation

Ft = Ste
(r��)(T�t) (1)

where Ft is the futures price, St is the spot price, r is the risk-free interest rate,
� is the expected dividend yield on the underlying asset, and (T � t) is the time
to maturity of the futures contract. If the contract is held to maturity then in

the presence of proportional transaction costs, c, arbitrage activity will take place
when the following condition holds

1� c >
Ft

St

e(r��)(T�t) > 1 + c (2)

As it takes time for arbitragers to take appropriate spot and futures positions, this

arbitrage opportunity is necessarily lagged by d time periods. Therefore, providing
c is small, the above inequality can be expressed in the following (logarithmic)
form

jzt�dj > c (3)

1SETS only pertains to spot positions in any FTSE100 shares. It does not e�ect the mecha-

nism by which futures contracts in the FTSE100 index are traded. The exchange within which

these contracts are traded (LIFFE) currently operates open outcry trading. This di�erence in

trading mechanisms should not detract from the fact that costs of arbitrage trading are likely

to be reduced under SETS. This is because mispricing will lead to simultaneous trading in both

spot and futures markets. As such, a decrease in the cost of trading the FTSE100 shares in the

spot market will reduce overall transaction costs.
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where zt = lnFt � lnSt � (r � �)(T � t) and is referred to as the basis or the

pricing error, and d is the delay inherent in the arbitrage process. As arbitragers

are expected to unwind the positions before the maturity of the contract, c rep-

resents approximately one half the total round-trip transaction costs incurred by

arbitragers (Dwyer, Locke and Yu, 1996).

3 The Econometric Model

Previous empirical studies have concluded that spot and futures stock indices

are each non-stationary while the respective basis is stationary (Dwyer, Locke and

Yu, 1996, and Martens, Kofman, and Vorst, 1998). This implies that spot and

futures prices are cointegrated with a cointegrating vector equal to (1;�1). If

series are cointegrated then they necessarily have an error-correction representa-
tion (Engle and Granger, 1987). Such an error-correction representation directly
links changes in futures and spot prices to deviations from the arbitrage relation

(1), i.e., to pricing errors. Equation (3), however, states that arbitrage activity
only occurs if it is pro�table. Equivalently, arbitrage positions in spot and fu-

tures stock markets are taken only when the pricing error is outside a particular
bound. Thus, spot and futures prices only adjust to past disequilibria depending
on the state or regime of the world one is in. To model this behavior we use a

smooth transition error-correction model (STECM). Ignoring lag dependence in
di�erenced series (for simplicity only), the model can be expressed as

�ft = �fzt�dF (zt�d) + �1t (4)

�st = �szt�dF (zt�d) + �2t (5)

where �ft is the di�erenced logarithmic futures price series, �st is the di�erenced

logarithmic spot price series, �1t and �2t are (possibly) cross correlated iid series,
d = f1; 2; : : :g, and F (zt�d) is a continuous transition function bounded between

0 and 1. This model allows for smooth transition between low zt�d dependence

(F (zt�d) = 0) and high zt�d dependence (F (zt�d) = 1). More speci�cally, the

strength of the relationship between �ft and zt�d will range from zero to �f as

F (zt�d) changes (in a smooth fashion) from 0 to 1. This model is capable of

allowing for regime dependent arbitrage as given by equation (3). It is expected

that for zt�d around zero the value of the transition function will take values close

to zero. When zt�d takes relatively large positive and negative values the transition

function should take values close to unity. In allowing for smooth transition in

F (zt�d) the model can allow for heterogeneity in investors exposure to transaction

costs. See Anderson (1997) for an application using US Treasury bill data.
Earlier studies of the relationship between futures prices and spot prices use the
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threshold error-correction model (TECM), see for example, Dwyer, Locke and Yu

(1996) and Martens, Kofman and Vorst (1998). This model allows a very limited

number of di�erent regimes and hence transaction costs. The STECM allows for

an in�nite number of di�erent regimes. As such, the STECM represents a more

realistic representation of the heterogeneity of investors that each face di�erent

transaction costs.

The following exponential function is used to obtain a parametric speci�cation

of the transition function

F (zt�d; 
) = 1� exp[�
z2t�d] (6)

where 
 > 0. The parameter 
 measures the speed of transition from no adjust-

ment (F (zt�d) = 0) to full adjustment (F (zt�d) = 1). Equivalently, 
 measures

the degree of heterogeneity in transaction costs. Low 
 values imply a wide range

of transaction costs faced by investors. By contrast, high 
 values imply a more
uniform transaction cost structure.

The introduction of SETS should lower the transaction costs faced by all in-

vestors. Moreover, small (private) investors are expected to face similar transac-
tion costs to those faced by large (institutional) investors. Such transaction cost

homogeneity is conveniently measured by a large 
. It follows that 
 should be
larger after the introduction of SETS. Moreover, if 
 is larger in the post-SETS
period then transaction costs must be lower in this period. This is because the

transition function equals zero when there is no pricing error (zt�d = 0). As such,
a large 
 value means that the transition function is necessarily above the small 


value transition function. The null hypothesis tested is this paper is that 
 takes
the same value in the pre-SETS and post-SETS periods.

4 Data

The futures price of the nearest FTSE100 contract is obtained for every trans-

action carried out. These data were obtained from LIFFE. The contract is changed
when the volume of trading in the next nearest contract is greater than the vol-

ume of trading in the nearest contract.2 To synchronise the futures and spot
prices, the futures price series is converted to a price series with a frequency of

one minute. As one does not know whether the price is a bid or ask price, the

2The volume cross-over method of changing futures contracts results in one change in the

pre-SETS period and no changes in the post-SETS period. The change involves a switch from

the September 1997 contract to the December 1997 contract on September 19, 1997. On this

date 1,422 September 1997 contracts are traded and 6,132 December 1997 contracts are traded.

The post-SETS period futures prices make exclusive use of the March 1998 futures contract.
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average of the last two prices is taken as the futures price. The (spot) level of the

FTSE100 index was obtained from FTSE International. The trading hours of the

futures market and the spot market are, 8.30am to 5.30pm and 8.00am to 4.30pm,

respectively. Thus one can obtain overlapping futures and spot data covering the

period, 8.30am to 4.30pm. However, since the introduction of SETS it has been

noted that spreads are unusually high during the �rst hour of trading. For this

reason only prices observed between 9.00am and 4.30pm are used in the analysis.

This results in 451 observations per day. The pre-SETS sample period covers the

period September 8, 1997, to October 17, 1997. To allow traders to adapt to the

new system, the post-SETS sample period will start on January 5, 1998, and end

on February 13, 1998. These sample periods correspond to six weeks of data both

before and after the introduction of SETS. Following Dwyer, Locke and Yu (1996)

and Martens, Kofman and Vorst (1998), we remove overnight returns. This gives

a total of 13,500 (450� 6� 5) one minute frequency returns in each of the sample
periods. The analysis is also conducted using �ve minute frequency returns over

the same sample periods.
The pricing error is constructed using the daily demeaned futures and spot

prices. This methodology follows Dwyer, Locke and Yu (1996). Subtracting the

daily mean from the futures prices ensures that any constant in the logarithmic
price due to expected dividends or interest rates is removed. The pricing error is
set equal to the di�erence between the demeaned futures price and the demeaned

spot price. Henceforth, the demeaned logarithmic futures and spot prices will be
denoted by ft and st, respectively, while the pricing error will be denoted by zt.

5 Empirical Results

Time series plots of logarithmic futures and spot prices are presented in Figure
1. Sharp changes in these prices occur when the trading day changes. Problems

associated with these price discontinuities are avoided in this paper because only
intraday returns are considered.

5.1 Testing for Non-stationarity

Augmented Dickey Fuller (ADF) tests are performed on various one minute
and �ve minute frequency series. In each case a constant is included and the

lag lengths are selected on the basis of the Schwarz Information Criterion (SIC).
The one minute frequency results given in Table I show that futures and spot

prices are non-stationary.3 These prices are not the same prices as those plotted

3Similar results hold when �ve minute frequency data are used and are available upon request.
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in Figure 1. The non-stationarity tests are applied to intraday prices. These

prices are calculated as follows. First, logarithmic returns are calculated. Second,

overnight returns are removed. Third, intraday prices are calculated by numeri-

cally integrating the intraday returns. Possible cointegration between these prices

is investigated by testing for non-stationarity in the pricing error using the ADF

test. Van Dijk and Franses (1998) show that unit root tests such as the ADF

test perform well in the presence of non-linearity in the adjustment process. The

results indicate that the null hypothesis of non-stationarity can be rejected with

a high level of con�dence. Therefore, the cointegrating vector (1;�1) provides a
combination of non-stationary futures and spot prices that is stationary. As such,

these prices have an error-correction representation.

5.2 Testing for Non-linearity

It is possible to test the null hypothesis that returns follow a linear error-

correction process against the alternative that returns follow a smooth transition
error-correction process. The testing procedure used in this paper is based on
Luukkonen, Saikkonen and Ter�asvirta (1988), Swanson (1999) and van Dijk and

Franses (1998). Observation of the transition function given by (6) shows that
the null hypothesis of linearity is equivalent to testing the null hypothesis that


 equals zero. Moreover, if the transition function is replaced by a third-order
Taylor approximation then the STECM for futures returns can be expressed as4

�ft = �0

wt + �
0

1 ~wtzt�d + �
0

2 ~wtz
2
t�d + �

0

3 ~wtz
3
t�d + �t (7)

where wt = (1; ~wt)
0, ~wt = (zt�d, �ft�1; : : : ;�ft�p;�st�1; : : : ;�st�p)

0, � is a
(m+1�1) vector of coe�cients, �1, �2, and �3 are (m�1) vectors of coe�cients,

and m = 2p+1. The original null hypothesis of linearity, H0 : 
 = 0, is equivalent
to the null hypothesis that all coe�cients of the auxiliary regressors, ~wtz

j

t�d, j =
f1; 2; 3g, equal zero, that is, H0 : �1 = �2 = �3 = 0. An LM-type test is used

to test this hypothesis. The one minute frequency results are presented in Table

II for p = 1 and d = f1; 2; 3; 4; 5g.5 The results indicate that the null hypothesis

can be rejected with a high degree of con�dence. There is little to choose between
each of the d values. In each case there is a clear rejection of the null hypothesis

except when d = 4 in the post-SETS period.

4The same approach is followed for the spot return series.
5When the �ve minute frequency returns are used we restrict the value of d to one. Longer

delays are unrealistic, for instance, if d = 2 then this implies a delay of ten minutes in the

arbitrage process. The results indicate a rejection of the null hypothesis and are available upon

request.
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5.3 Estimating the Error-Correction Models

Exponential transition function error-correction models are estimated in both

the pre-SETS and post-SETS periods. In both cases p = 1 and d = f1; 2; 3; 4; 5g.6

The exponential transition function error-correction model is speci�ed as follows7

�ft = �0

1w
�

t + �
0

2 ~w
�

tF (zt�d; 
) + �fzt�dF (zt�d; 
) + �t (8)

where F (zt�d; 
) = 1 � exp[�
z2t�d=�
2
zt�d

], w�

t = (1; ~w�

t )
0, ~w�

t = (�ft�1;�st�1),

�0

1 is a (3 � 1) vector of coe�cients, �0

2 is a (2 � 1) vector of coe�cients, �f is

the adjustment coe�cient, and �2
zt�d

is the variance of the pricing error. Inclusion

of �2
zt�d

follows Ter�asvirta (1994) and enables interpretation of 
 in a scale-free

environment. As such, comparisons of 
's over various sample periods is allowed.

Both of these models are estimated using NLS. The estimated adjustment and


 coe�cients are presented in Table III. The results of ARCH tests performed
on the residuals from the estimated models indicated that there is signi�cant

heteroscedasticity present. Therefore, heteroscedastic-consistent standard errors
are presented in Table III.

When using one minute frequency returns information criteria are minimised

when the delay equals �ve minutes in the pre-SETS period and two minutes in the
post-SETS period. This suggests that the trade speed has been reduced since the
introduction of SETS. The adjustment coe�cients have the expected signs. That

is, �f < 0 and �s > 0. Adjustment in the spot equation is considerably larger,
in absolute terms, than adjustment in the futures equation during the post-SETS

period. This suggests that the introduction of SETS has lowered the relative costs
of trading the spot index. Similar results are obtained when �ve minute frequency
returns are used.

5.4 Comparing Transaction Cost Pro�les

The results given in Table III indicate that when the exponential transition

function is used the degree of transaction cost heterogeneity is greater in the pre-

SETS period than in the post-SETS period. That is, 
̂ is smaller in the former
period. As the transition function must take a value of zero when there is no

mispricing then this result implies that the transactions costs faced by arbitragers

in the post-SETS period are smaller than those faced in the pre-SETS period.

The pro�les presented in Figure 2 (one minute frequency data) plot the esti-

mated transition function against the pricing error. This �gure shows that there

6The delay is set equal to one when �ve minute frequency returns are used.
7Spot returns are similarly de�ned.
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is full adjustment outside a narrow range of mispricing in the post-SETS period.

By contrast, this range is considerably larger in the pre-SETS period. Moreover,

there is a sharper change from no adjustment (F (zt�d) = 0) to full adjustment

(F (zt�d) = 1) in the post-SETS period than in the pre-SETS period.

To formally test this equality of 
 values over the two sample periods a simple

t-test based on heteroscedastic-consistent standard errors is performed for various

delay values. In each case the same delay values are assumed in each period. In

addition, the optimal delays, as given by the SIC, are used in each period and

the t-statistic is calculated. The one minute frequency results are presented in

Table IV. If delays of two, three or �ve minutes are assumed then transaction

costs are signi�cantly lower in the post-SETS period. However, this conclusion

cannot be drawn if delays of one or four minutes are assumed or if optimal delays

are assumed. When �ve minute frequency returns are used the t-statistic equals

2.70 thus indicating that transaction costs are signi�cantly lower in the post-SETS
period.

5.5 Generalised Impulse Responses

Generalised impulse response functions are calculated using the smooth tran-
sition error-correction models estimated in the pre-SETS and post-SETS periods.

In both cases, one minute frequency data are used and the delay (d) is selected by
the SIC. Shocks equal to�0:4, �0:35, �0:3, : : : , 0:35, and 0:4 are assumed to a�ect
both spot and futures markets. The e�ects that these shocks have on subsequent

spot and futures returns are measured at various points within the pre-SETS and
post-SETS sample periods.8 The distribution of these innovations is estimated
using a quartic kernel function at various time periods after the shock hits the

system.9 A uniform distribution taking values between �0:4 and 0:4 (inclusive)
is observed when the shock occurs. Subsequent distributions are less uniform and

have a smaller range as the e�ects of the shock gradually disappear. This rate of
decay gives an indication of the speed of adjustment in the respective markets.

The estimated distributions at two and �ve minutes after the initial shock occurs

are presented in Figures 3 and 4.10

The introduction of SETS causes more rapid adjustment in both spot and

8This estimation process is based on a sub-sample of the pre-SETS and post-SETS periods.

The `histories' used in the current context equal the 1st, 101st, 201st, : : : , 13,301st, and 13,401st

observations. These histories are selected from a sample consisting of 13,500 observations.

Selection of these histories is based on a need to reduce the computation time.
9For further details of kernel functions and the optimal bandwidth used see equation 3.31 of

Silverman (1986).
10Similar distributions are estimated at one, three, and four minutes after the initial shock

occurs. These �gures are available upon request.
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futures markets. This can be observed by comparing Panels A and C with B and

D, respectively, in Figures 3 and 4. In each case the range of values taken by

the innovations is smaller in the post-SETS period than in the pre-SETS period.

Moreover, in the pre-SETS period the adjustment in the futures market is faster

than adjustment in the spot market. That is, after two and �ve minutes the range

of the innovations in the futures equation is smaller than the range of innovations

in the spot equation. By contrast, adjustment is similar in both markets in the

post-SETS period.

6 Conclusion

The transaction costs faced by arbitragers trading the FTSE100 spot and

futures markets have been signi�cantly reduced since the introduction of SETS.
Analysis of generalised impulse response functions leads to two additional �ndings.
First, shocks to the futures and spot markets have less e�ect in the post-SETS

period. Indeed, the e�ects of such shocks almost disappear after �ve minutes.
Second, the futures market is less a�ected by shocks than the spot market in

the pre-SETS period. However, both markets appear to be equally a�ected in the
post-SETS period. These two �ndings are consistent with the objectives of SETS.
That is, lower cost trading in the spot market.

The results are also encouraging with respect to LIFFE's planned introduction
of the Connect trading system covering the FTSE100 futures market in May 1999.

Analysis of the impact of this system upon transaction costs will be the subject
of future research. In particular, one would expect an increase in the level of
adjustment in the futures market equal to that seen in the spot market since the

introduction of SETS.
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Table I: Non-stationarity ADF Tests

Series

Period ft �ft st �st zt

Pre-SETS �1:15 �93:57 �0:70 �27:82 �5:58

Post-SETS �1:14 �98:13 �1:09 �61:31 �4:42

Note: The lag length used in this test is selected on the basis of the

Schwarz Information Criterion. The 5% critical value equals �2:87.
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Table II: Linearity Tests

d

Period Eq. 1 2 3 4 5

Pre-SETS �ft 44:18 46:81 29:05 23:23 35:95

(0:00) (0:00) (0:00) (0:01) (0:00)

�st 434:67 361:93 281:99 273:64 240:22

(0:00) (0:00) (0:00) (0:00) (0:00)

Post-SETS �ft 19:40 15:40 26:15 12:30 21:17

(0:02) (0:08) (0:00) (0:20) (0:01)

�st 129:44 122:98 112:61 40:25 31:88

(0:00) (0:00) (0:00) (0:00) (0:00)

Note: The LM-type test statistics are reported. The numbers in paren-

theses are the p-values associated with this test.
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Table III: Estimated STECM Parameters

Period d �̂f �̂s 
̂ AIC SIC

Panel A: One Minute Frequency

Pre-SETS 1 �0:0089 0:0137 0:3258 �362:1515 �362:0314

(0:0048) (0:0022) (0:0850)

Post-SETS 1 �0:0045 0:1299 0:3594 �248:4590 �248:3388

(0:0087) (0:0108) (0:0995)

Pre-SETS 2 �0:0133 0:0218 0:1624 �300:4555 �300:3353

(0:0077) (0:0058) (0:0626)

Post-SETS 2 �0:0060 0:1128 0:8034 �258:1992 �258:0790

(0:0051) (0:0111) (0:2127)

Pre-SETS 3 �0:0087 0:0118 0:4700 �357:6144 �357:4943

(0:0041) (0:0017) (0:1323)

Post-SETS 3 �0:0014 0:0900 0:9180 �243:5659 �243:4457

(0:0046) (0:0103) (0:2993)

Pre-SETS 4 �0:0059 0:0108 0:4504 �357:4856 �357:3654

(0:0041) (0:0017) (0:1459)

Post-SETS 4 �0:0027 0:0722 0:6903 �233:0849 �232:9648

(0:0048) (0:0107) (0:2694)

Pre-SETS 5 �0:0051 0:0082 0:7766 �364:3381 �364:2179

(0:0032) (0:0010) (0:2730)

Post-SETS 5 �0:0011 0:0488 2:0688 �233:1394 �233:0192

(0:0041) (0:0055) (0:8235)

Panel B: Five Minute Frequency

Pre-SETS 1 �0:0174 0:0974 0:1113 �512:4671 �511:5249

(0:0588) (0:0462) (0:0515)

Post-SETS 1 0:0372 0:4054 0:4981 �523:1024 �522:1601

(0:0534) (0:0781) (0:1409)

Note: The numbers in parentheses are heteroscedastic-consistent standard er-

rors. The last two columns contain transformed values of the Akaike Information

Criterion (AIC) and the Schwarz Information Criterion (SIC).
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Table IV: Transaction Cost Di�erence Tests

d

1 2 3 4 5 SIC

0:26 2:89 1:37 0:78 1:49 0:08

(0:40) (0:00) (0:09) (0:22) (0:07) (0:47)

Note: The null hypothesis that the 
 coe�cient in

the pre-SETS period equals the 
 coe�cient in the

post-SETS period is tested against the alternative that

the pre-SETS 
 is less than the post-SETS 
. The

t-statistics associated with the di�erence between the

pre-SETS 
 and the post-SETS 
 are reported. The

standard error of this di�erence is calculated using the

heteroscedastic-consistent standard error. The num-

bers in parentheses are the p-values associated with this

test.
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Figure 1: FTSE100 Futures and Spot Index Levels
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Figure 2: Estimated Transition Functions
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Figure 3: Generalised Impulse Response Distributions (Two Minutes After Shock)
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Figure 4: Generalised Impulse Response Distributions (Five Minutes After Shock)
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