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1. Introduction 

 

Extensive empirical and theoretical investigations have been carried out to 

understand the bank size distribution and its dynamics (Alhadeff and Alhadeff 

1964, Rhoades and Yeats 1974, Yeats et al. 1975, Tschoegl 1983, Wilson and 

Williams 2000, Goddard et al. 2002, Goddard et al. 2004, Janicki and Prescott 

2006, Benito 2008). The empirical bank size distribution has been shown to 

exhibit a highly skewed shape. It is explained similar to the firm size distribution 

by Gibrat’s law of proportionate effects (Gibrat 1913). Gibrat’s law suggests 

that bank growth is driven by unsystematic random factors such that the bank 

growth rates are uncorrelated. The multiplicative growth process generates a 

lognormal size distribution. The validity of Gibrat’s law is of major interest for 

the size distribution (Tschoegl 1983, Enrique Benito 2008). Moreover, during 

the last decades the banking industry has experienced significant changes. 

Liberalization and deregulation processes and the technological progress 

declined the number of institutions in many countries, mainly by mergers and 

acquisitions (Berger et al. 1993, Berger et al. 1999). Despite temporal variations, 

however, the general shape of the bank size distribution can be always described 

by a lognormal distribution with a Pareto tail (Janicki and Prescott 2006, Benito 

2008). 

The aim of this paper is to derive the bank size distribution from the 

growth dynamics of banks, which is essentially determined by the exchange and 

expansion of deposit money. Taking advantage from a separation of the time 

scales the exchange of permanent deposits causes an evolutionary competition 

for customers. Additionally restructuring processes in the banking system 

induced by the exit and entrance of banks are taken into account. In particular by 

large banks benefit from economies of scale induced by the expansion of deposit 

money. Taking these effects into account the presented dynamic model 

establishes a bank size distribution that is in agreement with empirical studies. 

Consequences of the evolutionary model are discussed in the conclusion. 
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2. The Model  

 

We want to characterize the size of a bank by its deposits. The size of the 

i-th bank at time step t is denoted Si(t) and corresponds to the total amount of 

deposit money of a bank. In a closed banking system the total amount of 

deposits S(t) is determined by the sum over all banks: 





)(

1

)()(
tn

i

i tStS  

(1) 

where n(t)>1 is the total number of banks. In order to establish a continuous 

model, the size of a bank is scaled by a large number M: 

M

tS
ts i

i

)(
)(   

(2) 

such that si(t) can be treated as a real positive number. The total amount of 

scaled deposit money becomes s(t)=Σsi(t). We further demand that the 

parameter M is sufficiently large that s(t)<1 is always fulfilled in the considered 

time interval.  

In order to model the dynamics of bank deposits, four processes changing 

the amount of deposit money are taken into account: 

1.  Due to economic activity there is a flow of money between banks. This 

flow is characterized by an exchange rate yi . The size of the i-th bank is 

governed by the balance:  

)()()(~
)(

tytyty
dt

tds out

i
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ii
i   

(3) 

where yi
in
≥0 is the inflow rate and yi

out
≥0 the outflow rate of money. The balance 

relation suggests that a positive yi  is related to an effective inflow and a negative 

to an effective outflow of money.    

2. The core activity of a bank is granting loans. Banks lend out money 

from current deposits and generate new fiat money leaving a certain percentage 

as a minimum reserve si
0
. The amount of money that can be created by a bank is 

therefore proportional to the amount of current deposits. The growth of deposit 

money of the i-th bank by the generation of fiat money has the form:  
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The money growth rate αi can be written as: 

)()()(
'''

ttt iii    

(5) 

where αi’ is the generation rate of deposit money per unit time by granting loans 

and αi”si is the total backflow of money by repaying loans.  

3. In order to increase the ability to lend out money, banks try to attract 

money for a longer time period by offering interests and advantages for their 

customers. The success of the migration of permanent deposits is taken into 

account by an additional growth term.  The growth of deposit money of the i-th 

bank can be written as: 

)()(~
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tst
dt

tds
ii

i   

(6) 

where the growth rate ηi=ηi
in

-ηi
out

 is the difference between inflow and outflow 

of permanent deposit money.  

4. Restructuring processes by the entry and exit of banks change the 

number of banks n(t) and leads also to a shift of permanent deposits. In 

particular mergers and acquisitions increase the amount of permanent deposit 

money of the surviving bank. The growth of the i-th bank caused by 

restructuring of the banking system is taken into account by the growth term: 

)()(~
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tst
dt

tds
ii

i   

(7) 

where βi is the corresponding growth rate.  

Since these processes can be regarded as independent, the time evolution 

of deposit money of a bank can be approximated by:  

)()()()()()()(
)(

tytsttsttst
dt

tds
iiiiiii
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(8) 

The key idea of the model is to separate the processes with respect to their  

velocity. The exchange of money between banks due to economic activity is 
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regarded as the fastest process. The competition of banks for permanent deposits 

due to attraction and restructuring processes are considered to take place much 

slower. And the generation of new money is regarded to be the slowest 

process.Taking advantage from the relation of the growth rates: 

iii  ,  

(9) 

the growth rate αi must be a small parameter of the order ε:  

 ~i  

(10) 

with ε<<1.  

In this case the time evolution of deposit money can be studied by 

introducing two different time scales, a long and a short time scale. The short 

time scale τ is related to the long time scale by:  

t  

(11) 

On the short time scale the growth of the total amount of deposit money can be 

neglected, because: 

0~ 2

1
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where brackets indicate the average over deposits. For sufficiently short time 

periods the time evolution of the bank size is given by:     

   iiiii
i yss

d

ds
 )()()()( 


 

(13) 

It implies that deposit money can be only exchanged between banks.
1
 

 

Economic Activity 

The short term flow of money due to economic activity is treated as a first 

approximation as random process. The exchange of deposit money between 

banks can be given an average exchange rate denoted d. The chance that money 

flows into respectively out of a bank is in a random process proportional to the 

size of a bank.  

                                                           
1
 This relation implies that the entrance and exit of banks is not accompanied with a considerable change of the 

total amount of deposit money. 
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Therefore the outflow of money can be approximated on the short time 

scale by
2
: 

)()()( 
out

ii

out

i dsy   

(14) 

while the inflow has the form:  
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ii
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(15) 

while ζi
in
 and ζi

out
 are fluctuating terms. We obtain for the size evolution of the i-

th bank:  

)()(  iiy   

(16) 

where ζi= ζi 
in
- ζi

out
<<dsi(τ). The average exchange of money between banks due 

to economic activity cancels out and we obtain simply a fluctuating contribution 

as a result of this fast process. 

 

The Evolutionary Dynamics 

We want to continue by considering the evolution of deposits that vary 

much slower on the short time scale, called permanent deposits. These deposits 

represent money that is not used in fast processes of economic activity and 

deposits bonded to the bank by offering high interest rates. Neglecting the 

fluctuations due to economic activity we obtain from Eq.(13): 
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where 

)()()(  iiif   

(18) 

                                                           
2
 Note that money exchange implies the transformation of deposit money into cash money and vice versa. This 

exchange process has, however, no impact on the result of the model as long as the condition of a random money 

flow between banks due to economic activity is satisfied. Only in the case of a “bank run”, where the outflow of 

deposits and hence the need for cash money is much larger than the inflow, this condition is violated. Hence a 

bank run in not included in the model.      
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The relocation of permanent deposits can be interpreted as the result of a deposit 

market. Banks represent the supply side and customers interested in a relocation 

of their deposits the demand side of this market. As derived in appendix A the 

parameter ηi can be interpreted as a preference rate for the i-th bank.  

In the evaluation of the bank size evolution, we have to take the condition 

that the total amount of deposit money is fixed on the short time scale into 

account. Eq.(12) can be satisfied by adding a free parameter to Eq.(17), such 

that: 

  )()(
)(
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


ii

i sf
d

ds
  

(19) 

Applying Eq.(12) yields for the free parameter: 

i

n

i

isff 



1

  

(20) 

With this relationship the short term growth dynamics of banks is determined by 

a replicator equation: 

  )()(
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d
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(21) 

 The presented model suggests therefore that the time evolution of banks is 

governed for short time periods by a preferential growth process. It expresses 

the competition between banks for permanent deposits. The replicator equation 

is determined by the parameter f which is usually termed as fitness. Hence, the 

rate fi characterizing the ability to attract permanent money can be viewed as a 

bank fitness. The replicator dynamics suggests that banks with a higher than the 

mean fitness attract a higher amount of deposit money and can increase their 

size in time at the expense of banks with a lower fitness. This can be done either 

by attracting deposits from competitors or by mergers and acquisitions.   

 For further use we introduce the fitness advantage of the i-th bank by: 

fff ii  )()(   

(22) 

and Eq.(21) becomes:  
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(23) 
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The Bank Size Distribution 

The size distribution of banks P(s) is determined by the probability to find 

the size of a bank si in the interval s and s+ds.  The size distribution is governed 

by the long term dynamics of banks summarized in Eq.(8).  

The fast process of money exchange due to economic activity leads to an 

additive noise contribution to the evolution of a bank. A key process of bank 

growth is the relocation of permanent deposits, because it limits the ability to 

generate fiat money. This shift is determined by the ability to attract permanent 

deposits and merge with other banks. This ability is characterized in this model 

by the bank fitness advantage δf. In the competition process for permanent 

deposits banks have the tendency to increase their fitness. As a result the fitness 

variable alters its magnitude on the long time scale. The varying success of 

banks in the competition process can be taken into account by regarding the 

fitness advantage as a fluctuating variable.  

Also the effective money growth rate α(t) is not constant but generally 

fluctuates on the long time scale under the impact of varying loan granting. The 

money growth rate can be written as the sum of a mean growth rate over all 

banks  <α> and individual growth rate fluctuations δα(t): 

)()( tt    

(24) 

while we will neglect for brevity the index. The growth dynamics of a bank on 

the long time scale given by Eq.(8) can be rewritten as: 

)()()()(
)(

ttstts
dt

tds
   

(25) 

where the fluctuating variable ρ(t) is characterized by money growth rate 

fluctuations and the result of the competition for permanent deposits: 

)()()( tftt    

(26) 

Hence the time evolution of a bank is governed by a mean growth due to the 

expansion of deposit money and multiplicative respectively additive growth 

contributions. We can further regard multiplicative growth processes as 

dominant compared to random fluctuations and therefore neglect the additive 

contribution ζ(t) in the remainder of the model. 
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As a first approximation the fluctuating function ρ(t) is treated as an 

independent, identical distributed (iid), random variable with mean value and 

time correlation: 

0)( 
t

t
 

)'(2)'(),( ttDtt
t

 
 

(27) 

while D is a white noise amplitude and brackets with index t indicate the time 

average. 

Taking advantage from Eq.(10) the growth process depends on the size of 

a bank. For small banks s≤ε the first term in Eq.(25) is of the order ε
2
 and can be 

neglected. The growth dynamics becomes for small banks on the long time 

scale: 

)()(
)(

tst
dt

tds
  

(28) 

This relation describes a multiplicative stochastic growth process and represents 

Gibrat's law of proportionate effects. Note that it is in this model a direct 

consequence of the competition between banks for deposit money. With Eq.(27) 

the central limit theorem suggests that the size distribution for small banks (s≤ε) 

is given by a lognormal probability distribution of the form (Sornette 2006): 

 












 
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utss

st
tsP

2

2

2

)'/ln(
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2

1
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(29) 

where u and ω are free parameters and s/s’ is the bank size scaled by the size at 

t=0. 

 For large banks with s>ε, however, the growth process is given by 

Eq.(25). This relation can be interpreted as a generalized Langevin equation 

(Richmond and Solomon 2000, Kaldasch 2012). It yields after a sufficiently 

long time a size distribution of the form (see appendix B):  
















D
s

sP


1

1
~)(  

(30) 

The bank size distribution can be described for large banks by a power law 

(Pareto) distribution which can be related to Zipf’s law (Saichev 2011). The 

evolutionary model suggests therefore that the size distribution of banks counted 
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in deposits is generally a lognormal distribution with a power law tail. For 

<α>≈0, however, the Pareto tail disappears and the size distribution is 

dominated by the lognormal contribution. 

 

3. Conclusion 

The presented evolutionary model derives a bank size distribution that is 

in agreement with empirical results. It is derived from the fundamental processes 

of a financial system, the exchange and growth of money.  In this theory the size 

distribution is on the one hand the result of the competition between banks for 

permanent deposit money. They can be increased either by attracting potential 

customers interested in a relocation of their deposits or by mergers and 

acquisitions. The competition for deposits can be described by a preferential 

growth process which is characterized by a bank fitness function. The varying 

success in the competition process is captured by a fluctuating bank fitness, 

which is the origin of Gibrat’s law. It generates the lognormal contribution of 

the bank size distribution.  

On the other hand banks growth by the creation of fiat money. This size 

dependent contribution to the growth process can be interpreted as a preferential 

attachment process (Newman 2005, Kaldasch 2012). Since large banks benefit 

more from the mean growth of money than smaller banks, economies of scale 

cause the power law tail in the bank size distribution. 

The presented model suggests that the Pareto tail is governed by the 

Pareto exponent 1+<α>/D. An increasing exponent indicates a more evenly 

distributed Pareto tail (Newman 2005), which is the case when the mean money 

growth rate dominate deposit fluctuations <α>>D.
3
 The power law tail 

becomes, however, more uneven when the bank evolution is suffered from 

increased growth rate fluctuations, <α><D. It indicates a more intense 

competition between banks for permanent deposits. In particular mergers lead to 

large fluctuations of permanent deposits and hence to an increasing skewness of 

the bank size distribution, accompanied with a concentration of banks in the 

Pareto tail. This effect has been found in empirical studies (Janicki and Prescott 

2006, Benito 2008). The empirical fact that an increasing number of banks 

became “too big to fail” is therefore a direct consequence of the liberalization of 

the banking systems in many countries over the last decades.  

 

  

                                                           
3
 Note that Zipf’s law is retained if the mean money growth rate and growth rate fluctuations of deposits are of 

the same order <α>≈D. 
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Appendix A 

 

The Deposit Market 

We want to denote owners of deposits interested in a relocation of their 

deposits as potential customers. The total size of permanent deposit money 

associated with such a relocation is indicated by the variable Z(t), respectively 

their relative size by z(t)=Z(t)/M<1. For simplicity we assume that potential 

customers occur randomly with the same rate independent of the bank. The 

amount of deposit money of potential customers generated per unit time in the i-

th bank is then g(t)si(t), where g(t) is the mean generation rate of potential 

deposits per unit time. The amount of potential deposit money available for 

relocation can be obtained for the i-th bank from the balance relation:  

)()()(
)(

ttgts
dt

tdz out

ii
i   

(A1) 

The amount of potential deposits increases with their generation rate sig and 

decreases with the relocation to another bank with an outflow rate λi
out

.  

Under the condition that zi relaxes sufficiently fast to its stationary state 

we obtain from dzi/dτ=0:     

)()()( tgtst i

out

i   

(A2) 

This relation suggests that the outflow of deposits per unit time is 

proportional to the size of a bank.  The total amount of potential deposits z(t) can 

be determined by the balance: 





n

i

out

i ttg
dt

tdz

1

)()(
)(

  

(A3) 

The inflow rate of deposit money is the result of the competition in the 

deposit market. The market consists of a demand and a supply side. The demand 

side is determined by the total number of potential customers (respectively their 

deposits z(t)). The supply side on the other hand is given by the number of 

available banks n-1. When supply meets demand potential customers relocate 

their deposits. The inflow rate of the i-th bank λi
in

 is zero if the total number of 

potential deposits z(t) is zero. Under the condition that potential customers can 
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only shift their deposits to existing banks λi
in
 is also zero if the size of a bank 

si(t) is zero. Therefore the inflow rate can be regarded to be a function of 

potential and current deposits λi
in
= λi

in
(z,si). As a first approximation the inflow 

rate is expanded in both variables and we obtain for the first nonzero 

contribution:  

  )()()(')( tstztt ii

in

i    

(A4) 

The total inflow rate of permanent deposits is therefore proportional to the size 

of a bank and a rate η’i≥0 which characterizes the chance that potential 

customers prefer the i-th bank. It expresses the impact of the marketing efforts to 

attract potential deposits.  

The effective flow of permanent deposits becomes: 

 

    )()()()(')()()()()( tstgtzttstttt iii
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(A5) 

 

Under the condition that the number of banks remain constant in the considered 

time interval (βi=0) the condition Eq.(12) suggests that on the short time scale:  

 0)()(
1




n

i

out

i
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i   

(A6) 

 

Applying Eq.(A5) this condition is satisfied when:  

g  

(A7) 

 

and  

)()(')(  zii   

(A8) 

 

The parameter ηi can be interpreted as the preference rate for the i-th bank. It is 

determined on the one hand by the chance that the bank is chosen for a shift of 

permanent deposits and on the other hand by the total amount of potential 
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deposits. If there is little interest in a relocation of bank deposits, marketing 

efforts are unsuitable since the preference rate for all banks will be small (z(τ) is 

small).  Note that the average preference rate is in this model equal to the mean 

generation rate of potential deposits per unit time.   
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Appendix B 

 

Neglecting the additive noise contribution ζ(t), Eq.(25) represents a 

generalized Langevin equation (Richmond and Solomon 2000). It has the form: 

 

 )()( sGsF
dt

ds


 
(B1) 

 

with F(s)=<α>s and G(s)=s. It is a multiplicative stochastic relation that can be 

transformed into a relation with additive noise by introducing the functions h(s) 

and V(s) according to:  

 

dt

ds
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)(

1)(


 
(B2) 

  

and 
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(B3) 

 

Inserting these relations in (B1) we obtain the usual Langevin equation: 

 


dh

dV

dt

dh

 
(B4) 

 

For uncorrelated fluctuations as suggested by Eq.(27), this relation describes a 

random walk of h in the potential V. For a sufficiently long time the probability 

distribution for h becomes (Sornette 2006): 
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where N' is a normalization constant. In terms of the original variable, we get: 

 



15 
 

)(
'

)'(

)'(1
exp

'

1
)()(

2 sG

ds
ds

sG

sF

D
dhhBdssP 











 

 
(B6) 

 

which yields with the corresponding functions for G(s) and F(s): 

 


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