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Abstract

This paper focuses on finding starting-values for maximum likelihood estimation
of Vector STAR models. Based on a Monte Carlo exercise, different procedures are
evaluated. Their performance is assessed w.r.t. model fit and computational ef-
fort. I employ i) grid search algorithms, and ii) heuristic optimization procedures,
namely, differential evolution, threshold accepting, and simulated annealing. In the
equation-by-equation starting-value search approach the procedures achieve equally
good results. Unless the errors are cross-correlated, equation-by-equation search
followed by a derivative-based algorithm can handle such an optimization problem
sufficiently well. This result holds also for higher-dimensional VSTAR models with a
slight edge for the heuristic methods. Being faced with more complex Vector STAR
models for which a multivariate search approach is required, simulated annealing
and differential evolution outperform threshold accepting and the grid with a zoom.
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1 Introduction

Whatever the use of an econometric model, estimating its parameters as well as possible

given the available information is of crucial importance. In the paper I focus on the

estimation of multivariate Vector Smooth Transition Autoregressive (VSTAR) models.

Thereby, a non-linear optimization function originates which is commonly solved by a

numerical, derivative-based algorithm. Yet, parameter estimation may come along with

optimization difficulties. Problems due to flat or non-convex likelihood functions may

arise.

Hence, in empirical applications derivative-based optimization algorithms may either con-

verge slowly to the global optimum or only to a local optimum which is not globally opti-

mal (Maringer and Winker 2009). As Teräsvirta and Yang (2013) point out the estimation

outcome of Vector STAR models crucially relies on good starting-values. Initializing a

derivative-based algorithm with starting-values close to the global optimum (or at least a

useful local optimum) helps the algorithm to cover the remaining distance to the nearest

optimum. Yet, in high-dimensional models trying several starting-values in order to get

close the global optimum may turn out to be extremely time-consuming or even not solv-

able in reasonable computing time. The present paper focuses on finding starting-values

for maximum likelihood estimation of Vector STAR models to solve this difficult problem.

Different procedures for deriving starting-values are evaluated and their performance is

assessed with respect to model fit and computational effort.

Optimization problems of objective functions that are ill-behaved are well-known. One

of the pioneering contributions is the work of Goffe, Ferrier, and Rogers (1994) who

discuss optimization problems related to the use of conventional optimization techniques

by applying optimization heuristics. Typically, regime-switching models are also afflicted

with such optimization problems (van Dijk, Teräsvirta, and Franses 2002). Hence, the

success of solving a non-linear optimization problem depends on finding suitable starting-

values for the subsequent derivative-based optimization procedure.

It is common to apply grid search methods for finding initial values. Yet, it is not clear

whether other methods, namely heuristics, could perform better in generating starting-

values. The inherent stochastics and potential downhill moves of heuristic optimization

procedures may deliver advantages in terms of efficiency and the extent to which the

surface area can be explored. This is particularly important when equation-by-equation

estimation is not efficient or not feasible at all and a system-wide estimation is neces-

sary. Recent contributions emphasize the need of employing alternative optimization

approaches in non-linear models. These include heuristic methods (see, for instance, Wu

and Chang (2002); Chan and McAleer (2002); Baragona, Battaglia, and Cucina (2004);

Yang, Tian, and Yuan (2007); Maringer and Meyer (2008); Battaglia and Protopapas

(2011); El-Shagi (2011); Baragona and Cucina (2013)). The studies concentrate on pa-

rameter estimation in univariate or multivariate regime-switching models, whereas the
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Vector STAR model and the starting-value search is not addressed. Before applying a

heuristic algorithm to the whole modeling cycle of a non-linear Vector STAR model, one

might initially focus on improving the starting-value search. Finding reliable initial val-

ues is not limited to Vector STAR models, but relevant for a wide range of non-linear

economic problems, such as differential equations or Threshold VAR models.

Based on a comprehensive Monte-Carlo set-up, I address the starting-value search for the

estimation of Vector STAR models. Up to now, there exists no analysis which tackles

the evaluation of starting-values search procedures comprehensively. Different procedures

for finding starting-values are evaluated and their performance is assessed with respect to

model fit and computational effort based on simulated Data Generating Processes (DGPs)

of Vector STAR models. I employ both grid search algorithms and, following the idea of

El-Shagi (2011) and Gonzàlez, Rincon, and Rodriquez (2009) three heuristic optimization

procedures: differential evolution (DE), threshold accepting (TA) and simulated annealing

(SA).

The main results of this study are as follows. For Vector STAR models without cross-

correlated error terms equation-by-equation starting-value search procedures are prefer-

able. Although for Vector STAR models which have zero restrictions in the lag structure

a multivariate procedure would be efficient, this result still holds. For the equation-by-

equation starting-value search approach, all procedures perform equally well with a slight

edge for the heuristic methods. However, as soon as the Vector STAR model has cross-

correlated error terms, multivariate starting-value search procedures clearly outperform

equation-by-equation approaches. The comparison of different algorithms indicates that

SA and DE generate the best outcomes. Yet, SA and DE are more time-consuming than

the grid with a zoom, which is due to a lower number of likelihood evaluations of the

latter.

The paper is organized as follows. Section 2 introduces the Vector STAR model and

considers its characteristics. The competing methods for finding starting-values are de-

scribed in section 3. Section 4 describes the evaluation framework which is basically a

comprehensive Monte Carlo experiment. The simulation results are presented in section

5. Finally, section 6 concludes.

2 The Vector STAR model

The logistic Vector STAR model can capture different dynamic properties across regimes

(asymmetric behavior), has a straightforward economic interpretation in different regimes
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and can handle smooth transitions from one regime into the other. It looks as follows:1

yt =
{ m∑

i=1

(Gi−1
t −Gi

t)F
′

i

}
xt + εt (1)

where yt is a k×1 column vector and xt = (y
′
t−1, . . . ,y

′
t−p,d

′
t)
′, where dt is a vector con-

taining deterministic components. Fi = (A
′

i1, . . . ,A
′
1p,Φ

′

i)
′ includes coefficient matrices.

The error term εt is assumed to be independent normal with zero mean and variance-

covariance matrix Ω. Gi
t(.) is a diagonal matrix of transition functions such that different

transition functions across regimes can be modeled. Accordingly, Gi
t(.) reads:

Gi
t(.) = diag

{
g(s1it|γi1, ci1), . . . ,g(skit|γik, cik)

}
(2)

for i = 1 . . . ,m− 1, where m determines the number of transitions across equations and

G0
t = Ik, Gm

t = 0. In the simulation exercise I stick to VSTAR models with a single

transition (m = 2). The transition functions are assumed to be of logistic type which is

monotonically increasing in sijt, where j = 1, . . . , k, and bounded between zero and one:

g(sijt|γij, cij) = [1 + exp(−γij(sijt − cij))]−1, γij > 0 (3)

The transition function depends on the transition speed (γij), the location parameter (cij)

and the transition variable (sijt). In order to make γ a scale-free parameter, it is divided

by the standard deviation of the transition variable when the parameters of the VSTAR

model are estimated following Teräsvirta (2004). The transition function which governs

the transition from one regime to another is crucial in a Vector STAR model framework.

In a multivariate framework, the type of transition function, transition variable, transition

speed and the location parameter may be different in each equation which is often also

economically reasonable. There is also the special case where only one transition function

governs the whole system, then, Gi
t(.) = g(sijt|γi, ci)Ik. In the simulation exercises, it will

be crucial to analyze different model specifications with respect to the transition function

and parameter setting checking the performance of different starting-value search methods

and their robustness across different specifications.

Amongst others van Dijk, Teräsvirta, and Franses (2002) discuss difficulties for estimat-

ing the slope parameter (γij) of a Vector STAR model when the latter is large. When

the transition speed is high, the Vector STAR model converges to a switching regression

model. Determining the curvature might be problematic since a low number of observa-

tions around the location parameter could make the estimation of the slope parameter

rather inaccurate in small samples. Thus, relying on suitable starting-values for the tran-

sition speed becomes even more important. The slope parameter γij and thereby, the

1The notation is taken from Teräsvirta and Yang (2013).
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Vector STAR model can be redefined by

γij = exp(νij), (4)

where νij is the parameter to be estimated. This methodological finesse has not been

applied in the literature so far.2 The slope parameter γij in equation (3) can then be

replaced by the expression in equation (4). To identify the model, γij > 0 such that

the codomain is restricted to be the set of positive real numbers. This implies that the

redefinition is a bijective transformation. Redefining γij facilitates the construction of

the grid because one can build an equidistant grid in the dimension of νij. Consequently,

the search space (grid) for γ is automatically dense in the beginning and less so when it

becomes large which is a sensible choice for estimating the Vector STAR model.

The estimation problem can be simplified by concentrating the likelihood function w.r.t.

F, as conditionally on Γ = [γij], C = [cij] the model is linear (Leybourne, Newbold, and

Vougas 1998). As a consequence, for the starting-value search the model can be either

estimated by equation-by-equation OLS or system-wise by FGLS when it is efficient. The

latter estimation approach is required if the multivariate model has zero restrictions in

the lag structure and/or has cross-correlated error terms (Greene 2003: ch. 14).

Based on the derived initial values, the estimation is either carried out by an equation-

by-equation Non-Linear Least Squares (NLS) algorithm or a system-wide Maximum-

Likelihood (ML) approach. NLS minimizes equation-wise the residual sum of squares.

The covariance matrix is estimated once at the end. Recall that initial values for the

NLS estimation are obtained by OLS as described in the previous paragraph. In contrast

to NLS, ML cannot be conducted equation-by-equation. Starting-values are obtained by

the system estimation approach FGLS. ML does then also take the variance-covariance

matrix (Ω) into account in the estimation. The numerical ML optimization w.r.t. γ and

c takes Ω as given. The covariance matrix is estimated in a previous step by FGLS.

Whenever there are neither cross-correlations nor zero restrictions equation-by-equation

NLS is efficient.

The estimation problem is bounded with respect to γij and cij. The constraints are

matched to the support of γij and cij (see section 3 for more details).3 For a more

detailed description of specification, estimation and evaluation of Vector STAR models

see Teräsvirta and Yang (2013) and for a survey on Vector Threshold and Vector Smooth

Transition Autogressive Models see Hubrich and Teräsvirta (2013).

2I am indebted to Matt Holt and Timo Teräsvirta who suggested this approach.
3To optimize the Vector STAR model, I use an interior-point algorithm (ML estimation) and a trust-

region-reflective algorithm (NLS estimation), both with constraints (lower and upper bounds) based on
fmincon.m and lsqnonlin.m functions implemented in the MATLAB R2012b version.
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3 Starting-Value Search Methods

In the following I present the competing starting-value search methods. In section 3.1,

the grid search methods, the classical grid and the grid with a zoom, are presented. Sub-

sequently in section 3.2, I introduce the heuristic methods which are threshold accepting,

simulated annealing, and differential evolution.

3.1 Grid search

3.1.1 Classical grid

The classical grid search (GS) is based on the space of Γ = [γij] and C = [cij] such that in

higher dimensional models a multidimensional grid emerges assuming an equation-specific

transition function. In order to make γ a scale-free parameter, following Teräsvirta (2004),

it is divided by its standard deviation. The location parameter cij is a function of the

transition speed γij: cijf(γij). If γ is high, implying a low number of observations around

the threshold, we use a truncated sample of the observations of the transition variable for

the location parameter c. At most, we exclude the lower and upper 15% percentile which

is also recommended by Andrews (1993) and Caner and Hansen (2001) for Threshold

(V)AR models. If γ is low, the support of c is not restricted. In other words, 100%

of the transition variable observations are used as support. γij is bounded between 0.1

and 30. It is necessary to constrain the parameter set as the VSTAR model becomes

unidentified otherwise. The transition function is practically constant if either γ gets

very large or small (or even negative). A slope parameter (γ) equal to 30 is already

close to an abruptly switching Threshold VAR model. Recall that the slope parameter is

redefined by γ = exp(ν) for facilitating the starting-value search. This yields the new set

N = [νij]. Consequently, the bounds are redefined to N = ln(Γ). For the new parameter

set I use an equidistant search space with increments of 0.003, yielding an equidistant grid

which is dense for low values and less so for steeper regions. The increments are chosen

to match approximately the average number of likelihood evaluations of the heuristic

starting-value search methods.

3.1.2 Grid with a zoom

The number of grid points increases quickly with model dimension and number of tran-

sition functions. Hence, it is likely that the number of grid points are intractable to

estimate in a reasonable computing time if a multivariate approach is required. To cir-

cumvent the time-consuming grid search in higher dimensional models, Teräsvirta and

Yang (2013) suggest a grid with a zoom which builds new grids by using the best solu-

tion of the previous step as the center. The initial step is a grid with a rather moderate
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number of grid points in each dimension.4 In the next step, the new grid is based on

the neighboring points of the previously optimal solution. The zoom-in is discontinued

when for all parameters (Γ and C) the difference between the highest and smallest value

building the new grid is smaller than a given value. 0.001 will be used in the following.

The stepwise refinement and zoom-in have the ability to find a global optimum if the

likelihood is centered around one global optimum and does not have many local optima.

However, the grid with a zoom might eventually miss the global or a useful local opti-

mum, if the surface area is not well-behaved. The zoom-in with a moderate grid clearly

leads to a lower number of likelihood evaluation in contrast to heuristics. But since the

heuristic methods are equipped with a stopping criterion which exits the algorithm earlier,

they may have lower amount as well (see next section). In principle, the grid search and

heuristics are equally efficient regarding their computational load. What makes the mul-

tivariate approach time-consuming is the FGLS estimation, where the covariance-matrix

and its inverse are calculated, respectively. Hence, the computational load depends on the

amount of function evaluations due to the covariance matrix calculation in order to derive

the likelihood. To match the number of likelihood evaluations, one could also increase the

number of grid points. Yet, we could then lose the time advantage of the grid with zoom.

Moreover, increasing the number of grid points of the zoom-in may not necessarily result

in superior outcomes because of the potential inability of this approach to find a global

optimum of a non-smooth surface.

3.2 Heuristic Optimization Algorithms

In the class of optimization heuristics, I focus on local search methods which iteratively

search for a new solution in the neighborhood of the current solution by using a random

mechanism. These can be divided into two categories: population based methods and

trajectory methods. The central idea of the local search methods is to allow temporary

uphill/downhill moves, i.e. a (controlled) impairment of the value of the objective func-

tion.5 This is done in order to escape local optima. These algorithms start off with a

random guess such that they do not depend on individual subjective elements. Since we

restart each algorithm, we in fact start with more than one random guess. In case of mul-

tiple local optima, heuristic methods may find better optima than traditional methods.

I assess the performance of different heuristic optimization algorithms in order to obtain a

successful, fast and easily applicable modeling strategy. The starting-values search within

a multivariate Vector STAR model relies on a continuous search space. Differential evo-

lution (DE) which belongs to the class of population based methods might be preferable

in this case (Gilli and Winker 2009). These kinds of method update a set of solutions si-

4I use five as recommended by Teräsvirta and Yang (2013).
5In a maximization problem, the methods do allow for downhill moves and vice versa in a minimization

problem.
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multaneously. Additionally, we employ threshold accepting (TA) and simulated annealing

(SA). They are trajectory methods that work on a single solution, i.e. these procedures

alter the value of only one parameter in each iteration step. These heuristic methods are

described in more detail in the next sections beginning with trajectory methods.

3.2.1 Threshold Accepting

This section describes TA.6 Algorithms 1 and 2 show pseudocodes for a minimization

problem. First, the number of iterations I and restarts R, and the thresholds sequence

(T ) are initialized, see line 1 of Algorithm 1. The threshold sequence which is used for

the acceptance decision gets linearly lowered to zero within 80% of the iterations. It

is based on a data-driven threshold sequence which is endogenously generated from the

sample (see Winker and Fang (1997) for details).7 Line 2 shows the initialization of the

(equation-specific) parameters of the transition speed and location parameter. The initial

slope parameter (γ) of the transition function is drawn from an exponential distribution

function with expected value one ensuring a positive value.8 The initialized values of γ

are transformed and the search procedure is based on ν = ln(γ). The initial location

parameter (c) is drawn randomly from the actual realization of the (equation-specific)

transition variable. As described above, c is a function of ν ensuring a feasible support of

c based on the actual value of ν. When updating the parameters, the slope and location

parameter are forced to remain in predefined bounds within the algorithm. When γ

(ν) and c do not lie in the interval, they are set equal to their predefined bounds: 0.1

(ln(0.1)) and 30 (ln(30)) and lowest/highest value of the feasible range of the transition

variable, respectively. Based on the initial parametrization, an equation-by-equation OLS

estimation or system FGLS-estimation is performed. As can be seen in line 3 of Algorithm

1, an objective function – error variance or loglikelihood value – is calculated to compare

different models. This value is stored.

After the initialization, the algorithm starts (line 4). The neighbor solution is computed

in the next step, see line 5 in Algorithm 1. The following details can be found in Algorithm

2. A random draw determines whether the location or slope parameter is changed and in

the multivariate set-up for which equation it is changed.9 A random normal distributed

term is added to the current value. In line with Maringer and Meyer (2008) the normal

distribution has expected value of zero to allow for movements in both directions (positive

and negative). The variance σ for ν is one, whereas the empirical variance of the transition

6The parameter setting of the algorithms is partly based on Maringer and Meyer (2008).
7An on-the-fly-updating, i.e. an updating during the iterations by taking local differences of the

previously generated differences of the target functions of the threshold sequence as suggested by Lyra,
Paha, Paterlini, and Winker (2010), leads to slightly inferior results on average. Hence, we stick to the
data-driven threshold sequence.

8Preliminary experiments indicate that values of 2 or 3 do not lead to superior results.
9Preliminary experiments have shown that changing more than one parameter leads to inferior out-

comes.
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Algorithm 1 Pseudocode for Threshold Accepting Algorithm

1: Initialize (data-driven) threshold sequence T , number of iterations I and restarts R
2: Initialize Ψ = (c, γ): γ = exp(µ = 1), c = uniformrand(range of transition variable),

transform ν = ln(γ)
3: Calculate current value of target function f(Ψ)
4: for i = 1 : I do
5: Compute neighbor Ψ∗ ∈ N (Ψ)
6: Calculate f(Ψ∗), ∆f = f(Ψ∗)− f(Ψ)
7: if ∆f < T (i) then
8: keep modifications
9: else

10: undo modifications and keep previous solution
11: end if
12: Report elitist, lower threshold
13: end for
I=100,000 in the equation-by-equation approach (rounds=200, steps=500) and R=5;
I=500,000 in the multivariate approach (rounds=500, steps=1000) and R=3.

Algorithm 2 Neighbor for Threshold Accepting and Simulated Annealing Algorithm

1: Compute neighbor Ψ∗ ∈ N (Ψ)
2: if uniformrand(0, 1) < 0.5 then
3: Add n1 = No(µn = 0, σν = 1) to ν (for randomly selected equation)
4: else
5: Add n2 = No(µn = 0, σc = std(st)) to c (for randomly selected equation)
6: end if

variable st is chosen for c. For the multivariate search procedure, σc is multiplied by two

which leads to better results than using only the standard deviation itself.10 Based on the

updated parameter setting the Vector STAR model is estimated and the model fit – the

error variance or loglikelihood – is calculated as displayed in line 6 of Algorithm 1. The

difference of the objective function values between the previous and the new solution is

calculated. The acceptance criterion is shown in line 7: if the difference is smaller than

the current value of the threshold sequence, the new parameter setting is accepted else the

previous solution is restored. In each iteration step, the best solution, that is called elitist,

is kept. The next iteration steps follow until the predefined number of iterations have

been carried out. They amount to 100,000 (rounds=500,steps=200) in the equation-by-

equation and to 500,000 (rounds=1000,steps=500) for the system approach. The former

(latter) is based on 5 (3) restarts of the algorithm. If within a predefined number of

iterations ((rounds× steps)/10) the parameter combination and objective function value

remain identical, implying that no improvement is achieved, the algorithm will be stopped.

This implies assuming that a sufficiently good optimum is reached.

10In preliminary experiments, different values of the standard deviation or a downscaling of the standard
deviation within the iterations have not resulted in superior outcomes. I assume that a normal distribution
is more appropriate to overcome local optima than a uniform distribution. If we rely on a uniform
distribution, we would get large changes with equally high probability as of small changes. This is not
preferable. We favor small changes in most of the iteration steps and in few cases larger changes to
overcome local minima. If we restricted the interval to a smaller area, we would exclude larger changes.
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3.2.2 Simulated Annealing

Simulated annealing works in the same way as TA, except that the acceptance condition

(line 7 of Algorithm 1) is replaced by the following expression:

∆f < 0 ∨ exp(−∆f/Temp) > u, where u is a uniformly (0,1) distributed pseudorandom

variable. Hence, the acceptance rule becomes stochastic. Improvements of the objective

function value are always accepted. The temperature (Temp), which is the relevant pa-

rameter for the acceptance condition, gets lowered during the iteration, what makes the

acceptance of impairments less likely in the course of iterations. The parameter which

governs the reduction of the temperature is called cooling parameter (cp). Instead of

“lower threshold” in line 12, the expression reads: Temp = Temp × cp. The initial tem-

perature is set equal to 10 and the cooling parameter is derived by following formula(
0.0001
10

(1/rounds)
= cp

)
.11 The formula ensures that the temperature is lowered until it is

close to zero, that is here 0.0001.

3.2.3 Differential Evolution

In a multivariate non-linear Vector STAR model, it could be beneficial that the whole

set of solutions (this is called a population) is updated simultaneously. Since the number

of optimization parameters (γ and c) increases with model dimension and number of

transitions, this approach may create an advantage in terms of velocity and efficiency. In

contrast to trajectory methods, DE is more appropriate for a continuous search space. A

pseudocode can be found in Algorithm 3.

There exist two main features which are important in the implementation of a differential

evolution algorithm: mutation (slightly altering a solution) and cross-over (combination of

the properties of two or more existing solutions). The former is determined by the scaling

(weighting) factor F and the latter by the cross-over probability Π. As can be seen from

lines 1 and 2 of Algorithm 3, both have to be initialized along with the population size np

and the optimization parameters (γ and c). The latter two are initialized in line with the

procedure of SA and TA. After the initialization, the value of the objective function is

calculated for all potential solutions, see line 3. Then, the generations start off in line 4.

The number of the generations (ng) is chosen to match the number of objective function

evaluations in SA and TA.

A candidate solution is constructed by taking the difference between two other solutions

(members of the population), weighting this by a scalar F and adding it to a third

solution as described in lines 7 to 9. Hence, F determines the speed of shrinkage in

exploring the search space. Subsequently, an elementwise cross-over takes place across

the intermediate and the original (existing) solution. This cross-over is determined by

Π which is the probability of selecting either the original or the intermediate solution to

11Preliminary experiments have shown that a temperature of 10 is a good number to deal with the
trade-off of escaping local optima and speed of convergence in this application.
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Algorithm 3 Pseudocode for Differential Evolution

1: Initialize generations of population ng, scaling factor F = .8 and cross-over probability Π = .6
2: Initialize population pop = 10d by Ψ = (c, γ): γ = exp(µ = 1),

c = uniformrand(range of transition variable), transform ν = ln(γ)
3: Calculate current value of target function f(Ψ)
4: for i = 1 : ng do
5: P 0 = P 1

6: for i = 1 : np do
7: Select jth element of population p with dimension d (all parameters)
8: Generate interim solution by 3 distinct members (m1,m2,m3) of current pop 6= j
9: Compute interim solutions of parameters by P int = P 0

m1 + F × (P 0
m1 + P 0

m1)
10: Generate offspring solution (P 1) by selecting with probability Π the parameter value from the

interim or with 1−Π from original population
11: Compute objective value
12: if f(P 1) < f(P 0) then
13: Replace original solution by offspring solution, keep elitist
14: end if
15: end for
16: end for
ng=100,000/(pop) and ng=500,000/(pop) in system approach;
d=number of parameters being optimized.

form the offspring solution (see line 10).

To obtain the optimal combination of the population size np, the scaling parameter F and

the cross-over probability Π, I performed pretests based on 100 repetitions. This three-

dimensional grid shows a rather clear picture concerning the best parameter settings. The

scaling parameter F should be at least 0.6. After F exceeds 0.5, the surface of the objective

function shows a jump (steep downward trend) towards a lower (=better) value. After

this threshold there are rather minor changes in the value of the objective function with a

tendency of 0.8 being the optimal value. The cross-over probability Π does not yield such

a clear picture concerning the optimality as the scaling parameter does, but the results

indicate that it should be at least equal to 0.6. The algorithm chooses randomly from a

finite set of solutions which it mixes what is called population. The population should be

sufficiently large to allow for diversification such that a broad range of the search space

is covered. Yet, it should not be too large to search efficiently through the search space

finding the best solution. In this experiment, a population size greater than eight times

the number of parameter delivers better results than smaller population sizes. I choose 10

as the multiplier for the number of parameters to get the population size. These results

hold for all DGPs independent of zero restrictions or estimation approaches.

The acceptance condition in lines 12–14 is as follows: If the offspring solution results

in a superior objective function, it replaces the existing solution. By construction the

best solution (elitist) is always maintained in the population. If all parameters of the

population are identical, the algorithm has converged and it will be stopped.
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4 Assessment in a Monte Carlo experiment

4.1 Evaluation approach

The evaluation of the previously introduced starting-value search methods is based on

a Monte Carlo experiment. I simulate DGPs of Vector STAR models in order to assess

the performance of different search techniques by comparing the values of an objective

function– the error variance or the loglikelihood.12 The error variance is taken as target

function if an equation-by-equation approach is efficient, whereas the loglikelihood is used

for a multivariate search procedure.

The assessment of the starting-value search methods relies on two measures which are

based on a pairwise comparison across procedures. The first measure calculates the mean

and standard deviation of the absolute differences of target functions across procedures

over all simulation runs (→measure of similarity). The second measure is the frequency

of superior results over all simulation runs (→ measure of superiority). An outcome

is defined to be better than another if (i) the error variance is at least 0.05 per cent

smaller than the error variance generated by the other algorithm or (ii) the loglikelihood

is 0.05 per cent larger. Whenever the differences across procedures are considerable, I also

assess which algorithm yields the best outcome across all procedures and which results

in the best distribution of objective function values. The comparison across procedures

is carried out for the results of both the starting-value search and the final estimation

outcome. Restricting the evaluations to the results of the starting-value search is not

sufficient. Two identical objective function values could refer to different optima. After

the optimization, the final value of the objective function could then be different.13

4.2 Data Generating Processes of VSTAR models

The Monte Carlo simulations rely on 5000 replications for the equation-by-equation ap-

proach and 1000 replications for the multivariate search procedure. The sample size is

T = 250, which corresponds to approximately 20 years of monthly data. This defines

a finite sample setting. Time series with length T + 100 are generated, and the initial

100 observations are discarded to eliminate the dependence on the initial value (seed).

The error terms εt are drawn from a normal distribution with expected value zero and

variance-covariance matrix (Ω) [εt ∼ N(0,Ω)].

The Vector STAR models to be simulated can be found in Table 1. The first Vector STAR

model (VSTAR1) relies on a lag structure without “gaps”, whereas the second (VSTAR2)

12I take the lag structure as given in the starting-value search and the optimization. Hence, the
optimization problem relies on a “known” lag structure.

13I do not compare the likelihood to the “true” likelihood of the DGP. First, the DGPs are based on a
finite sample which does neither allow to compare exact parameter estimates nor might necessarily yield
the what is commonly called “true” likelihood. Second, I seek to find the “best” implementation for a
given estimator for which no analytical solution exists.
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contains zero restrictions. The degree of non-linearity and the (non-)stationarity of the

process is determined by the parameters which are chosen such that the process seems to

be stable and does not exhibit explosive behavior.14 For a non-linear, multivariate Vector

STAR model the stationary conditions have not been theoretically derived so far.

In the simulation exercise the equation-specific location parameter (c) is set to values

which are close to zero. This reflects a reasonable magnitude with respect to economic

applications assuming regimes which are related to boom and bust scenarios, for instance

positive and negative output growth. By setting γ = [3, 2] the transition speed is chosen

such that a moderate transition speed emerges rather than a linear model or an abrupt

change (VSTAR1-1 and VSTAR2-1). Yet, I also model a case in which a rather abrupt

change takes place, where γ = 20 for the first equation (VSTAR1-2 and VSTAR2-2). The

probability that a value of the transition function lies in the open interval between 0.01 and

0.99 is a measure for the steepness of the function, hence, the transition speed. The larger

the probability, the smoother the function. For γ = [3, 2] it amounts to 80.6% and 95.1%

on average. Choosing γ = 20, the values of the transition function are more frequently

closer to 0 or 1 as the probability of lying between 0.01 and 0.99 is only approximately

15%.

VSTAR1-3 and VSTAR2-3 have cross-correlated error terms, otherwise being identical to

VSTAR1-1 and VSTAR2-1. Finally, the third (VSTAR3) model is a trivariate VSTAR

process. VSTAR3-1 has equation-specific transition functions, whereas a single transition

function governs the VSTAR3-2 model. For the former model the transition speed varies

across equations, the probability of lying between 0.01 and 0.99 amounts to 99.6%, 91.5%,

and 40.4% for γ = [.5, 2, 7]. For VSTAR3-2 the probability is 63.8% for γ = 4.

Theoretically, VSTAR1-1 and VSTAR1-2 can be efficiently estimated equation-by-equation

by OLS (starting-value search) and NLS (optimization). All other VSTAR-DGPs require

a multivariate search (FGLS) and optimization procedure (ML) due to a lag structure

with zero restrictions, cross-correlated error terms and/or a single transition function gov-

erning the whole system. Nevertheless the empirical results might be different. Hence,

I employ the equation-by-equation as well as the multivariate search procedures and es-

timation strategy for all DGPs to find the best implementation for the starting-value

search.

5 Simulation Results

I begin by presenting the results of different starting-value search methods of the equation-

by-equation approach in subsection 5.1. As mentioned before, in a Vector STAR model

14See equations (5), (6) and (7) in the appendix for the exact parameter specification of all VSTAR
models. The Vector STAR VSTAR1-1, VSTAR1-2, VSTAR1-3, VSTAR3-1, and VSTAR3-2 processes are
depicted in figures 3 – 7 in the appendix. There is visually no difference between VSTAR1 and VSTAR2,
hence, I do not show the figures of VSTAR2.
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Table 1: Simulated Vector STAR DGPs

transition function γ c d Ω

VSTAR1-1 logistic [3,2] [0,0.5] {1, 2} [1,0;0,1]

VSTAR1-2 logistic [20,2] [0,0.5] {1, 2} [1,0;0,1]

VSTAR1-3 logistic [3,2] [0,0.5] {1, 2} [1,1.5;1.5,3]

VSTAR2-1 logistic [3,2] [0,0.5] {1, 2} [1,0;0,1]

VSTAR2-2 logistic [20,2] [0,0.5] {1, 2} [1,0;0,1]

VSTAR2-3 logistic [3,2] [0,0.5] {1, 2} [1,1.5;1.5,3]

VSTAR3-1 logistic [.5,2,7] [.5,0,.11] {2, 1, 4} [1,0,0;0,1,0;0,0,1]

VSTAR3-2 logistic [4] [0] {1} [1,0,0;0,1,0;0,0,1]

VSTAR1 and VSTAR2 differ w.r.t. their lag structure. VSTAR1 relies on a lag structure
without “gaps”, VSTAR2 contains zero restrictions.
VSTAR3 contains zero restrictions. All specification can be also found in the appendix.

without zero restrictions and no cross-correlations an equation-by-equation NLS estima-

tion is efficient. Thus, the starting-value search can be based on equation-by-equation

OLS.15 The outcomes are assessed by conducting comparisons across procedures by means

of the measures of similarity and superiority for both the starting-value search and the

estimation outcomes as described in section 4.1. In subsection 5.2, I assess Vector STAR

DPGs for which a system (multivariate) approach is efficient. I employ a multivariate

starting-value search setting. Besides comparing the different procedures, I check whether

in this setting the equation-by-equation approach indeed yields worse results.

For the sake of convenience, I will present results by using only the loglikelihood values.

The equation-by-equation approach still takes the error variance as target function. Based

on these results, I calculate the loglikelihood.

5.1 Equation-by-equation starting-value search

The results in Table 2 on the measure of similarity already indicates that all algorithms

generate quite similar loglikelihood values of the starting-value search for VSTAR1-1 and

VSTAR1-2. In particular, SA, TA and DE seem to perform equally well. This is also

confirmed by the results of the measure of superiority in Table 3. GS delivers slightly

worse results than the other methods. In approximately 4% of the simulation runs the

heuristic algorithms generate a 0.05 per cent higher loglikelihood value than GS. On

average, GS has a lower number of objective function evaluation than SA and TA does:

403,047 vs. 440,061 and 500,000. This could explain the slightly worse outcomes. Yet,

the function evaluations of DE amount to 402,479 on average which is the lowest value

15This model set up differs from a univariate approach since the right hand side includes also lagged
variables of the dependent variable of the second equation. The results do nonetheless hold for a univariate
model set-up.
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across all procedures. I therefore assume that the fixed grid points for the parameter

values are responsible for the inferiority of the grid search. The heuristic methods allow

the parameters in principle to take any value which then could easily result in a higher

loglikelihood.

Table 2: VSTAR1-1 and VSTAR1-2, starting-value search – absolute differences

DE/GS DE/TA DE/SA SA/TA SA/GS TA/GS

VSTAR1-1

mean 0.0122 0.0010 0.0011 0.0001 0.0117 0.0118

std 0.0302 0.0176 0.0176 0.0006 0.0262 0.0262

VSTAR1-2

mean 0.0113 0.0007 0.0008 0.0001 0.0108 0.0108

std 0.0261 0.0140 0.0140 0.0008 0.0226 0.0227

Remark for interpretation: The absolute differences of the pairs yield a
measure of similarity. The smaller the absolute difference, the more sim-
ilar the loglikelihood of the algorithms.

Table 3: VSTAR1-1 and VSTAR1-2, starting-value search – frequency of superior results

VSTAR1-1 VSTAR1-2

DE SA TA GS DE SA TA GS

DE - 0.10% 0.10% 4.42% - 0.10% 0.10% 3.84%

SA 0.30% - 0.00% 4.42% 0.24% - 0.00% 3.74%

TA 0.30% 0.00% - 4.44% 0.24% 0.00% - 3.78%

GS 0.36% 0.18% 0.18% - 0.32% 0.14% 0.14% -

Remark for interpretation: Row better than column.
At least 0.05 per cent larger likelihood than other algorithm.

It is not sufficient to focus solely on the starting-value search outcomes. It is necessary

to compare values of the objective function after the optimization as well. As mentioned

before, in theory two differently located optima with the same objective function value

could be found by the starting-value search. These could lead to different optimized

values. First of all, I check whether an equation-by-equation NLS estimation or a system

ML estimation generates better results. Depending on the outcome, I use either the

results obtained by NLS or ML for the final assessment. The results in Table 4 show that

the frequency of superior loglikelihood values is on average higher for NLS estimation.

This is in line with NLS being efficient for this VSTAR model set-up as the models do

neither exhibit zero restrictions nor cross-correlated error terms. The difference between

both estimation procedures does not seem to be large, however. In 70% of the simulation

runs the outcomes yield a loglikelihood value which does not differ by more than 0.05 per

cent. To evaluate the results, I use the values obtained by NLS. Yet, the results discussed

in the following hold for ML estimation as well.

After estimating the VSTAR1-1 and VSTAR1-2 model using the initial values obtained

by the respective algorithms, the absolute differences of the target function value across
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Table 4: VSTAR1-1 and VSTAR1-2, NLS vs. ML estimation – frequency of superior results

NLS better than ML ML better than NLS

VSTAR1-1 VSTAR1-2 VSTAR1-1 VSTAR1-2

DE 25.10% 23.78% 6.26% 6.38%

SA 24.96% 23.72% 6.38% 6.34%

TA 24.74% 23.58% 6.42% 6.38%

GS 27.74% 25.98% 5.16% 5.38%

Remark for interpretation: Better means at least 0.05 per
cent larger likelihood.

procedures decrease further or remain approximately the same as can be seen from Tables

5 and 6. The value of the objective function is in almost all runs identical suggesting the

detection of the same optimum and an identical performance in the equation-by-equation

starting-value search setting. Small differences in starting-values do not have a large

impact on final estimates. In particular, GS now yields as good results as the heuristic

methods. Hence, the disadvantage of the rigid grid is offset after the estimation. The

grid search comes already very close to the optimum obtained by the heuristics but an

optimization algorithm is necessary to reach it.

Table 5: VSTAR1-1 and VSTAR1-2, NLS Estimation – absolute differences

DE/GS DE/TA DE/SA SA/TA SA/GS TA/GS

VSTAR1-1

mean 0.0045 0.0018 0.0021 0.0009 0.0044 0.0046

std 0.0648 0.0375 0.0445 0.0283 0.0681 0.0723

VSTAR1-2

mean 0.0050 0.0037 0.0037 0.0006 0.0024 0.0028

std 0.1049 0.1055 0.1051 0.0255 0.0392 0.0492

Remark for interpretation: The absolute differences of the pairs yield a
measure of similarity. The smaller the absolute difference, the more sim-
ilar the loglikelihood of the algorithms.

Table 6: VSTAR1-1 and VSTAR1-2, NLS Estimation – frequency of superior results

VSTAR1-1 VSTAR1-2

DE SA TA GS DE SA TA GS

DE - 0.16% 0.26% 0.32% - 0.22% 0.22% 0.40%

SA 0.22% - 0.12% 0.30% 0.28% - 0.04% 0.28%

TA 0.18% 0.02% - 0.28% 0.28% 0.04% - 0.28%

GS 0.48% 0.40% 0.48% - 0.54% 0.32% 0.36% -

Remark for interpretation: Row better than column.
Better means at least 0.05 per cent larger likelihood.

This is confirmed by Table 7 which shows the comparison of the starting-value search

and optimization outcomes by counting the number (i) for which the optimized loglike-

lihood is at least 0.01 per cent better than that of the starting-value search and (ii) of
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identical results of starting-value search and estimation (up to the fourth decimal). The

results indicate that the starting-value search by heuristic algorithms frequently, in about

50–60% of all runs, produces the final optimum already. The number of improvements

after estimating the Vector STAR model is clearly lower than those of GS. Nevertheless,

improvements are possible, while DE seems to be a bit more efficient in the starting-

value search. Overall, the grid search yields a worse approximation to the optimum and

a gradient-based algorithm is necessary in order to obtain a better, hopefully global,

optimum.

Table 7: VSTAR1-1 and VSTAR1-2, comparison of starting-value search and optimization

(i) (ii)

VSTAR1-1 VSTAR1-2 VSTAR1-1 VSTAR1-2

DE 38.14% 35.72% 58.42% 60.94%

SA 37.88% 35.48% 54.08% 56.84%

TA 37.78% 35.42% 54.26% 56.06%

GS 58.90% 55.98% 1.18% 0.94%

(i) Optimized loglikelihood at least 0.01 per cent better than
starting-value search.
(ii) Identical results of estimation and starting-value search (up
to the fourth decimal).

These results hold for Vector STAR DGPs without zero restrictions and cross-correlations

across error terms within the equation-by-equation approach. To sum up, all starting-

value search procedures work equally well in the equation-by-equation approach. The

heuristics, DE somewhat more pronounced than the other, are already quite efficient in

the starting-value search as long as the equation-by-equation approach is efficient. As can

be seen from Figure 1, the parameter estimates for Γ and C confirm these outcomes as the

curves are practically identical. The figure refers to the first equation for VSTAR1-1 but

the outcomes for the other equation as well as VSTAR1-2 are similar. In more than 95%

of the simulated cases, the parameter estimates do not differ by more than 0.01 across all

procedures in the simulation runs. This is true for the starting-value search as well as for

the optimization.

Figure 1: Kernel density of parameter estimates after starting-value search, normal kernel,
bandwidth optimized for normal kernel – c and γ, VSTAR1-1 (true c = 0.5 and γ = 2, T = 250)
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I also compare equation-by-equation search approaches and the multivariate search strate-

gies although the former is efficient. As we are in a final sample set-up, a multivariate

approach could nevertheless be beneficial. From Table 8 it is seen that the systemwise

starting-value search is not significantly superior to the equation-by-equation approach.

Rather the equation-by-equation search yields on average better results. Knowing that

the latter is also much faster than the former, there is no need to use the multivariate

starting-value search.16 The equation-by-equation implementations of TA and GS seem

to be particularly more efficient than its multivariate counterpart. In about 90% (GS) to

almost 100% (TA) the equation-by-equation is better than the multivariate approach. In

the following section 5.2, we will see that it is rather the ineffectiveness of the multivari-

ate TA and GS algorithm which drives this result. For DE and SA the superiority of the

equation-by-equation approach is lower (17% and 28%), but still larger than the percent-

age rate of the superiority of the multivariate over the equation-by-equation approach.

Table 8: VSTAR1-1 and VSTAR1-2, equation-by-equation vs. system approach

VSTAR1-1 VSTAR1-2

Starting-value search

DE SA TA GS DE SA TA GS

Eq.-eq.�Multiv. 17.40% 27.30% 99.70% 92.00% 18.60% 28.20% 99.90% 91.30%

Multiv.�Eq.-eq. 10.50% 9.10% 0.10% 1.90% 9.30% 9.20% 0.10% 1.70%

NLS estimation

DE SA TA GS DE SA TA GS

Eq.-eq.�Multiv. 37.80% 46.00% 58.30% 62.20% 38.00% 45.90% 56.70% 59.80%

Multiv.�Eq.-eq. 9.70% 8.30% 14.00% 11.30% 8.90% 8.30% 14.20% 12.00%

Remark for interpretation: Better (�) means at least 0.05 per cent larger likelihood.

When an equation-by-equation approach is not efficient or not possible at all due to a single

transition function governing all equations, we have to estimate the model system-wise.

Then, it becomes already infeasible to estimate a four dimensional grid in a reasonable

computing time. Therefore, we rely on the grid with a zoom advocated by Teräsvirta and

Yang (2013) as a benchmark for the heuristic algorithms to derive starting-values for a

multivariate search and estimation strategy in the following section.

5.2 Multivariate starting-value search

There are three types of VSTAR models which theoretically require a multivariate search

and estimation procedure: i) VSTAR2 and VSTAR3 with zero restrictions in the lag struc-

ture, ii) VSTAR1-3 and VSTAR2-3 with cross-correlated error terms, and iii) VSTAR3-2

which has a single transition function governing the whole model. In this section, I assess,

the outcomes of different algorithm for finding starting-values in a multivariate setting.

16Recall that the estimation is done by NLS. All results presented above hold for the ML estimation
procedures as well. Results are available upon request.
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Besides that, I evaluate whether the multivariate search and estimation procedure indeed

outperforms the equation-by-equation approach. This might not necessarily be the case

in applications with short or moderately long time series. The results for VSTAR2-1 and

VSTAR2-2 will be discussed in section 5.2.1 and for the trivariate VSTAR3-1 process in

section 5.2.2. Section 5.2.3 shows the outcomes for VSTAR models with cross-correlated

errors (VSTAR1-3 and VSTAR2-3), and section 5.2.4 those for VSTAR3-2 with a single

transition function.

5.2.1 Bivariate VSTAR model with zero restrictions

I begin by discussing the outcomes of the algorithms applied to VSTAR2 model without

cross-correlated errors. I employ both a multivariate and an equation-by-equation ap-

proach for the starting-value search. First of all, I check whether the equation-by-equation

search should be followed by NLS or ML estimation. When it comes to the estimation,

it is seen from Table 9 that the equation-by-equation approach and ML estimation on

average yields slightly worse results than NLS estimation. Yet, in approximately 70% of

the simulations the estimation procedures obtain a loglikelihood value which differs not

more than 0.05 per cent. Based on those results, I take the equation-by-equation search

with NLS estimation as a benchmark for the comparison with the multivariate approach

to be on the safe side. If the multivariate approach outperforms the former followed by

NLS estimation, the probability of outperforming ML will be even higher.

Table 9: VSTAR2-1 and VSTAR2-2, NLS vs. ML estimation – frequency of superior results

NLS better than ML ML better than NLS

VSTAR2-1 VSTAR2-2 VSTAR2-1 VSTAR2-2

DE 22.44% 20.90% 9.26% 8.70%

SA 22.20% 20.68% 9.44% 8.80%

TA 22.16% 20.56% 9.42% 8.98%

GS 23.82% 22.58% 7.96% 7.54%

Remark for interpretation: Better means at least 0.05 per
cent larger likelihood.

The results in Table 10 show that although the multivariate approach would be efficient,

the multivariate search with ML estimation does not yield clearly better outcomes on

average than the equation-by-equation search associated with NLS. This is particularly

true for TA and GS, whereas for SA and DE the superiority is less pronounced. Yet, for

the latter two procedures the equation-by-equation approach yields even better results

after Vector STAR model estimation. Looking at the difference between multivariate

and equation-by-equation search in more detail, the difference increases for DE from

roughly 3%–7% to 16–23% and for SA from approximately 25% to 30%. Hence, there

is already a tendency for the equation-by-equation starting-value approach to perform

better than the system-wise search. This becomes even more obvious after estimating the
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Vector STAR model. The equation-by-equation approach generates a higher frequency

of superior results for DE and SA than the system search. The clear superiority of the

equation-by-equation approach does hold for the starting-value search, but decreases for

Vector STAR model estimation for TA and GS. This is once more an indication that the

multivariate approaches of TA and GS does not seem to be very efficient. From these

results, there can be drawn a rather clear conclusion which optimization strategy to apply.

The gain of efficiency of estimating VSTAR models with zero restrictions system-wise is

not pronounced in this application. Even if the results were completely identical, the

equation-by-equation approach would be preferable due to a shorter execution time.17

Eventually, one could force the multivariate approach to generate better results if one

increased the number of likelihood evaluations. This, however, is not in line with the aim

of the study which is to provide an easily applicable modeling strategy. The equation-by-

equation methods seem to search more effectively through the parameter space than their

system-wise counterparts. The error of not taking the covariance matrix into account in

the search procedure is negligible. From the applied point of view, this is a useful result.

Table 10: VSTAR2-1 and VSTAR2-2, equation-by-equation vs. system approach

VSTAR2-1 VSTAR2-2

DE SA TA GS DE SA TA GS

Starting-value search

Eq.-eq.�Multiv. 15.80% 23.50% 99.10% 89.50% 18.10% 25.10% 99.70% 88.50%

Multiv.�Eq.-eq. 12.50% 10.60% 0.00% 1.20% 11.00% 9.40% 0.00% 1.90%

Estimation

Eq.-eq.�Multiv. 33.30% 39.70% 57.20% 59.40% 21.20% 29.30% 54.40% 55.10%

Multiv.�Eq.-eq. 10.80% 9.60% 14.30% 13.00% 5.10% 4.20% 18.60% 16.60%

Remark for interpretation: Better (�) means at least 0.05 per cent larger likelihood.

Next, we assess the different equation-by-equation starting-value search methods by pair-

wise comparisons. To begin with, the results in Table 11 support those shown in Section

5.1 for the equation-by-equation procedure applied to VSTAR1. The algorithms for find-

ing starting-values do not yield strong differences, where SA, TA and DE slightly outper-

form GS in the starting-value search. After the optimization, the outcomes also show the

same pattern as in the previous section. In principle, all methods could be used to find

good initial values for bivariate Vector STAR models that contain zero restrictions but

no cross-correlated error terms.18

In order to analyze the effectiveness of the starting-value search procedure, I compare the

values obtained by starting values search and after estimation in Table 12. The heuristics

yield a high percentage rate of identical results after starting-value search and estimation

17Recall that we rely on equation-by-equation OLS estimation which is much faster than the multi-
variate procedure associated with FGLS estimation.

18Identically to VSTAR1-1 and -2, the parameter estimates of Γ and C across procedures show marginal
differences in VSTAR2-1 and -2.
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Table 11: VSTAR2-1 and VSTAR2-2, equation-by-equation search – frequency of superior
loglikelihood

VSTAR2-1 VSTAR2-2

Starting-value search

DE SA TA GS DE SA TA GS

DE - 0.12% 0.12% 2.64% - 0.12% 0.12% 3.48%

SA 0.30% - 0.00% 2.68% 0.34% - 0.02% 3.36%

TA 0.30% 0.00% - 2.68% 0.36% 0.02% - 3.42%

GS 0.38% 0.22% 0.22% - 0.42% 0.12% 0.14% -

NLS estimation

DE - 0.20% 0.46% 0.20% - 0.20% 0.36% 0.36%

SA 0.28% - 0.26% 0.16% 0.20% - 0.20% 0.26%

TA 0.28% 0.00% - 0.16% 0.18% 0.02% - 0.24%

GS 0.40% 0.34% 0.58% - 0.40% 0.32% 0.44% -

Remark for interpretation: Row better than column.
At least 0.05 per cent larger likelihood than other algorithm.

(up to the fourth decimal). This shows the efficiency of the heuristics already in the

starting-value search. In case of the grid search, the optimized loglikelihood is in more

than 50% of the simulation runs larger than that generated by the initial search. In less

than 2% the results of estimation and starting-value search are identical up to the fourth

decimal.

Table 12: VSTAR2-1 and VSTAR2-2, comparison of starting-value search and optimization

(i) (ii)

VSTAR2-1 VSTAR2-2 VSTAR2-1 VSTAR2-2

DE 34.02% 29.92% 62.44% 67.30%

SA 33.64% 29.44% 58.48% 63.62%

TA 33.24% 29.22% 58.22% 62.90%

GS 51.56% 49.40% 1.86% 1.64%

(i) Optimized loglikelihood at least 0.01 per cent better than
starting-value search.
(ii) Identical results of estimation and starting-value search (up
to the fourth decimal).

Hence, we can conclude that the gain of the derivative-based algorithm is larger. Yet,

after the derivative-based optimization algorithm is carried out, the difference across the

values of different procedures is reduced, implying that GS is able to obtain the same

optimum as the heuristics.

5.2.2 Trivariate VSTAR model with zero restrictions

Before I present the results of the VSTAR models with cross-correlations in section 5.2.3,

I consider a higher-dimensional VSTAR model with zero restrictions. Particulary, I focus

on a trivariate VSTAR model (VSTAR3-1) with equation-specific transition functions.
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The results in Table 13 for VSTAR3-1 differ to some extent from the ones shown before.

First of all, ML estimation is on average clearly better than NLS estimation after the

equation-by-equation search. Consequently, a more complex process (higher dimension)

with zero restrictions requires and benefits from a system-wide derivative-based algorithm

which takes the covariance matrix into account (ML estimation). This has not necessarily

been the case for the bivariate processes.

Table 13: VSTAR3-1, NLS vs. ML estimation – frequency of superior results

ML better than NLS NLS better than ML

DE 56.90% 19.24%

SA 57.10% 18.96%

TA 57.12% 18.90%

GS 54.54% 19.70%

Remark for interpretation: At least 0.05 per cent larger
likelihood than other algorithm.

Given these results, I compare the equation-by-equation and the multivariate search pro-

cedures, both associated with ML estimation. From Table 14 it is seen that regarding the

starting-value search, the equation-by-equation approach is preferable for all algorithms.

The advantage becomes smaller after the ML estimation, but still for TA and SA a clear

superiority of the equation-by-equation approach is maintained. For DE and GS the mul-

tivariate search is only slightly better on average. The distinction is comparatively small

which might not be seen as a clear indication for the equation-by-equation search. Yet,

having in mind that the multivariate procedure is associated with a higher computational

load, equation-by-equation search appears preferable.

Table 14: VSTAR3-1 – equation-by-equation vs. system approach

Starting-value search

DE SA TA GS

Eq.-eq.�Multiv. 74.90% 87.90% 100.00% 89.30%

Multiv.�Eq.-eq. 11.60% 6.80% 0.00% 7.00%

ML estimation

Eq.-eq.�Multiv. 42.40% 48.70% 37.40% 32.70%

Multiv.�Eq.-eq. 37.60% 31.20% 21.60% 26.90%

Remark for interpretation: Better (�) means at least 0.05 per
cent larger likelihood.

This is again a useful result from an applied perspective: even a more complex model

does not necessarily require a multivariate, time-consuming search procedure. Equation-

by-equation starting-value search obtains better or sufficiently good starting-values. It is

even evident that equation-by-equation search is superior.

Table 15 contains results for the individual algorithms. They indicate that the heuristics

perform slightly better in the starting-value search than the grid search. But then, in
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contrast to the results derived in the previous section 5.2.1, this advantage does not

become negligible after ML estimation. The grid search does not find the best optimum

after ML estimation although the inferiority is about 4–5% which is not extremely high.

Obviously, the inflexibility of the grid in contrast to the heuristic search space is not

compensated by an optimization algorithm in a more complex, trivariate process as it has

been for a bivariate model.

Table 15: VSTAR3-1, equation-by-equation search – frequency of superior loglikelihood

Starting-value search ML estimation

DE SA TA GS DE SA TA GS

DE - 0.14% 0.14% 5.74% - 0.30% 0.30% 4.14%

SA 0.50% - 0.00% 5.72% 1.12% - 0.40% 4.62%

TA 0.50% 0.00% - 5.72% 1.94% 1.20% - 5.38%

GS 0.72% 0.30% 0.30% - 1.72% 1.40% 1.32% -

Remark for interpretation: Row better than column.
At least 0.05 per cent larger likelihood than other algorithm.

To sum up, even when the dimension of the model is increased from two to three, there

is no clear winner of the starting-value search procedure across heuristics. Yet, the GS

performs slightly worse than the latter. The results differ from the previous ones in section

5.2.1 in three respects. First, the less complex processes yield on average better outcomes

using NLS estimation than ML, whereas ML estimation results in higher loglikelihood

values than NLS for the trivariate model. Second, GS yields slightly worse results also for

the final estimates. Third, a derivative-based algorithm is clearly necessary to improve

the loglikelihood derived by the starting-value search which can be seen from Table 16.

In around 73% of the simulation runs the optimized value is better than the loglikelihood

value obtained by the starting-value search. This is independent from the procedure used.

This indicates that although the search problem becomes more complex, an equation-by-

equation search equipped with a derivative-based algorithm can handle this optimization

problem sufficiently well.

Table 16: VSTAR3-1, Comparison of starting-value search and optimization

(i) ii)

DE 72.94% 0.00%

SA 73.02% 0.02%

TA 73.02% 0.00%

GS 73.42% 0.02%

(i) Optimized loglikelihood at least 0.01 per cent
better than starting-value search.
(ii) Identical results of estimation and starting-
value search (up to the fourth decimal).

22



5.2.3 Bivariate VSTAR model with cross-correlated errors

The second type of VSTAR models which formally require a multivariate search and esti-

mation procedure are those with cross-correlated error terms (VSTAR1-3 and VSTAR2-3).

As can be seen directly from Table 17, the equation-by-equation search procedure is not

superior anymore in this setting. This is in contrast to the processes that only contain

zero restrictions. The system approach outperforms the equation-by-equation search in

almost every simulation run. Consequently, the effectiveness of a method for a VSTAR

model with cross-correlated errors is clearly reduced if the covariance-matrix is not taken

into account in the starting-value search.

Table 17: VSTAR3-1 and VSTAR3-2, equation-by-equation vs. system approach

VSTAR1-3 VSTAR2-3

Starting-value search

DE SA TA GS DE SA TA GS

Eq.-eq.�Multiv. 0.00% 0.00% 1.00% 0.50% 0.00% 0.00% 3.50% 0.00%

Multiv.�Eq.-eq. 100.00% 100.00% 99.00% 99.50% 100.00% 100.00% 96.50% 100.00%

ML estimation

Eq.-eq.�Multiv. 1.60% 2.60% 12.60% 11.00% 0.80% 2.00% 11.50% 3.70%

Multiv.�Eq.-eq. 95.20% 94.20% 82.30% 84.50% 94.00% 92.80% 81.40% 89.50%

Remark for interpretation: Better (�) means at least 0.05 per cent larger likelihood.

After the ML estimation, the superiority of the system-wide search is still significantly

evident for DE and SA, although the magnitude decreases. The margin of GS and TA

between the equation-by-equation and the multivariate search gets more narrow, but is

still of considerable magnitude. Turning this around, however, the equation-by-equation

performance is clearly worse than the system-wide approach for all methods. The advan-

tage of GS with a zoom over the standard GS also decreases somewhat more after the

estimation than that of SA and DE. On the one hand, the number of likelihood evalu-

ations for a grid with a zoom are clearly lower than of the heuristics, but on the other

hand the zoom-in may lead to an inferior local optimum. This argument will be discussed

later on.

When it comes to the performance of the different methods, the multivariate starting-value

search yields different results than the equation-by-equation approach across procedures.

This is obvious from Table 18. The measure of similarity clearly increases showing di-

verging results between the search procedures.

This is also seen from Figure 2 by considering the parameter estimates (γ and c) that vary

from one algorithm to the next with the exception of SA and DE. The latter procedures

yield quite similar parameter estimates. This is in contrast to the results from the previous

section where besides the loglikelihood values also the final parameter estimates coincide.

Table 19 reports values of the measure of superiority. They suggest that TA is inferior
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Table 18: VSTAR3-1 and VSTAR3-2, absolute differences of loglikelihood

starting-value search

DE/GS DE/TA DE/SA SA/TA SA/GS TA/GS

VSTAR1-3

mean 1.6488 3.3969 0.0616 3.3629 1.6173 2.1763

std 1.7006 1.8777 0.0924 1.8490 1.6832 1.7406

VSTAR2-3

mean 0.96965 5.32360 0.09963 5.24100 0.92716 4.47549

std 1.32375 3.26375 0.12747 3.22714 1.29228 3.33831

ML Estimation

VSTAR1-3

mean 0.8341 1.0595 0.0656 1.0588 0.8322 1.0735

std 1.3981 1.5094 0.1413 1.4964 1.3837 1.6529

VSTAR2-3

mean 0.38956 1.06746 0.07501 1.07126 0.39921 1.04292

std 0.89976 2.13514 0.11615 2.09957 0.88911 2.16230

Remark for interpretation: The absolute differences of the pairs yield a
measure of similarity. The smaller the absolute difference, the more sim-
ilar the loglikelihood of the algorithms.

Figure 2: Kernel density of parameter estimates after starting-value search, normal kernel,
bandwidth optimized for normal kernel – c (upper graphs) and γ (lower graphs), VSTAR1-3
(true c = [0, 0.5] and γ = [3, 2], T = 250)
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to the other algorithms. In almost all simulation runs it generates lower loglikelihood

values than the other algorithms. Although the grid with a zoom does not yield very

convincing results either, it still beats TA in 80%–95%. However, the grid with a zoom

is also clearly outperformed by DE and SA in 70%–90% of the simulations runs. DE in

particular seems to be very efficient. It can be regarded as the best starting-value search

procedure assessing solely the loglikelihood values of the starting-value search procedures.

This result still holds after the optimization which is the meaningful statistic. Yet, the

clearness of the results somewhat decreases. TA remains the worst starting-value search

procedure and does not converge to a good optimum. The search procedure does not

seem to be very effective which may be due to an inefficient acceptance criterion. This

could come from a threshold sequence which may not allow for large impairments. Hence,

the final outcome could be then a local optimum. DE and SA still perform better than

GS grid with a zoom in around 32%–50% of the simulation runs, whereas GS features a

clearly lower frequency of superior results w.r.t. SA and DE (only 17%–27%).

Table 19: VSTAR3-1 and VSTAR3-2, multivariate search – frequency of superior loglikelihood

VSTAR3-1 VSTAR3-2

Starting-value search

DE SA TA GS DE SA TA GS

DE - 29.30% 99.90% 89.90% - 49.00% 100.00% 78.40%

SA 9.00% - 99.90% 88.90% 4.90% - 100.00% 72.90%

TA 0.00% 0.00% - 17.00% 0.00% 0.00% - 3.10%

GS 2.00% 3.10% 81.60% - 5.80% 15.50% 96.70% -

ML estimation

DE - 25.90% 53.20% 49.90% - 33.00% 42.70% 35.50%

SA 10.10% - 51.80% 48.80% 8.50% - 41.10% 32.80%

TA 18.90% 23.00% - 25.40% 17.60% 25.20% - 16.60%

GS 19.30% 22.90% 31.10% - 17.90% 27.30% 28.30% -

Remark for interpretation: Row better than column.
At least 0.05 per cent larger likelihood than other algorithm.

A conclusion from this is that the grid search with zoom has a tendency to find an inferior

local optimum, which does not help the optimization algorithm to converge to global or

at least to a superior local optimum. This argument receives support from the results in

Table 20. Although the optimized loglikelihood is in more than 66% at least 0.01 per cent

better than starting-value search, the final outcomes are still clearly worse than those of

DE and SA. Hence, also the derivative-based algorithms does not help the GS to obtain

better results. This could indicate finding a local, rather than a global, optimum.

SA and DE yield the best outcomes for final estimates with a slight edge for DE. From

Table 21 it is seen that DE obtains the highest amount of superior outcomes both overall

and across all procedures. The latter measure indicates the frequency of simulation runs

for which an algorithm yields a 0.05 higher loglikelihood than all other algorithms.
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Table 20: VSTAR1-3 and VSTAR2-3, comparison of starting-value search and optimization
(loglikelihood)

(i) (ii)

VSTAR1-3 VSTAR2-3 VSTAR1-3 VSTAR2-3

DE 17.80% 29.70% 80.70% 68.10%

SA 20.40% 34.40% 78.90% 64.90%

TA 79.60% 88.00% 20.40% 12.00%

GS 66.60% 67.30% 30.20% 26.20%

(i) Optimized loglikelihood at least 0.01 per cent better than
starting-value search.
(ii) Identical results of estimation and starting-value search (up
to the fourth decimal).

Table 21: VSTAR3-1 and VSTAR3-2, multivariate search – best across all procedures

(a) (b)

VSTAR1-3 VSTAR2-3 VSTAR1-3 VSTAR2-3

DE 1290 1112 12.6% 11.1%

SA 1107 824 4.3% 3.4%

TA 673 594 6.9% 4.7%

GS 733 735 6.3% 4.4%

(a) total number of superior outcomes (better than at least one).
(b) frequency of superior outcomes across all procedures (better
than all).

This may be due to the fact that DE, belonging to the class of population based methods,

updates the whole set of potential solution simultaneously and is in that sense more

successful than the other algorithms.

The results are reinforced by evaluating the magnitude of inferiority. Thereby, I assess

by how much an algorithm is worse if it obtains already a lower loglikelihood value than

another algorithm. Table 22 shows the mean and the 1% quantile of the (pairwise)

differences of the loglikelihood value if an algorithm yields a worse loglikelihood than

another one. The mean of the loglikelihood differences of the worse results is displayed

in the upper part and the 1% quantile of the worse loglikelihood values is shown in the

lower panel. The lower the values are, the worse the algorithm is. Ideally, the differences

should be low as then the optimum found by the other algorithm is missed only closely.

On average TA and GS with a zoom yield a lower likelihood than SA and DE, if they are

already worse than SA and DE. The results of the 1% quantile of the worst results are

most clear. If GS and TA are worse than DE and SA than they are clearly much worse

than vice versa. Hence, GS and TA miss the optimum found by DE and SA by much

more than it is the other way round.

The measure of inferiority indicates that SA and DE are preferable. Yet, one has to keep

in mind that the number of likelihood evaluation of a grid with a zoom are much lower

and it is much faster.
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Table 22: VSTAR1-3 and VSTAR2-3, multivariate search search – magnitude of inferiority

VSTAR3-1 VSTAR3-2

Mean of worse results

DE SA TA GS DE SA TA GS

DE - −0.128 −0.448 −0.455 - −0.122 −0.347 −0.292

SA −0.168 - −0.439 −0.451 −0.175 - −0.351 −0.303

TA −1.825 −1.843 - −2.098 −2.347 −2.385 - −3.010

GS −1.487 −1.486 −1.656 - −0.937 −0.955 −1.148 -

1% quantile of worse results

DE - −0.885 −3.786 −3.585 - −0.634 −3.346 −2.868

SA −1.155 - −3.548 −3.242 −0.773 - −2.742 −2.303

TA −6.859 −6.871 - −7.849 −13.017 −13.335 - −15.353

GS −8.253 −8.237 −9.750 - −6.178 −6.959 −9.411 -

Remark for interpretation: Row is at least 0.05 per cent worse than column.
Mean and 1% quantile of the (pairwise) differences of the loglikelihood values if an algorithm
yields already a 0.05 worse loglikelihood than another one.

5.2.4 Trivariate VSTAR model with single transition function

Finally, I describe the results of the VSTAR3-2 which is a trivariate Vector STAR model

with zero restrictions and one transition variable governing the whole system. This makes

a multivariate search procedure inevitable. For this type, I reduce the number of like-

lihood evaluations and use a normal (equation-by-equation) grid search implementation

because only two parameter have to be optimized. The iterations of the heuristics are

also decreased to the equation-by-equation set-up. For all algorithms a FGLS estimation

instead of OLS due to the single transition function is applied in the starting-value search.

When it comes to estimation, ML instead of NLS has to be used for the latter reason as

well.

As can be seen from Table 23, SA and DE are particulary efficient. GS yields also

convincing results but is slightly worse than DE and SA, whereas TA clearly ends up in

the worst outcomes. In more than 50% the initial values obtained are worse than those

of the other algorithms. This frequency is reduced after ML estimation, but still holds of

considerable magnitude. Hence, GS, SA and DE seem to perform best with a slight edge

for DE and SA.

Specifically, DE, SA and GS are already quite efficient in the starting value search as can

be seen from Table 24. The optimized likelihood obtained after the estimation is only

in around 1%–3% higher than that obtained after the starting-value search, whereas this

frequency is clearly higher (67%) for TA. Although the outcomes of TA can be improved by

an derivative-based algorithm, they still are not as good as those of the other algorithms.

Hence, the preferable starting-value search methods for a higher-dimensional VSTAR

process with one transition function requiring a multivariate search are SA and DE.
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Table 23: VSTAR3-2, multivariate search search – frequency of superior loglikelihood

Starting-value search ML estimation

DE SA TA GS DE SA TA GS

DE - 0.00% 52.10% 1.70% - 0.00% 12.80% 1.70%

SA 0.00% - 51.80% 1.60% 0.00% - 12.80% 1.60%

TA 0.00% 0.00% - 0.30% 0.00% 0.00% - 1.10%

GS 0.00% 0.00% 51.20% - 0.00% 0.00% 12.40% -

Remark for interpretation: Row better than column.
At least 0.05 per cent larger likelihood than other algorithm.

Table 24: VSTAR3-2, comparison of starting-value search and optimization (loglikelihood)

(i) (ii)

DE 1.00% 60.50%

SA 1.60% 39.00%

TA 67.50% 14.90%

GS 3.20% 50.00%

(i) Optimized loglikelihood at least 0.01 per cent better than
starting-value search.
(ii) Identical results of estimation and starting-value
search (up to the fourth decimal).

6 Conclusion

As long as the Vector STAR model has no cross-correlation across error terms no matter

whether the process contains zero restrictions, the equation-by-equation starting-value

search approach is preferable. Within this approach, no remarkable differences across

procedures, namely, Grid Search (GS), Simulated Annealing (SA), Differential Evolution

(DE) and Threshold Accepting (TA), arise. In the case of the heuristics (DE, SA, and

TA), the starting-value search is only slightly improved by the derivative-based algorithm,

indicating that they are already quite efficient in finding starting-values. Yet, GS benefits

more from a classical optimization procedure. Once the VSTAR model becomes higher-

dimensional, and thus more complex, the model should be estimated by ML. Moreover,

an equation-by-equation approach with a derivative-based algorithm can handle such an

optimization problem sufficiently well unless the errors are cross-correlated. The differ-

ences to the bivariate model are that i) the derivative-based algorithm clearly improves

the outcome obtained by the starting-value search, and ii) the heuristic methods obtain

slightly better results than the grid search. This may come from the more inflexible search

space of a grid.

As soon as the error terms are cross-correlated, a multivariate starting-value search pro-

cedure should be used to achieve the highest likelihood value after the optimization. TA

and the GS with a zoom do not yield convincing results compared to SA and DE. The

latter two seem to be the best starting-value search methods for those VSTAR models

for which a multivariate procedure is superior with a slight edge for DE. SA and DE
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obtain also better loglikelihood values than the GS with a zoom and TA, assessing the

magnitude of inferiority. If the latter methods are worse than the former, than they are

much more worse. Yet, the GS with a zoom is based on a lower number of objective

function evaluations than the other algorithms and is, consequently, faster. In a next

step, one could assess whether the results of a grid with a “finer zoom” (higher number

of grid points) still shows a tendency to find inferior optima rather than a global or at

least superior local optimum.

If the VSTAR model is higher-dimensional and governed by one transition function, TA

yields clearly the worst outcomes. SA and DE are slightly better than GS.

The following conclusions could be drawn for an empirical application. If the VSTAR

model has a single transition function, SA and DE are preferable. However, if the tran-

sition function is equation-specific, one should initially check whether the errors of the

VSTAR model are cross-correlated. This could be done statistically as well as by as-

sessing whether correlation across equations are economically reasonable. If they are not

correlated, it does not matter which method is applied unless the model has more than

two dimensions. Then, one should rather prefer a heuristic method than the grid search.

In an empirical application of a multivariate VSTAR model with cross-correlated errors,

one should use DE or SA for finding starting-values.
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Figure 3: VSTAR1-1: bivariate VSTAR model without zero restrictions, moderate transition
speed
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Figure 4: VSTAR1-2: bivariate VSTAR model without zero restrictions, moderate and high
transition speed

Figure 5: VSTAR1-3: bivariate VSTAR model without zero restrictions, cross-correlated errors

32



Figure 6: VSTAR3-1: trivariate VSTAR model with zero restrictions

Figure 7: VSTAR3-2: trivariate VSTAR model with zero restrictions and single transition
function
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