~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Boetius, Frederik

Working Paper
Bounded Variation Singular Stochastic Control and
Associated Dynkin Game

CoFE Discussion Paper, No. 00/12

Provided in Cooperation with:
University of Konstanz, Center of Finance and Econometrics (CoFE)

Suggested Citation: Boetius, Frederik (2000) : Bounded Variation Singular Stochastic Control and
Associated Dynkin Game, CoFE Discussion Paper, No. 00/12, University of Konstanz, Center of
Finance and Econometrics (CoFE), Konstanz,
https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-4951

This Version is available at:
https://hdl.handle.net/10419/85241

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bsz:352-opus-4951%0A
https://hdl.handle.net/10419/85241
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bounded variation singular stochastic control and
associated Dynkin game

Frederik Boetius*

March 21, 2000

Abstract

We consider an optimal control problem for a one-dimensional It6 dif-
fusion and a stochastic game of optimal stopping associated with it. Their
value functions satisfy %V = w and an optimal control defines a saddle
point for the game. This extends earlier results to the case of bounded
variation control and general nonadditive cost functionals in the form of
a controlled FBSDE. Our approach uses probabilistic methods such as
comparison theorems, and a pathwise construction of policies.

AMS 2000 subject classification Primary 60G40, 60H10, 93E20; Sec-
ondary 91A15

Key words and phrases Backward stochastic differential equation; Singular
stochastic control; Optimal stopping; Dynkin games; Adjoint equation; Com-
parison theorem
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1 Introduction

The theory of backward stochastic differential equations (BSDE) is by now a
primary tool in mathematical finance. Its applications range from the term
structure of interest rates to pricing and hedging of contingent claims, covering
problems such as mean variance hedging, imperfect markets, large investor,
american contingent claims and stochastic Black-Scholes formulae. The theory
originates from stochastic control theory, where BSDE arise as adjoint equations
in the Pontryagin maximum principle. In turn, stochastic control problems
of a “singular” type have applications in mathematical finance in the context
of irreversible investment and real options or, generally speaking, imperfect
markets with decision rigidities such as hedging or portfolio optimization under
transaction costs.

Our reformulation of a singular control problem as optimization problem
for decoupled FBSDE is motivated by the observation — yet present in deriva-
tions of the classic (deterministic) Black-Scholes formula — that the value of
a dynamic optimization problem is actually a stochastic process, and this is
determined by the future development of the stochastic system. The FBSDE
formulation is also necessary to allow for the use of nonadditive or stochastic
differential utilities and g-expectation in the control problem. In this formu-
lation we establish a relation between singular stochastic control and optimal
stopping, namely that the partial derivative of the value of the control problem
%V equals the value of a stochastic game of optimal stopping u, and a solution
to this game can be derived from an optimal control in the control problem.

This relation is well known in special cases and gives valuable insights into
both problems, among them the old question of the relation between the prin-
ciple of smooth fit in control and the smooth pasting condition in optimal stop-
ping. In our present paper, we extend it to the case of a general Brownian
diffusion in one dimension, with bounded variation instead of monotone con-
trols. This is the first step in establishing the equivalence of both problems in
the sense of BALDURSSON and KARATZAS [6], BOETIUS and KOHLMANN [12].
Together with recent results on the relation between reflected backward stochas-
tic differential equations (RBSDE) and optimal stopping we propose that the
adjoint equation for a singular stochastic control problem has the form of a
RBSDE.

We also note that the controlled BSDE in our formulation exhibits a formal
similarity with solutions of RBSDE and g-semisolutions in the sense of PENG
[48], [49]. To arrive at our results we make use of methods from stochastic
analysis, especially comparison theorems for the solutions of controlled forward
and backward stochastic differential equations.

1.1 Related literature

The theory of adapted solutions to BSDE was brought to life with the funda-
mental paper of PARDOUX and PENG [47] and independently by DUFFIE and
EPSTEIN [19] and has received much attention since then. YONG and ZHOU
[58] give a recent account of the theory and its development. Reflected BSDE
were introduced in EL. KAROUI, KAPOUDJIAN, PARDOUX, PENG and QUENEZ
[21]. Solvability of coupled FBSDE was first studied by ANTONELLI [3] over
short time durations and solved in for arbitrary durations through the four-step-
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scheme by MA, PROTTER and YONG [41]. The subject, including applications
in finance, is presented in great depth in MA and YONG [42]. An overview over
applications in finance can be found also in EL KAROUI and QUENEZ [24]. The
whole field remains very active, with the number of publications still increasing.

The study of singular stochastic control problems dates back to an investi-
gation of spaceship control by BATHER and CHERNOFF [7], who also noted the
connection with a problem of optimal stopping and the relation %V = u. Sub-
sequently this link has been studied in a number of different settings. Besides
the monotone follower problem for Brownian motion these include reflection and
absorption, bounded variation follower and additional finite fuel condition.

There are two main approaches to the link between problems of optimal
stopping and singular stochastic control. One of them makes use of analytical
properties of the value functions, usually including partial differential equations
techniques and characterizations of value functions through variational inequal-
ities. Various aspects are described in e.g. ALVAREZ [2], ARNTZEN [4], CHOW,
MENALDI and ROBIN [13], DAvis and NORMAN [17], MENALDI and TAKSAR
[44], KARATZAS and SHREVE [37], KARATZAS [32], [33]. A younger approach
was initiated by KARATZAS and SHREVE [35], [36]; their pathwise comparison
forms the basis of our argument in section 3. Probabilistic arguments were
also used by several other authors, among them BALDURSSON [5], BOETIUS and
KoHLMANN [12], EL KArROUI and KARATZAS [22], [23], KARATZAS [34]. Our
derivation of the relation between optimal control and optimal stopping is along
the lines of [35].

Singular stochastic control problems where further treated in BENES, SHEPP
and WITSENHAUSEN [8], SHREVE, LEHOTZKY and GAVER [54], SHREVE [53],
SONER and SHREVE [55], including aspects of higher dimensions and proper-
ties of the value function. Applications to irreversible investment, industry
equilibrium and portfolio optimization under transaction costs can be found in
BALDURSSON and KARATZAS [6], KOBILA [39] and DAvis and NORMAN [17].
The latter provide a solution to a two-dimensional control problem including
singular and absolutely continuous control.

Treatment of hedging and portfolio optimization under transaction costs
using Martingale and other methods was carried out in SONER, SHREVE and
CVITANIC [56], CVITANIC, PHAM and Touzi [16] and CVITANIC and KARATZAS
[15]. The economics of irreversible investment are dicussed e.g. in MCDONALD
and SIEGEL [43] and PINDYCK [50]; an extensive account of investment under
uncertainty is given in DIXIT and PINDYCK [18].

There is a vast literature on optimal stopping problems. Standard refer-
ences include FRIEDMAN [26] and SHIRYAYEV [52]. Games of stopping, as cor-
respondent to the bounded variation control, have been studied in DYNKIN and
YUSHKEVICH [20], NEVEU [46], BENSOUSSAN and FRIEDMAN [9], BismuT [10],
STETTNER [57], MORIMOTO [45], ALARIO-NAZARET, LEPELTIER and MAR-
CHAL [1]and others.

Stochastic games in the context of backward equations are studied in HAMA-
DENE, LEPELTIER and PENG [30], HAMADENE and LEPELTIER [27], [28]. The
observation that a solution to a reflected BSDE also solves an optimal stopping
problem is due to EL. KAROUI, KAPOUDJIAN, PARDOUX, PENG and QUENEZ
[21] and was extended to double barrier reflection and stochastic games by Cvi-
TANIC and KARATZAS [14].
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1.2 Organization of this paper

In section 2 we define the control problem and associated stochastic game of
optimal stopping, introduce the comparison theorems and a priori estimates
central to our approach and present some preliminary results on the controlled
process plus convexity of solutions and the value function. In section 3 we
formulate and prove the main result of this paper. We also discuss some ex-
tensions, related problems and the route to equivalence of singular control and
optimal stopping. In section 4 we motivate the proposition that singular control
problems have RBSDE as adjoint equations.
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2 Preliminaries

In this section we introduce a controlled forward-backward SDE, the control
problem and its associated stochastic game of optimal stopping. We also recall
some properties of controlled processes and prove convexity of the value function
of the control problem.

2.1 Problem formulation

Let (Q,F, P) be a probability space, 7 := [0,7] a time interval, and W; a stan-
dard d-dimensional Brownian motion adapted to a filtration {F;}+c; satisfying
the usual conditions.

We use the following notation as defined in [42] for the different spaces of
measurable random variables:

e for a o-algebra § C Fr Lg(Q;]R”) denotes the set of G-measurable R"-
valued random variables X such that Ep[|X|Pdt] < cc.

o L7(Q;LP(0,T;R™)) the set of F;-progressively measurable R"-valued pro-

cesses X; such that Ep [fOT|Xt|p] < oo0; we write LT.(0,T; R™) if there is
no danger of confusion.

o L%(Q;C(7;R™)) the set of Fi-progressively measurable continuous R”"-
valued processes X; such that Ep [sup;|X;|P] < oo

o LE(0,T;Wh>(M,N)) for Euclidean spaces M, N the set of functions f :
TX M x Q — N such that (a) for fixed m € M, (t,w) — f(t,m,w) is F;-
progressively measurable, (b) f(t,0,w) € LE(0,T; N) and (c) there exists
a constant L € Ry such that

|f(t,m,w) — f(t,m',w)| < Ljm —m/|, VYm,m' € M, a.e. t €7, P-a.s.

o L (Q;Wh>(M,N)) for Euclidean spaces M, N the set of functions f :
M x Q — N such that for any m € M, w — f(m,w) is Fr measurable,
m — f(m,w) is uniformly Lipschitz and f(0,w) € L% (Q; N).

|||, denotes the usual p-norm in the spaces defined above.
For a R"-valued process B = (B’ )12 j<n of bounded variation its absolute is

denoted by |B| := Z?:1|Bj|; ie. if p; = ,u;r — p; is the (w-dependent) signed
measure (with Hahn-decomposition (,u;r, p; ) defined by

n

piA)i= [xqdB then [ xadBl =3 () + 4 ()

Jj=1

For a R"-valued progressively measurable process a = (a’ Ji<j<n and a R"-
valued bounded variation process C' = (C7)1<j<n we use — depending on our
focus on a norm for a or C' — the notation

n 2
lallZsz = E[Z ( / |az|d|0J|s) ] — O 2.1)
j=1 \J7



2 PRELIMINARIES 7

Remark 2.1. With the above definition and using the Holder inequality || fg||1 <
[ fll2llgll2 with f =1 and g = a we have the estimates

2
E[([aj dCS) ] < 2llallfe 4 = 2IC1f, 5

<28[> (100 [lator aieil.) |

j=1
For a function f : R — R we define the Dini derivatives

Aff(z) = liI;I\S‘(l)lp %{S—f@:)

fl@+d) - f(z)

, Ay f(z) = llgn\"lélf 5

and the one-sided differentials DV f := AT f=A,fand D= f:= A~ f = A_F,
if they exist. Note that DT f and D~ f exist for convex functions f, are left-
continuous and rightcontinuous respectively, and satisfy D~ f(z) < Dt f(z) <
D~ f(y) for z < y ([38], 3.6.19).

Denote by A the class of admissible controls. It consists of all processes
C := (CY,—-C%)", where the components CU, CL are {J;}-adapted, its paths
are a.s. left continuous with right hand limits (LCRL), increasing; further they
satisfy ||C’||[21j] < 0.

Standard data (b,o,C) for the forward and (h,g,a,C) for the backward
equation in (2.2) below are defined as follows:

e be LL(0,T;WH*(R,R)) and o € L%(0,T; Wh>°(R, R?)).

e CcAanda=(a¥,a") :7x Q — R? progressively measurable such that
for all C' € A the process f[o 9 a) dC! is in L%(0,T;R) and has LCRL
paths P-a.s.

e g€ L23(0,T; W'(R x R x R%, R)) and h € L3_(; W (R, R)).

For (tg,z) € 7 x R and standard data (b, 0, C, h, g,a) we consider the controlled
FBSDE
dX, =b(u, X,)du — 1" dCy + o(u, X)) dW,,
dYy, = —g(u, Xy, Yu, Zy) du — a,, dCy, + Z,} dW,,
Xt, =,
Yr =£&=h(Xr).

(2.2)

We write 17 dC = (1,1)dC = dCY — dC*. If no confusion is possible we
abbreviate this by dC, and further abusing notation we may write C' instead
of CY — CL from time to time. As we will show below (2.2) has a unique
solution (X,Y, Z) € L%(0,T; R x R x R?). Dependence on data and parameters
to, x,b,0,C, &, h,a,g may be expressed by a superscript.

Observe that forward and backward equation are decoupled in the sense that
X does not depend on Y. From time to time we may consider the backward
equation without reference to a particular forward process. In these cases we
will omit dependence of g on = and write £ for the terminal condition, with
suitable adaption of the meaning of standard data.
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Note. In a more general setting a will depend also on (z,y). Without having de-
fined precisely the notion of a solution for (2.2) we will present a few statements
in this more general situation. We then tacitly assume that the formulation of
standard data with respect to a is such that a unique adapted, square integrable
solution exists.

2.2 Definition of control problem and Dynkin game

Control problem Forty €7, x € R and C € A the solution to the FBSDE
(2.2) with data (b,0,C,h,a,g) is denoted by (X;0™, v " zto#C)  Then
Y, 0"C is called the cost associated with control C. The value of the control
problem with dynamics (b, o) and cost structure (h,g,a) is the process defined
as

Vvt(t(), $) = ess inchA )/tto,:c,C’. (23)

Vilto,z) < oo follows from Y;/*"" < oco. In addition we assume —oo <
Vi(to, ) < oo for all ¢, tg, z.

Definition 2.2. The control problem comprises determining the value process V'
and finding an optimal control C* € A with the property

VteT  Vilto,z) = YooY [Pl (2.4)

Remark 2.3. Additional restrictions on starting values and admissible controls
could be imposed. For example, in problems with a so called generalized finite
fuel condition the starting values are from an interval J C R, and admissible
controls A are such that the controlled forward process X*0:%:C stays in the
interval [Xto-min /0 xtomaxJ0] {nder a strict finite fuel condition, a bound is
imposed on |Cr|. See [34], [12] for a discussion of these types of problems.

Associated stochastic game of optimal stopping We consider a two-
player stochastic game of optimal stopping or Dynkin game related with above
control problem. T, denotes the class of J;-stopping times with values a.s. in
[to, T]. Let X%-2:0:0 the uncontrolled solution of the FSDE in (2.2) with data
(b,0,0), T'* a deflator process defined in (2.34) below, and 0,7 € T;,. Assume
for a while that h and g are partially differentiable with respect to (z,y, z) and
g is linear in z (hence Dg independent of z). Define the payoff R}f"’z (o,7) = Ry,
where (R, Q) is the solution of the BSDE

dR, = —(Dg(t, X{*"*° Vi(to, )), (TF, R, Q1)) Xy<ons dt + Q) AW,

(2.5)
RT = (hJi(X’,?[?’z’O’O)XU/\T:T + a"ll'/XT<U + a’zIIJXUST)Fg/\T/\T'
T<T o<T
and consider the upper and lower values
uf (to, z) = essinf,cq, esssup, ¢, Ry (0, 7) (2.6a)
uy (to, ) := esssup, o, essinf, ¢, RI>" (0, 7) (2.6b)

We assume —oo < u; (to, z) for all (¢,tg, ).

Remark 2.4. Observe that, by the definition of ut and u=, u~ < ut holds
P-a.s.
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The value process u of the Dynkin game is the process defined as the solution
of the Isaac’s equation

ug(to, ) := uy (to, ) = u; (to, ), (2.7)

if this equality holds.

This has an interpretation as a game for two players I, II: T pays II at rate

(Dg,-) as long as the game continues, and h,'r upon reaching the time horizon
T. Both players I and II have the possibility to force early termination of
the game at o and 7 respectively. On early termination, I pays I aUT, or
aLT,, depending on whether I or II stopped the game. So I seeks to minimize
R*% (o, 7) by choice of o, whereas II wishes to maximize the payoff by choice of
7. Intuitively speaking, a solution consists of a pair of stopping times such that
both players have no incentive to deviate from their strategy. The optimization
of the opponent is anticipated and the right of choosing ones strategy first gives
no advantage, i.e. has no additional value, which is the meaning of the Isaac’s
equation (2.7).
Definition 2.5. The associated stochastic game of optimal stopping or Dynkin
game consists of determining the upper and lower values ut and u~ and the
value process u as solution to the Isaac’s equation, and of finding a saddle point
(o*,7*), i.e. optimal stopping times such that

us(to, z) = RO (0%, 7*
Vter t{fo, @) . ) [P].

— : to,o *) to,T [ %
= essinfocq, R (0,7") = ess sup,cq, Ry (o, 7)

(2.8)

For simplicity we assume ¢ty = 0 from now on and hence omit dependence
on tg in the notation.

2.3 Existence and uniqueness of solutions

Let (f,C,0,h,g,a) standard data of the controlled FBSDE. We use a trans-
formation that makes it possible to apply standard results on existence and
uniqueness of solutions to FSDE and BSDE as can be found in e.g. [38], [40],
[51] [30], [24], [58], [42].

Define dynamics b € L(0,T; WH=(R,R)), & € L%(0,T; WH>(R,R%)), and
cost structure § € L2(0, T; WH®(R x R x R%, R)), h € L%_( WH(R,R)) by

b(t,z) := b(t,z — Ct), G(t,z) :=o(t,z — Cy),
g(t,z,y,2) == g(t,z,y — / a) dCy, z2), h(z) := h(z) + / a] dCs.
[0,¢) [0,T)

Here we have omitted dependence on w. Let X the unique solution of
dXt :B(t,Xt)dt+6'(t,Xt)Tth, XO = Zg.

This implies that X; := X:t — C} solves the forward SDE in (2.2) with data
(b,C, o). Similarly, let (Y, Z) the unique solution of the BSDE

df/t = g(ta Xt7f/:f7 Zt) dt + ZtT th7 YT = B(Xt)

Then (Y;, Z;) := (Y; — f[o " al dCj, Z;) solves the backward SDE in (2.2) with
data (h, g,a,C).
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2.4 A priori estimate and comparison theorem for forward
equation

For an estimate of E[|X;[?] in case C' = 0 see [25], App. D, or [40], Ch. 2.5,
lemma 2, cor. 5,6.

Lemma 2.6. (A Priori Estimates) Let, for i € {1,2}, (b%,0%,C?) standard
data, ' € R and X the corresponding solutions of the FSDE. Define

0X; = X} - X} oz :=z' — 2 dC; = C} — C?
Oby := b (t, X7) — b(t, X?) doy = o' (t, X7) — o> (t, X})
Then there is a constant K4 depending only on T and L such that

E[sup|6X,|”] < Ki(6af> + [86]3 + 603 + E[ISC3).  (2.9)

Proof. As § X can be written as § X; = dx + B; — 6C; + M; with suitable B, M
we have the estimate

s 2
sup (6X,)* < 4|6z|> +4 sup (/ bt (u, X 1) — b2 (u, X2) du)
0<s<t 0<s<t \Jo
s 2
+4 sup (—603)2 +4 sup (/ (al(u, Xh - o?(u, XZ))T qu> (2.10)
0<s<t 0<s<t \JO

Now from the Holder inequality ||fg|| < ||fllpllglly (for p = ¢ =2 and f =1,
g = b' — b?) and Burkholder-Davis-Gundy inequality ([38], Theorem 3.3.28) it
follows that

E[ sup (6X,)?] < 4|62|> + 4E [[0 (b (s, XL) — b (s, X2))* ds]

0<s<t

t
+4E[|6C|7] + 4K, E [/ lot (s, X)) — o?(s, X2)|? ds]
0
t
< 4|6z|* + 4t/ 2L°E[(6X,)%] 4+ 2E[(8b,)*] ds
0
t
+4E[|6C|7] + 4K / 2L*E[(6X,)°] + 2E[(d05)%] ds
0
< 4]6z|* + 8t[|6b]|3 + 8K1 |03 + 4E[|6C7]

+8L*(t + K1) /Ot E[|6X,|?] ds
(2.11)
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On the other hand, if we apply It6’s formula to |§ X |> and take expectation, it
follows that

t
E[|6X:%] = |6z|* +2E [/ X, (b (s, X1) — (b'(s,X2)) + 6X0b, ds]
0

t t
—2E U X, d(acs)] + E[/ lot (s, X}) — ot (s, X2) + bo|? ds]
0 0
< |z|* + [|60][5 + 211005 + E[ sup [6X,[*] + E[|6C[7]
0<s<t

t
+ / (2L +2L* + 1)E[|6X,|*] ds (2.12)
0

Now insert (2.11) in (2.12). At this point observe that t — E[|dX,|?] is con-
tinuous a.e. on 7 by Lemma 2.7 below. Hence an application of the Gronwall
inequality (cf. [38], problem 5.2.7 or [11] p. 12.) shows that the following holds
for Lebesgue-almost all t € 7:

E[|6X¢)?] < K»(|0z|* +|6b]3 + ||60]3 + E[|6C|%]) >3 (2.13)

Here K3 = 8L?(T + K;) + 2L + 2L? + 1, and both K, and K3 depend only on
L and T. As the right hand side of (2.13) is increasing in ¢ we conclude that
the estimate therein holds a.e. for sup,, E[|6X¢|?] as well. Hence (2.13) holds
for all ¢t € 7 as the right hand side is continuous in ¢.

Now (2.9) can be deduced from (2.11) and (2.13). O

Lemma 2.7. The maps t — E[|6X,|?] and t — E[|C|;] are continuous a.e. in
1.

Proof. By (2.12) and definition of |C| the set discontinuities of both maps is a
subset of the set of discontinuities of the maps ¢t — E[C{] and ¢t — E[CY].
Hence it suffices to show that the latter have countably many discontinuities
in 7. But this is obvious as for an increasing process y; with E[fyT] < o0 the
map ¢t — E|[y] is increasing and bounded, hence has its set of discontinuities is
countable. O

‘We continue to use the notation of lemma 2.6.

Theorem 2.8. (Comparison Theorem) Let, fori € {1,2}, (b%, 0%, C?) stan-
dard data, ' € R and X' the corresponding solutions of the FSDE. Assume
further that

b (w,t,z) > b*(w,t,z) o (w,t,z) = 0% (w, t, )
—17d(6C;) >0 (i.e. 6C decreasing) 6z >0

Then the difference § Xy is positive almost surely:
X! >X? Vvter [P
If A:={w| X} (w) = X} (w)} has positive probability, then

! = 22, b (w,s,z) = b*(w, s, ) Vs €[0,t], Ywe A



2 PRELIMINARIES 12

Remark 2.9. We will see in the proof that instead of b* > b% it is actually
sufficient if one of the conditions

b (w,t, X}) > b*(w,t, X}), b (w,t, X7) > b*(w,t, X?) (2.14)

holds. If e.g. b' is independent of z this reduces to b!(w,t) > b*(w, t, X}).

Note. The assumption on dC is satisfied if both C"* — ¢! and ¢t — CF?
are increasing, but usually there will be weaker conditions.

By applying theorem 2.8 to X2 = 0 we deduce

Corollary 2.10. Let (b,0,C) standard data for the forward SDE satisfying b >
0, o(t,0) = 0 and CY = 0, and let > 0. Then the solution of the FSDE is
nonnegative.

To prove theorem 2.8 we linearize the difference of solutions (idea from [24]).
So we first state and prove a lemma on affine FSDE.

Lemma 2.11. Assume (b,0,C) are standard data of a FSDE, where b,o are
affine, so we consider an equation of the form

dXt = (ﬁtXt + (pt) dt — ].T dCt + (tht + ’(/Jt)—r th, X() =2 (215)
with suitable progressively measurable processes 3,s,p, . B,¢ are bounded. Let

I't defined by

¢ ¢
It = exp(/ By — %|§u|2 du +/ S dWy) (2.16)

Then X has the representation

t t t
X =Tho+ [ Tho,—Tis,wds— [ TiaTdc,+ [ Tyl aw, (217)
0 0 0

In particular, if ¢ > 0, ¢ > 0, C decreasing and ¥ = 0 then X; > 0 a.s. If
A = {w|X; = 0} has positive probability, then z = ps = Cs =0 for 0 < s <t
on A P-a.s.

Proof. Let I'; the solution of the homogeneous LSDE
dly = =T ((B: — |st|?) dt + s, dW3), [o=1 (2.18)

Then T; has the representation (2.16), i.e. ['; = I'?, and I'}, = (l"t)flI‘s.
Now apply the It6 formula to I'; X;

t

t t
X, —z = / Lops — Ty(Ss,ths) ds — f r,1'dc, +[ Tyth) dW,
0 0 0

and deduce (2.17). If v = 0 the second and last term drop out, and X > 0
follows from I" > 0 and the conditions z > 0, ¢ > 0 and C' decreasing. O

Proof of theorem 2.8. Define the bounded, progressively measurable processes
1

1
A:cUt = m(gl(t,th) — 0'2(15, th))Xth;ﬁXf
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and write the SDE for § X in the form as in (2.15)
d((th) = (Ambt(th + 5bt) dt — ].T d(5C’t) + 5Xt(AmO't)T th, 6X0 = 51‘

Here §b > 0. Recall that Ao is bounded as o' = 02 by assumption. Now
apply lemma 2.11 to conclude. O

Remark 2.12. Tt is obvious from the proof that the conclusion of theorem 2.8
would remain true if instead of o' = 02 we knew that A,o; is bounded. However
if o1 # 02 and X*? are diffusions this is not true.

2.5 A priori estimates and Comparison Theorem for BSDE

Lemma 2.13. (A Priori Estimates) Let, for i € {1,2}, (¢¢, &, a, C?) stan-
dard data and (Y, Z*) the corresponding solutions of the BSDE (2.2). Define

8Y, =Y} - Y 07y =2} — 72 §¢:=¢€ — ¢
890 =g (t, Y7, Z}) — °(t, Y72, Z7)  bay:=a;a} 6Cy = Cy = Cf

Then there are constants depending only on L and T such that for all t <T

T
E[/ 102, dS] < K2 (1613 + 118913 + [18allfer g + 10C 2 ) (1 + €™ T79)
t

(2.19)
and the running mazximum of differences satisfies
Efsuplo¥il*] < Ka(I6¢]3 + 16915 + ldalBr 5 +16C ). (2:20)
Proof. First of all, write Y in the integral form
oY, = 66+ /T 9" (s, Y}, Zy) — g°(s, Y2, Z2) ds
! (2.21)

. .
+ (/ al(s)T dC? —/ @*(s)" dC?) +/ 527 dw,
[th) [t7T) t

Take squares and sup on both sides. Here and in the following we make excessive
use of the “binomial inequality” (a+b)? < 2a2+2b2. Apply the Holder inequality
I£9ll < [Ifllnllglly with f =1, g = g* — g% and p = ¢ = 1 and rewrite the terms
in C' and g to get

T
sup [8Y. [ < 415¢F +4(T 1 / (6 (s, Y2, Z1) — g'(s, Y2, 22) + 6g,)° ds
t

t
2

+4</16a2d081+/1a2(s)Td(6(Js)>2+ sup (/ST(JZS)TdWs)  (222)

t<s<T

Now take expectations, use Burkholder-Davis-Gundy inequality and Lipschitz
continuity of g and rearrange terms:

T
E[ sup [0Y,|*] < 4]16¢13 + 8(T — t)l|ogll5 + 8L*(T — t)/ E[|6Y,]?] ds
T t

t<s<

T
+ (8L*(T — t) + 4K,)E U 16Z|? ds] +16|0al[fer 4 + 161602 4,  (2:23)
t
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where K is the universal constant of the Burkholder-Davis-Gundy inequality
(cf. [38] Theorem 3.3.28).

If we apply Itd’s formula to |§Y;
is square integrable, then

|> and take expectations, recalling that §Y

T
B8V + 5| [ 162, | = 1ael3
t
T
28| [ OV.(6H 6 Y2 ZE) ~ o' (0Y2,22) + 67,59,
t

+ 2E[ dY,(day)" d();] +2E [/ dY,a?(s) " d(605)]
[.T)

[t.T)

1 T T
§||6§||§+||6g||§+§E[/ |5Zs|2ds]+(2L+2L2+1)/ E[|6Y, ] ds
t t

1 1
+4eE[ sup |8Y,[%] + ~[|6as|Pony + ~|6C 22 . (2.24)
t<s<T € €

Now specify € := (16(8L*(T —t) + 4K1))71 > 0, apply (2.23) in (2.24) and
rearrange terms to arrive at

1 T T
E[|6Y;]?] +ZEU 16Z,|? ds] < (2L+2L%+1+4€8L*(T—t)) / E[|6Y,|?] ds
¢ t
+ K ([16¢113 + 1109113 + 18aslifcr 5 + 16C 2 5)-  (2:25)
Using Gronwall’s inequality we can deduce that for almost all ¢ € 7:

E[|6Y;?] < Kx(I5€I13 + 19913 + 18allZen ; + 16C P )€™ T-0. (2.26)

?

An argument analogous to that in the proof of (2.13) and lemma 2.7 shows that
(2.26) holds for all t € 7.

Now (2.20) follows from (2.23) and (2.26). Combining (2.26) with (2.25)
yields (2.19). O

Similarly to the forward situation we now prove a Comparison Theorem for
the backward equation in (2.2).

Theorem 2.14. (Comparison Theorem) Let, for i € {1,2}, (¢%, &%, a?, CY)
standard data and (Y*, Z%) the corresponding solutions of the BSDE. a' may
depend on'Y. Assume further that P-a.s.
9'(t,y,2) = g*(t,y,2) > 0 §-€>0 (2273
a'(t,y) " d(Cf = CF) >0 (a'(t,y) —a*(t,y)) " dC} >0 (2.27b)
Then the difference 8Y; := Y} — Y} is nonnegative almost surely. Let A :=

{w|Y (w) = Y2 (w)}. If P(A) > 0, then equality holds in (2.27) for to <t <T
andw € A P-a.s.

Remark 2.15. We will see in the proof that, instead of the first inequality in
(2.27a), it is sufficient if one of the following conditions

gl(tv)/t17Ztl)_g2(t7}/tlaZtl) >0, gl(t7}/t2ath)_gz(t7}/t2aZt2) >0 (227C)
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holds. This will prove useful in situations where we make use of the convexity
of the driver g(t,z,y, 2).
In situations where e.g. g' does not depend on (Y!, Z') we conclude that

gt > g%(t, Y}, Z}) is also sufficient.
Remark 2.16. Instead of (2.27b) it is actually sufficient if we have

/ al(s,y)" dCY — / a®(s,y)" dC? is increasing in t. (2.274d)

[0,¢) [0,8)

Hence the theorem remains true if (2.27b) is replaced by (2.27d) or

F(ty)Td(C - CH 20, (a(ty) - a*(ty)TdC} 20, (2.27¢)

Remark 2.17. Often we can use properties of Y when verifying (2.27a), e.g.
Y? > 0 because then we can restrict the estimate to y € R>o. On the contrary,
we usually know very little about the processes Z¢. Hence, if one of the drivers
is linear in z, (2.27a) in effect requires that the partial derivatives g1, g2 agree.
This will force us to assume that g, is independent of z, ¥, z, as in the associated
Dynkin game the driver takes the form ((gs, 9y, 92), (I, R, @)).

Again we use a representation for solutions of linear BSDE:

Lemma 2.18. Let (g,¢,a,C) standard data of a linear BSDE and (Y, Z) its
solution, where the BSDE takes the form

Ay = —(WYs + 77 Zi + @i) dt — (Yia}) T dC, = dCy + 2 dWs,  Yr=¢
(2.28)

for certain progressively measurable processes v¥, v*, a¥, ¢, 9, C, C, where Y,
~v%, a¥ are bounded and C, C have bounded variation.
Let T defined by

¢ ¢ ¢
It = exp(/ vy — L) du —I—/ a¥'de, +/ v: T dW,) (2.29)
S S S

Then'Y has the representation

T T
n:E[rtTu [ ipads+ [ vl ac,
t t

’ft] (2.30)

In particular, if € > 0, ¢y > 0 and f[o #) S dCy is increasing then Y; > 0 a.s.

If A :={w|Y:, = 0} has positive probability, then £ = ¢y = ftT Y] dCs =0 for
to <t<T on A.

Proof. AsT? is positive a.s. the statements on nonnegativity of Y, both general
and strict, follow from the representation as conditional expectation in (2.30).
Hence it remains to prove (2.30).

I't .= T} satisfies

dr* = T'Y dt + Tta? T dCy + Ty T dW,.
Obviously I' = I'*(I'*)~1. Now apply Itd’s formula to I'*Y; and write
T

T T
I'Tyr —1ty, = —/ g, ds—/ (Dsep) T dC’s+/ T(Zs+Ysy?) " dWs.
t t t

Rearranging terms and taking conditional expectation gives (2.30). O
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Proof of theorem 2.14. Define the bounded, progressively measurable processes

1
Aggs = W(gl(t, Y}z - g (Y7, Zf))thl;ﬁyf
f ¢

1
Agay = W(al(t,ytl) - al(t,Y't2))th1¢Y-tz
and write the SDE for §Y in the form (2.28):
d(8Y;) = — (A, 9:0Y; + 8g;) dt — (8Y;Azar) T dC} — o' (t,Y) T d(8C})
—ba] dC} + (2} - 2) " dW,,  oYp =¢' - €.

Here we use the notation of lemma 2.13 and set da; := al(t,Y;?) — a(t, Y2).
Recall that dg > 0 and C; := [ a’(s,Y2)T d(6C;) + [, da] dC? is increasing.
Now apply lemma 2.18 to complete the proof. O

2.6 Properties of the value function

We now turn to the value function of the control problem. Our main goal is to
prove its convexity in the starting point z, if a convex structure as defined in
(2.31) is given.

Convexity of forward-backward process Let, fori € {1,2}, (b,0,C?%, g, h,a)
standard data for the controlled forward-backward system (2.2), and let 2¢ € R
and A € [0, 1]. Denote, for j € {1,2,},

2 =zt + (1 - \)a2? Cr = \C' + (1 - \)C?
X/ = x@'bClo (Y7, 29) = (Y’Z)g,h(T,X;),a,cf

Proposition 2.19. Assume that the following holds:

b is convez in the space variable (2.31a)
o is linear in the space variable (2.31b)
h is convex and increasing in the space variable x (2.31c)
g 1s convez in the variables (z,y,z) and increasing in (2.31d)
a 1is independent of (z,y) (2.31e)
Then the following inequalities hold P-a.s. for all t € 7:
X} =2 X+ (1-0)X2 > X (2.32a)
VA=AV + (1= )Y > (2.32b)

Let us first consider the forward and backward cases separately.

Forward process convexity If b and o are linear in the space variable then
obviously X* = X*. The linearity assumption on ¢ may not be dropped easily,
as the following example shows:
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Ezample 2.20. Let b= C = 0 and o(¢t,z) = |z|. Then the FSDE has a unique
strong solution for each initial value z € R. Define X* by

Xt1:1+/0t|X81|dWs Xf:—1+/0t|Xs2|dWs
hence
X, = exp(W; — 5t) X} = —exp(=W; — 5t)
Let A = 1, then X} = 0 is the solution of X} = fg|Xs>‘| dWs. But
2K} = exp(—51) (exp(W) — exp(~ W),

so P{X} > X} = P{X} < X}} =1
Proposition 2.21. Assume that (2.31a) and (2.31b) hold. Then the solutions
of the FSDE satisfy (2.32a).
Proof. We wish to apply the comparison theorem 2.8. Let
b i= Ab(t, XP) + (1 — N)b(t, X7)

the driver of X*. Then b} > b(t, X}) as b is convex, which suffices according to
remark. O

Note. One might wonder if a generalization of proposition 2.21 to the case where
o is convex could be acchieved by applying lemma 2.11 to the linear equation
d(XtA_XtA) = (Azbt()_(tA_XtA)_l'gt) dt+<AwUt(Xt>\_Xt>\)7 th>7 X(?_Xg\ =0.
Note however that A oy = ﬁ(/\a(t, XH+ (1 =No(t, X})—o(t, X})) is not
necessarily bounded if o is not linear in z. This problem is not easily overcome,
as the above example 2.20 shows.

Backward process convexity We first consider a more general situation
than in proposition 2.19 and list some conditions ensuring that Y;* — Y,* > 0
holds.

For0 < A <1landic€{l1,2,)\}, (Y Z?) denote solutions to the BSDE with
standard data (g%, &%, a?, C?). Dependence on x is not noted explicitly. We set
C* = X\C! + (1 — X\)C? and use the notation

VA=A + (1Y g = A" (6 Y, Z) + (1= Ng* (4L, YE, Z7)
=2+ (1-0 @ =2l (Y + (1= N)dP (¢, YY)

Y* — Y has the representation
~ ~ T
R =p@ -+ [ g -PevAzda
t

T
N / (Aal(& YHTdC! + (1 - Na2(s, Y2) T dC? — a*(s, YT dC?) ‘ fﬂ]
t
(2.33)

The first situation we consider is just a standard backward equation without
dependence on the forward part.
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Proposition 2.22. Let £* > ¢, o' = a® = a* independent of y and g* = g% =

g = g independent of x. Assume that g is convex in (y,z). Then Y =Y} > 0.

This follows from the comparison theorem 2.14 with condition (2.27c), as
g > g(t, Y, Z}) holds by convexity of g.

Proof of proposition 2.19. By proposition 2.21 it remains to prove (2.32b). Let
¢ :=hT,X7),  ¢'(ty,2) = gt, X{,y,2).
From (2.32a) and (2.31c) we have
& = MA(T, X}) + (1 — NA(T, X3) > h(T, X1) > h(T, X3) = €.
Similarly it follows from (2.32a) and (2.31d) that
Ag(t, X2 Y Z)+(1=-Ng(t, X7, Y72, Z22) > g(t, X2, V), Z)) > g(t, X0V, Z7).

hence g > g*(t,y,2). An application of (2.27c) and the comparison theorem
2.14 yields (2.32b). O

Convexity of value V. We are now ready to prove the

Theorem 2.23. (Convexity of the value) Let Vi(to,z) denote the value of
the control problem 2.2 and assume that (2.31) hold. Then V is convex with
respect to the starting point, i.e. let z',z2 € R and \ € [0,1], then

Vi(to, det + (1 — N)z?) < AVi(to, z1) + (1 — N\ Vi (to, z2).

Proof. Let € > 0 and C* € A such that, for i € {1,2}, Ytt"’wi’oi < Vilto,z?) +e.
Obviously C* := AC* + (1 — \)C? is in A and, by proposition 2.19,

Vi(to, Azt + (1 — N)a?) < /oo™ <ayfoe O (1 - yyyypes” O
< AVi(to, z') + (1 = N Vi(to, 2%) +e.

As € is arbitrary the proof is complete. O

We close this section with some remarks on adaptions in related problems.
See also the remarks on related literature at the end of section 3.3.

Remark 2.24. The argument remains unchanged if we restrict the optimization
to a convex subset A’ C A, as long as the admissible controls do not depend on
the initial value x.

Remark 2.25. If a depends on z or y it is necessary to use a more sophisti-
cated choice of e-optimal controls and construction of a candidate C*. Under
additional assumptions we may show e.g. that e-optimal states are without loss
of generality monotone with respect to the starting point, i.e. if 2! < z2 then
X! < X2, Thus the crucial comparison theorem 2.14 can be applied to get
convexity of costs for some selected controls.

Remark 2.26. In case of a generalized finite fuel condition, which can be written
L
as X®00 < x#.C%.C" < xb.0.0 4ne has to show in addition that the convex

combination C* is in fact admissible for *. Convexity of the value function is
then immediate.
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2.7 Properties of controlled forward processes

In this subsection we use the comparison theorem to work out a number of
properties of the state process under a convex structure. We define the deflator
process in the cost functional (2.5) of the Dynkin game, analyze differences
of state processes and recall a result from the theory of stochastic flows on
differentiability with respect to the initial condition.

The biased deflator processes I'*:C”:C” for controls (CU, —CT) is defined as
solution to the FSDE

dre €% =" (D, XN ) dt + 0, (1) T dW),

Pty (2.34)

Its uncontrolled version is abbreviated as I'* := I'*:%:0, which serves as deflator
in the Dynkin game. We further define geometric Brownian motions I'*? and
Tlo.

dTyP =T{PLdt +T{Po,(t)" dW;, TP =1 (2.35)
drle = —TleLdt + o, (t)T dW;,  Th =1. (2.36)

Here L is a Lipschitz constant for b These processes form universal bounds for
“difference quotients” and differentials of the forward process.

Lemma 2.27. Let (b,0,C) standard data of the FSDE satisfying (2.31a) and
(2.31b). Then the following estimates hold for all t € 7 almost surely:

U U 0.cT 0.CL
thJr(j,C 0 th’c ,0 < XtIJr(j’OyO _ th’o’o < Xtm+5’ , _ th‘, , (237)

U L U L U L U L
Tl < oT0C 7 < XFTOCTOT _ xPOTOT <TI0 CTOT < TP (2.38)
U U
and XFTC 0 — X290 > 0 and T > 0. Furthermore we have that

.1, atscU.cE 2,0V .CL 2,CV.CL
}1{% 3 (X, - X ) =T . (2.39)

Proof. Nonnegativity of the first term in (2.37) follows from the comparison
theorem 2.8, as both processes have the same driver and controls.
For the first inequality in (2.37), define the stopping time

pi= inf{t c fl Xf—',—é,CU’O < Xf7070}

and observe that, due to the left-continuity of both processes and the comparison
theorem 2.8, p separates the intervalls where the difference of these processes is
positive and negative respectively:

U
XFroen0 s xm00 rp <y
XIHOY0 o x @00 ey
t = t .
Now set X1 := Xe+80.0 _ X200 anq X2 ;= xe+3.C%.0 _ xo.0".0 For ¢ < p

consider Xt:= xe+0.00 —X’”"’f’CU’O and X2 = xo00_x2.CY0 Aq X1_X2 =
X' — X2 it suffices to prove X' > X2. Both processes are nonnegative, have
13
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the same starting point 0 and control process 0. Their volatility processes are
o(s, X}) and o(s, X2). Their drivers b' and b* satisfy

by = bs, X7 T000) — b(s, Xg+C70) > Dfb(s, X770 X}

B2 = b(s, X2:00) — (s, X2C70) < D b(s, X200) X2

due to the convexity of b in the space variable. As D}Fb(s, X2+-C7.0) >
D;b(s,X299) for s < p, the first inequality in (2.37) for ¢t < p follows from
the comparison theorem 2.8 and remark 2.9.

For t > p consider X! and X 2. They are nonnegative, satisfy X; —Xﬁ > 0 by
above argument and have the same control process 0. Their volatility processes
are o(s, X1) and o(s, X2). Their drivers b and b? satisfy

bl = b(s, XZH000) —p(s, X200 > D¥b(s, X200) X}
B2 = b(s, X2T8CT0) — (s, X2C70) < D b(s, X270 X2,

due to the convexity of b in the space variable. Then X} > X2 for ¢ > p follows
from D b(s, XZ:00) > D= b(s, X2+9:C":0) and remark 2.9. This completes the
proof of the first inequality in (2.37).

For the second inequality consider the stopping time

o :=inf{t € 7| th+5»070 < Xtm,o,cL}

and define the processes X! := X#+0.0.0" _ x2+300 2 . x=.0.0" _ x.00
X1 .= xo+00.0% _ x2.0.0% gpd X2 .= X#+6.00 _ x=.0.0 Analogous arguments
as employed for the first inequality show that X! — X2 > 0 for ¢t < o and
X1 — X2 >0 for t > p, which are equivalent to the second inequality in (2.37).

The proof of (2.38) rests on quite similar arguments. I > 0 P-a.s. is a
standard property of geometric Brownian motion. The first and last inequality
follow from the Lipschitz property of b, linearity of ¢ and the comparison the-
orem 2.8. For the second and third inequality use convexity of b in z, which
gives the estimate

D b(t, X707 (00T - x et
< b(t, X7 TN — b, X
< Db, X O (X et

and apply, again, the comparison theorem.

(2.39) is a standard property of stochastic flows, see e.g. (cf. [51], [31]. We
give a short outline of the argument in our situation. In view of (2.38) it suffices
to prove

I AKICHECEIN o SCAEC RS AN (2.40)

. . : e+6,07,C

It is obvious from the comparison theorem 2.8 that X, and hence
U L

ry 0000 decrease as & \\ 0. By the dominated convergence theorem, with

T
||5D;'b||§ = E[/ (D;"b(s,sz""s’CU’CL) . D;"b(s,Xf’CU’CL))2|Ff’CU’CL|2 ds],
0
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|6DFb||3 29 0 Hence E[supogsgﬂl“?*‘j’CU’CL —re.cv.c* |?] converges to zero

U L U L
as the a priori estimates of proposition 2.6 show. Hence I‘f”’c - I‘f’c ©

also converges uniformly in ¢ P-a.s. to zero. O

Remark 2.28. If b is convex, b, exists a.e. Hence as long as X®¢":C" is not
deterministic we can replace Db by b,.

Historical remarks

Our presentation of a priori estimates and comparison theorems is along the
lines of EL KAROUI and QUENEZ [24], and PENG [49], where similar results
are used to prove existence and uniqueness of solutions to BSDE. The method
of translation to a control-free SDE employed in our proof of existence and
uniqueness is borrowed from PENG [49]. The argument in theorem 2.23 is taken
from KARATZAS and SHREVE [35].
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3 Deriving the stopping problem

In addition to conditions (2.31), we now require the data of the FBSDE (2.2)
to satisfy also:

b is differentiable in (3.1a)

h is differentiable in z (3.1b)

g is partially differentiable in z, y and z (3.1c)

gy is increasing in z (3.1d)

g, is independent of z,y, z (3.1e)

Both components of a are nonnegative and continuous. (3.1f)

If (3.1e) is assumed we drop dependence on z in the notation for partial deriva-
tives of g.
Our main result of this section is the following

Theorem 3.1. Assume that (2.31) and (3.1) hold and that there exists an op-
timal control C = (CY,—C¥L) for the control problem 2.2 at the starting point
(to,z). Then the value function of the control problem V is partially differen-
tiable at x with respect to the space variable. The associated Dynkin game 2.5
has a solution, and its value is the partial derivative of the value of the control
problem:

th(to,m) = u(to, ) forto <t <o AT P-a.s.. (3.2)
x

Here 0° := inf{t > to|CY > C{} and 7° := inf{t > to|C}F > CL} are the
first action times of the controls CU and CY. They form a saddle point for the
Dynkin game which has value

wy(to, ) = RO (0°,7°) forto <t <o AT P-as. (3.3)
The proof essentially rests on the four relations

U;(to,fc) S uj(to,x), A—‘/t(t()ax) S A+V¥(t0,$),
ATVi(to, z) < uy (to, @), uf (to, ) < A_Vi(to, ).

Here ATV and A_V denote the upper right and lower left Dini derivatives of
the value function V. The first inequality follows from the definitions (2.6), the
second from theorem 2.23. The third and fourth are the subject of sections 3.1
and 3.2.

For our investigation of the value function of the control problem we choose
an optimal trajectory and a state processes that tracks it from a nearby starting
point, up to a pair of stopping times. In a pathwise analysis it is possible to
construct controls such that the difference of costs resembles the payoff of a
stochastic game of optimal stopping. Thus we establish correspondence between
“difference quotients” of the control cost process and the cost of stopping times.

The formulation of tracking and the analysis of cost behaviour is carried out
without reference to specific properties of the trajectory tracked, but to draw
conclusions on the value process we will have to assume that an optimal policy
exists. We start in section 3.1 with a discussion of right hand side difference
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quotients. The left hand side difference quotient is almost parallel and there
is a brief outline in section 3.2 of the steps necessary. The section closes with
proof of the main theorem and a discussion of possible extensions and related
results.

3.1 Upper right Dini derivative

First we will introduce the construction of a tracking process. We recall some
properties of the state processes in this situation. Then we analyze characteris-
tics of the control involved and of the cost functionals, restricting our assump-
tions to (3.10) below.

Making use of the convexity of the data and its consequences presented in
lemma 2.27 we then find estimates for the difference quotient of cost functionals
and investigate its limit behaviour. This enables us to find an estimate for the
upper right Dini derivative of the value function V in terms of the value function
of a Dynkin game.

Construction of the tracking process from above We consider a con-
trolled process X* = Xt0:#:C".C* and a process X° tracking X* from above.
Define the crossing time

7= inf{t > to | X[ TOCT0 < xlow CT0T (3.4)
and let 0 € T;,. The tracking process X° for the starting point (¢o,z + d) is
defined by

th,x—‘,—é,CU,O t< o ATS
X} —{ t =SOAT (3.5)

t = U ~L
Xt C7CT s g gt

which has parallel upper control as the state traced and no lower control until
o occurs or Xt0:2:C%.C" crosses its trajectory.

Let us suppress dependence on ¢ in the notation. We want to obtain X? as
controlled process X?+5:C"7:C*" {4 compare the costs associated with X? and

X*. To acchieve this, define

cy t<o
oV = oV 4 xat+o.0Y0 _ xa.cv.C t>o0<7  (3.6a)
cY t>o,0>710
0 t<oATd
cHt.={ck-c) t>o,0<70 (3.6b)

L L z+48,CY,0 z,cY,ct
Ct - ok — (X7 - X5 ) t>7% 0>79

Remark 3.2. We have to check that C%L is increasing at 79: Consider ¢ > 70
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on {o > 7%}. Then by definition of 77

L L z,cY,ct z+6,C7,0
0<CF-Ch, +Xx559 - x5l

U L
=CF - CL, + X559 — (0%, - C%)

T

+(Chy = Oh) = (X590 = (€l - 0%)

T

_ L L z+48,CY,0 z,cvV,ct
- Ct - C‘r - (X1-5 - X‘r“ )
Hence C? := (C*Y, —C%E) is in A.

Proposition 3.3. Let C° € A as defined in (3.6). Then Xeo+acht.ont - xo
and

5, U ~6,L U ~L U U
0 S thz:—i-é,C ,C _thz:,C ,C S thz:—i-é,C ,0 _thz:,C ,0' (37)

5,U ~6,L U ~L 5,U ~68,L U ~L
Further Y2 T0C" 07" — y 2000 gpg zot0.0770%" = 780707 g g A 70 <
t<T.

5U A5,L . . .
Proof. X} = X207 C"" for t < o A7 is obvious from the construction.

. . . .. 246,05V ,C% z,cY,ct
Consider the right hand side limit X5~ onriy DY

definition of C°, hence Xf”’CJ’U’CJ’L = X} for t > o A 7°. The equalities for
y=0%.6" and z2:¢%.C* on (¢ A 79, T) follow from the uniqueness of solutions
to BSDE.

It remains to prove (3.7). The first inequality follows from (3.5) and the def-

- which equals X

inition of 79. Observe that X®C":C* > X2:C”.0 from the comparison theorem
2.8. For t < o A 7% the second inequality then follows from the definition of
C°. Further Xf""s’CJ’U’CJ’L = X2%C for t > o A79; by lemma 2.27 the right
hand side is nonnegative. O

We use, Vt € 7, the notation

«._ yz,cV,ct «._ vecv,ct %« ._ oz,cv.ct
X=X, , Y =Y, , Z; =17, ,

6 ._ yot6,05Y Co 5§ ._ pz+s,ChY CHT
Y =Y, Z) =7,

)

%(Y‘S —Y*) will be the difference quotient under observation later in this section.

Some characteristics of the tracking process Next define the first action
time 70 of CL by

0= inf{t > | X2 0 < X7} = inf{t > to|CE > CE}. (3.8)

Remark 3.4. Observe that 70 N\, 7° almost surely. This follows from (3.11)
below and existence of right hand limits for all processes involved.

Further, if C% (w) > CL(w) there is a do(w) such that 7°(w) = 7°(w)
for all § < §y almost surely. This again follows from (3.11) if we set &g :=
(CTL°+ - CTLO)/F%'
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Remark 3.5. Assume (2.31a) and (2.31b) hold. Then for ¢ € 7
5th7CU7oxt§0A‘rO S Xf - Xt* S 6Ff+67CU7OXt§J/\T5 P-as. (39)

This follows from the convexity of b and definition of 7°, 7% and X° as in lemma
2.27.

At the end of this section we will assume that (CY,CT) is in fact optimal
for the control problem, but this is of no importance in the development of the
next results.

In the discussion of C* and Y% —Y™* we can reduce our assumptions in (2.31)
and (3.1) to

b is differentiable in z (3.10a)

o is linear in the space variable z (3.10b)

h is increasing in the space variable z (3.10c)
g is increasing in the space variable z (3.10d)
Both components of a are nonnegative (3.10e)

Restricting to these assumptions will facilitate a transfer to the situation where
the left hand side derivative of V is considered.

We reformulate some results on controlled processes of lemma 2.27 for our
situation.

Lemma 3.6. Assume (3.10b) holds. Then for any C € A and initial values
xz,x + 0 the estimate

0 < §Tle < XPHo07.0%" _ xu0%.0" o spup (3.11)
U L
holds, X;"H’C " decreases as § decreases and proposition 3.3 remains valid.
Furthermore, X° decreases to X*.

These are consequences of the Lipschitz property of the data b and o, lin-
earity of ¢ and the comparison theorem 2.8. The proof of proposition 3.3 does
not require convexity of the data. O

Bounds for CY We wish to give an estimate for CF if t < 7°. We derive this
- U

from the definition of 79 in the following way: Let O (w) € [X7° °(w), X} (w)] C

R such that

by (t,04) (Xf — vac"vo) = b(t, X}) — b(t, vaC”vO) P-as.

and let Fté the solution of the linear SDE

dr® = b,(t,0)TO dt +o(t,T9)T dW,, T =1.

It is obvious from the comparison theorem 2.8 and Lipschitz continuity of b
that Tle < T9 < I'}? as. Hence I'? € Ry for t < 7° a.s. Now consider
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X*— XC7%.0; Apply the It6 formula to (I‘?) - (Xy - th’CU’O) and recall that
this equals zero for ¢t < 79 to get the representation — similar to lemma 2.11 —

t
X; - X700 = / ba(s,0,) (X7 — X297 0) ds + CF
0

t ove
+/ o(s, X7 — X270 T qw, :/ ro(ré)~"dcr
0 T

s s
0

This leads to the following estimate for 70 < t < 79:
N —1 = - -
e} &L _ : O\ ~1\ 16 ~L
(Tosilspgtrs) LYy = (Toglsfgt(rs) )Ft Gy
t ~
< [rpudytacr = xp o xp
+6,cY,0 cv.0
< XFHIOT0 _ x20%0 ¢ grp

Similarly we obtain a lower bound on C! for ¢t with CL > 0, i.e. t > 7°. The
results are summarized in the following

Lemma 3.7. Let 7° and 7° as defined in (3.8) and (3.4), and assume (3.10)
holds. Then CL has P-a.s. upper and lower bounds for 70 < t < 79:

v yzoVoy 1 /. 6 L «  yzcVoy 1 6
(X7 — X{ )Pté (7'01<nsf§t Fs) <Cf < (X - X )Ff) (TOSESPSth )

Thus CL satisfies

CF <oTy?(TV) 71( sup I‘g”) =:6.-CF*° fort <7° P-a.s.

T0<s<t

Remark 3.8. Assume that (2.31) and (3.1) hold. Then
2070 < 16 < prtd oo (3.12)
for t < 79 by convexity of b and the comparison theorem 2.8.

Limit behaviour of cost functionals Our plan is to find bounds for the
process +(Y° —Y™*), which will result in a first connection with a Dynkin game.
But before we can investigate this “difference quotient” we need more informa-
tion about the processes Y and their behaviour as § N\, 0. We start with

Proposition 3.9. Assume that (3.10) holds. Let, for §,8' € Rsg, the processes
Y‘s,Y‘sl as defined in proposition 3.3. Then

Yr <yl <y? for § < &' for allt P-a.s.

Proof. Let us look at the inequality Y;* < Y} first. For t > o A7% equality holds
by definition of (C*V, C%L).
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Now let t < o A 7°. We wish to apply the comparison theorem 2.14. From
proposition 3.3 and the properties (3.10¢) and (3.10d) of h, g it follows that

XY > (XE),  g(t, X y,2) > g(t, X[\ y, 2).

Consider the difference of control processes §C := (C%V — CY, —(C%F — CT)).
The components have the representation
8U
CyV - = (X2 - X)X t>0
o<t
8L L L L L s
Ct - Ct = _Ct XtSO'/\T'S - CO' Xt>a'/\7'6 - (CT5 + (XT5 - X:J))Xt>a'/\7'6'
U§T5 o>7°
Recall the argument in remark 3.2 to see that both components of §C are in-
creasing, and therefore [, a] d(8C,) is increasing in t.
So the assumptions of the comparison theorem 2.14 are satisfied, which com-
pletes the proof of the first inequality.
For the second inequality observe that we are done if ¢ > o A 7°, as then
Y =Y. For t <o A% the processes satisfy

s

oONT
th§ _}/t(s = }/(S/W‘s _YJ s +/ 9(57X§ 7}/35 7Z§ ) _9(37X27Y367Zg)d3
t

o oAT

oAt
- / 78 — 7% aw,.
t
Hence it suffices to prove YU‘&T& > waév as g(s,Xfl,y,z) > g(s,X?%,y,2) and
an application of the comparison theorem 2.14 will complete the argument.
To this end use a slightly different representation (cf. (3.13) below):

Yot's/\T‘s - t:/\‘r‘; = (h(X'(Ii) - h(X';))Xa'/\T‘;:T + a’aU', (Xg' - X;)XUSTJ

o<T
+ a’f‘; (ng - X:5)XT5<¢7
<T
S (h(XT) - h(X;'))XU/\T‘;:T + a’c[;'/ (Xg - X;)XUSTJ
o<T
L L L 8’
+ ars (CT5+ - CT’S)XT5<¢7 + (Ya/\‘r5+ - Ya*/\‘r5+)XT5<a
i<T ri<T
6[
= chr/\v"s Y;/\‘r5

where the inequality is due to the definition of C%L and remark 3.2, Y% > Y*
and (3.10c), (3.10e) and the monotonicity of X? in 6. The last equality follows
from 7° < 79 . This completes the proof. O

Observe that we can interprete Y° — Y* as solution to a BSDE where the
terminal value is F,,,s-measurable. In this form it resembles the payoff of a
stochastic game of optimal stopping;:

oONT
Y;té_Y;t*:EI:/t g(s,Xf,Ys‘s,Zg)—g(s,X:,YS*,Z;)ds

+ (A(X2) = M(X3)) Xonrimr + a5 (XJ = X)) Xoert  (3.13)
o<T
b (X0 — X5) Xy + / oL do :Ft].
5527 Jitonrs)
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We will use this representation in the discussion of limit behaviour of (Y9-Y*).
As a first step we establish a result on the convergence of Y° to Y*.

Proposition 3.10. Assume that (3.10) holds. ThenY,? converges to Y;* P-a.s.
uniformly in t, and further

4 *12|
}%E[t2u£T|Y -Yr ] =0, (3.14)
’ 4
lim £ Z0 — Z¥|?ds| = 0. .1
lim Ut |z — Z3| S] 0 (3.15)

The convergence in (3.14) is monotone.

Proof. We know from proposition 3.9 that sup, ., (Y,?—Y.*) is nonnegative and
decreases as § decreases to zero. If we set A := {w | lims o(SUp;< s Y —Yy) >
0} then P(A) = 0 follows from (3.14). o

But (3.14) and (3.15) follow from lemma 2.13 if we can show that — in the
notation of that lemma — |[|6¢||3, ||6g||3 and |JC|[a ;1 converge to zero. Hence
it suffices to prove convergence of the data in the respectlve 2-norms.

We first consider the driver and write
695 = Q(S,Xg,ys*,zz) - g(S,X:,Ys*,Z:) <L-6- ngv
where L denotes a Lipschitz constant of g. Hence ||dg,||3 < L*- 42 - |[TvP||3

which converges to zero as § N\, 0. The same argument can be applied to
0¢ = h(X]) — h(XF).
From the definition of the processes X°, X* we have

-6

(X% — X%) = (X2 — X%0) + / (b(s, X2) — b(s, X7)) ds
70

(3.16)

L)

+/ o(s, (X — X7)) aw, — (CL — Ck).

0

Also recall that C%L is constant on [t,7°]. Therefore we can estimate the dif-
ference of controls in the following way:

2 2
6CI2, 2 = [(/aL d|cdt — CLls) + (/aU d|coY — CU|S) ]

2
= (@bt X, + [ aback)
Per Jltontd)

(Y (X2 - X;>)2xgga]
o<T

2
< B| (o - xm)+ [ abact) xp,
[r0.7%)

0<T

(a2~ X:))Zx,,g,a]
o<T

70 2
< 52E[ ( max al) (|I‘“p 2+ (/ Lryr ds)
T0<s< 78 70

s

n / |o(s, T47)[? ds)] + 52E[(a3F?”)2]

0
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The second inequality is due to (3.16), where we have used (3.11), (3.7), and
Lipschitz continuity of b and linearity of o. The last term obviously converges
to zero as § \, 0, which completes the proof. O

Estimates for the difference quotient We now define processes R“*% and
R which converge to the same limiting process R as § \, 0 and serve as
majorants and minorants to the difference quotient %(Y‘S — Y*). Thus they
help us investigate its limit behaviour. To facilitate the argument we use the
translation to a control-free FBSDE of subsection 2.3; we define

- 1 .
7= (- [

[0,0ATENE)

abdcl) and 2= (5 - 7).

Then (Y7, Z%) is solution to a BSDE with data

- 1 1
¢ i= < (h(X2) = h(XF)) Xonrs=r + ag 5 (Xg = X7)X,y<,s
6 4 o<T
1
+aks 2 (X% — X5)x oy + < atdck
s 6( s 5) T'SET 5 (0,0779)
~ - 1 B
g¥ (t,y, 2) = (Azgtg(X? = X7) + Aydixy>o0- Y
Aygtg ay dCsL)thaArﬁ + ALgt - 2Xi<o
[0,t)
cy :=(0,0).
Here A, g:, Ayg: and A, g; are defined as:
-~ * * * 1
Amgt = (g(tyva }/t*v Zt ) - g(tv Xt*v }/t ’ Zt ))WXX:‘;&X]W
¢ ¢
1

Aygt = (g(tv X?a Y;féa Z:) - g(ta Xfa )/:t*v Z;fk)) WXYtJ;ﬁYt*v
t t

~ 1
ALge= (906, X0, Y, Z0) — g(t, X[, Y, Z})) 75 R X2i43;
t t

Observe that Y2 — Y;* = 0 for t > o A 7°, hence Y — Y;* is F, »,s-measurable.
Therefore Z) — ZF = 0 for t > o A 7% and we can in effect extend the A,§j-
component in the definition of g¥ from [0, A 79] to [0,0]. Observe also that
Y% >0 by (3.1f) and proposition 3.9, and that ¥ = 3(V,) — V}*) for t < o A 7°.
The representation of (Y9, Z%) as solution of a BSDE with the data (¢¥, g¥,CY)
can be verified directly.

In the following discussion we will assume that (3.1) holds. Therefore we
drop the z-variable in the notation of partial derivatives of g. Observe also that
A;§, A,G and A,§ do not depend on Z* and Z° in this case.

Now assume g to be partially differentiable and define (R“?%, QuP9) as so-
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lution to the BSDE with data

up,d . _ z+6,CY,0\ 1z +6,C7,0 Unz+6,0Y,0
£ = ha (X7 T Xonrs—r + 0o LE Xo<rt
o<T

L z+5,CY,0\2( z,cY,0y 1
+( max a sup I¥*%% inf I'™% -
(r°§s§rﬁ S)(TOSSETJ ’ ) (r°§s§rﬁ =) X
5,cY.0
g (ty,2) = (90 (6 X2 Y00 4 9y (1, X7,V )X 20Xt
IN AL
+ L(T0<Ti<%1}—{5/\t A )Ct )tha/\‘r‘; + gz(t) : Ztha

C° = (0,0).
Similarly we let (R!*9, Q) the solution to the BSDE with data

10,6 ._ z,0Y,0\e,CY 0 Upz,cY,0
€ = hy (XT )FT Xonro=T T 05 Fo‘ Xo<r0
o<T

i L i @,0Y,0y? z+6,0Y 0y ~1
+( min a inf I'%Y sup Te+scy.
(70§5§T5 s ) (TOSSST'S s ) (Togsg‘r“ s ) X:——;z%
fo:0 t = t, X,V FI’CU’O t.X* Y+ .
g ( 'Y, Z) = gz( sty Lt ) t Xt<oAT0 + gy( gy Ay Ly )X?JZOXA;’S Y
L L,s
_ L(Tognslga'z—(ﬁ/\t %s )Ct )XtSUA"'J +9:(1) - ZXt<o

clo? .= (0,0).

Recall the definition of C’tL ** in lemma 3.7. L again denotes a Lipschitz constant
of g.

We need A;L s and A; s to eliminate the negative and positive parts in the
gy -y -terms for ¢t > o A 7°. The reason is that Xit<r¢ decreases to x;< o in d, so
we have to add a condition that ensures the required monotonicity of the data.
More specific, we define

A;"é ={t <o nT}U{g,(t,X?,Y7) >0}
A5 = {t <o AT} U{g, (6, X7, ) <0

We also use the non-standard convention max o<z« sp;al =0 for t < 70,
We are now in a position to formulate the estimate.

Lemma 3.11. Assume that (2.31) and (3.1) hold. Then R*"° Y0 RV satisfy
R <V < R'™  Vtei P-as. (3.17)

Further,j?“p"s decreases and R'*° increases as & \, 0 to the same limiting
process R defined below, in L%(0,T;R) and for allt € 7 P-a.s.

Proof. To apply the comparison theorem 2.14 with supplementary condition
(2.27c) to R"P° Y% R!%9 we have to estimate the drivers and terminal condi-
tions of the three processes.
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Consider the drivers first. Their components satisfy

v, -1
9u (t, X[, Y)TY Otha/\r" < Asfes (thS - Xt*)XtSU/\T&

1)
= U
S 9z (t’ Xt67 }/;*)Ft e ,Otha/\‘r‘;'l
1 1
gy(ta X7, Yt*)g (Yt(S - Yt*)XAg—’J < Aygtg (Yt(S - Yt*)
1
S gy(tv Xf’ Y;té)g (Y;é - Y;t*)XA;J’
1 —
* Yk L L L\ L,
gy(t, Xt 7)/t )g [70,73At) s dCS B L(Toglga‘i{s/\t s )Ct

1 1
<Ayges aldCl — Aygi - / al dct (which equals zero)
0 [79,79A¢L) 0 [0,79AL)

1 —
< gy(t, X2, Y05 Ldct + L hefH?
=~ gy( b A R 4 )5 [TO,TJ/\t) a’s K] + (Toglilgfa/\ta’s) t

1 _1
003 (7 - 7)) = D5 (7] - 27)

The estimates for A, g follow from (3.1c), (2.31d) and (3.9). For the estimates
of Ayg use (2.31d), (3.1c), proposition 3.9 and the definition of A;t’(s.

For the third line estimate of the La’ -term recall Lipschitz-continuity of g
and lemma 3.7. As g, is independent of (z,y,2) and 7° > 7° we can summarize
this as

g0, V0, 2°) < g% (1,Y0,2%) < g*P0 (1, Y0, 2%). (3.18)

In a similar way we can estimate the terms in hg, aV and h respectively in
the definitions of ¢/9, ¢¥ and £P9 by (2.31c), (3.1b) and (3.9). For the terms
in a’ observe that, by lemma 3.7 and (2.38), (3.12)

1
L s * L gL
aTJS(XTJ — X)X 6oy + 5 | as dc,
Her [oATO,aAT?)
1 v 5 5
L 5 * * z,07,0 ©0,\—1 ©
< g(Torilsaé(TJ a;) (XTJ - X5+ (X5 - X570 @) sup st ))XT0<0'
<s< T0<s<r My
U2, . U gy -1
< ( max a%)( sup rz+o.¢ 0)7( inf rz¢ ) Tx oy
T0<Ls< 78 F0L gl s T0<Ls< 78 2T
Similarly we can estimate the a”-term in £/°-9:
. . U 0y 2 U gy —1
( min af)( inf rec 9)7( sup retec ) X,
T0<s< 79 T0<s< 79 r0<s<7d gy
1
L s * L gL
< a’r“_(XTJ - XTJ)XT6<O' ag dcs

+ —
4 o A 4 [oAT0,0NTS)
Hence ¢£'99 < 5{’5 < ¢urd An application of the comparison theorem 2.14 and
(2.27c) completes the proof of (3.17). _
Let us now prove monotony of R'>% and R*"*% in §. We show that the data
are monotone in ¢ so that we can again apply the comparison theorem 2.14.
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Consider the terminal values first. The summands in £“7*9 are nonnegative.
The terms in h, and a¥ decrease with § by (3.1b), (3.1f), (2.40) and 79 ~, 7°.

The third term decreases to a%, FfaCU’O, as a¥ and T are continuous.

The terms in h, and a¥ of £°9 are independent of §. The a’-term increases
as § \, 0, as sup o<, s [774C7.C" decreases and X5 <o.r6 <7 increases. Hence
£upd and €199 decrease and increase respectively to §~, where

. 2,0V ,0\pz,CY,0 Upz,cY,0 L 12,CY,0
§:= hw(XT )FT Xonro=T T G5 Fa Xagro + a‘rOFTO Xr0<o
o<T ro<T

Next we show that the drivers ¢“?? and ¢'>? decrease and increase respectively
and, for t # o A 7° converge to § defined by

- .cY,
g(t7 Y Z) = (gz(tv Xt*v Y:f*)]'-‘tz 0 + gy(tv Xt*v Y;)Xyzo : y) tha/\‘ro
+ gZ(t) " RZXt<o+

Convergence and monotony of the g,-term of ¢g“?? is obvious; for ¢'*9 it is

trivial. The terms in L(max,o<,<,s5;a’) equal zero for t < o A 7°; they
are decreasing in absolute value. As X, o<, ;s COnverges to zero, both terms
decrease and increase respectively to zero for ¢t # o A 7°.

For t < o A 7° the g, - y -term in P decreases by (3.1d), monotony of X in
d and proposition 3.9. For t > o A 70 it decreases and is nonnegative thanks to
the definition of A; 5 AS Xt<onre decreases to zero the full g, - y -component
also decreases to zero.

Convergence of the g, - y -term in g'°° for t < o A 70 is trivial. For ¢t > o A 7°
we are restricted to the negative values by definition of A_;, and as X;<,rrs
decreases to zero the g, - y -term increases to zero.

The g,-term remains unaffected by (3.1e). So ¢'>% g and g“?% N\, Gas d \, 0
for t # o A T°.

Let (R,Q) the solution to the BSDE with data (£,3,0). R will serve as
limiting process for R“?% and R!%. By the comparison theorem, left continuity
of the prcesses involved and the above discussion of the data (£“P%, g¥»»9) and
(glo,zi’glo,é) we have

R < R, <R'™°  Vtei P-as.

and R; — R and R'"° — R, decrease as § \, 0.
Furthermore, the differences of the data and hence the processes R; — Rio”j
and R"° — R, decrease to zero in L%(0,T;R). To be precise, set

oNT
169252 = E[ [ 19t R = %6, R QP ds],
0

o /AT
122 := [/ |g(s,Rs,Qs)—glOv‘S(s,Rs,Qs)Pds],
0

E
o213 == &
0213 = B
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which converge to zero as § N\, 0 by the dominated convergence theorem. The
a priori estimates in proposition 2.13 show that

limE[ sup |B9 — R 2] - limE[ sup |B0 — R 2] —0.
30 ogngl s o 30 0§s£T| : d

By monotony of R/>% and R"P% these converge also P-a.s. to uniformly in ¢ to
R. As T € R+ is bounded, R!°° and R"P° converge to R in L%(0,T;R). O

Recall the payoft R of the associated Dynkin game in definition 2.5. Now
define the data

R ._ z,0,0 U L z
£ = (hw (XT )Xa/\'rO:T +a, Xo<r0 + aTOXT:))<0')FO'/\TO/\T
o<T 7<T

g™ (6,9,2) 1= (9a (6, XDV YOTE + 9, (6 X570, Y7) - y) Xeonro

+ gZ(t) " ZXt<o
and CF :=0
Then the solution (R, Q) of the BSDE with data (¢%, g%, a,0) is the payoff

defined in (2.5) and has the representation:

0

oNAT
R (0,7%) = E[/ (Dg(s, X200, Y*), (%, Ry, Q) ds
t

;

,0,0 U L
+ hy (X;;‘ ) %‘XJ/\TO:T +a, FszxCISTO + aTOF£OXT0<U

o<T o<T
(3.19)
Lemma 3.12. Assume that (2.31) and (3.1) hold. Then
.1
lim (Y - ¥)) < Ri(0,7") (3.20)

holds P-a.s. for all t < o A 70°.

Proof. We use the notation of lemma 3.11. From the construction of Y9 we
have Y = + (Y — Yy) for t < o A 7°. Hence by (3.17)

- 1 -
Rl < g(Yf —Y}) <RP®  fort<oAT’ P-as.

As R'% and R*P% converge to R, so does (Y —Y*). Hence the limit in (3.20)
exists and it suffices to prove

R: < R%(0,7°) for t <o A7° P-as.

First observe that R remains unchanged if we restrict the g,-term in the def-
inition of § to [0, A7°]. This follows from the fact that Ry is F, ,0-measurable
for t > o A7°, hence Q; = 0 on (o A 7°,T).

z,CY .0 " U
Recall that X7 = X *” for t < 7° by definition and that X*¢ -0 < X@:0.0
and I'*:C7.0 < 72,00 by (2.31a) and the comparison theorem 2.8.

Hence §(t,y,2z) < g¢f(t,y,z) is a consequence of (2.31d), (3.1c). Using
(2.31c), (3.1b) and (3.1f) we deduce £ < ¢%. Hence the assumptions of the
comparison theorem are satisfied, which completes the proof. O
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Let us now consider the case where C' = (CY, —CT) is optimal for the prob-
lem starting in (%o, ), i.e. the value V;(to, x) is the state process of a controlled
BSDE:

Vito,z) = Y = V00 Vi > t.

Proposition 3.13. Assume that (2.31) and (3.1) hold that there exists an op-
timal control (CY,CL) for the control problem 2.2 in (to,x). Let Vi(to, ) its
value. Then the upper right Dini derivative of V with respect to the initial
condition satisfies

At Vi(to,z) < uj (to,z) VYVt >ty P-a.s. (3.21)

Proof. By optimality of C in (to,z) and lemma 3.12 we have

lim sup = (Vi(to, z + 8) — Vi(to, 2)) < limsup : (Y - Y7) < RX(0,7%)
N0 ) 5\0 1)

As 0 € T}, is arbitrary this gives
AtVi(to,z) < ess infyeg,, Ri(o, 7°) < uy (to,z) P-a.s. (3.22)

O

3.2 Lower left Dini derivative

The construction of an estimate for the lower left dini derivative of V is essen-
tially the same as that in section 3.1. This is intuitively obvious if we consider
—X instead of X as controlled forward process, and all proofs relying on the set
of conditions in (3.10) translate one to one to the new situation. For example,
CY and CT just change their roles. We therefore only line out the argument by
listing the statements.

However, for our investigation of the difference quotient the transformation
X — —X cannot be applied as it does not preserve convexity of the data. So
we give the definitions of upper and lower bounds and limiting process for the
difference quotient in detail.

Construction of the tracking process from below We construct a process
X% that tracks a given controlled process X* = Xt0:#.C”.C" starting at a
distance ¢ below # and jumping on X* some time afterwards.

Let 7 € Ty, arbitrary and set the crossing time

0% = inf{t > to | XF 00" > xC70) (3.23)
The tracking process X ~° for the starting point = — ¢ is defined as

_ L
X:"’z 30,07 <o AT

X0 .= 3.24
t {XZO’E’CU’CL t>d%AT. ( )

It has parrallel lower and no upper control as long as either 7 occurs or X*
crosses its path.
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We again suppress dependence on t,. To obtain X~ as controlled process
define C—% = (C~%YV, —C~%L) by

0 t<odAT
— U L L
Ci "= Ol = Ol — (X277 - X2700T) >0t 00 <7 (3.25)
cy -cv t>r100>1
ct t<rT
C’;’S’L =< Ct t>7,00 <71 (3.25b)
CF+ (Xf’CU’CL - Xf_”_‘s’O’CL) t>7,00>1

From the definition of ¢° we have for t > ¢?, ¢° < 7:

0< 0 = Clhy + X200 - xu
= OV - CY, + X700 L (CL, - Ck)
— (X507 (Y, ~ CY%) + (CL, — Ch))
=0V - Ol — (x5C7C" — xo,70007)
so C~%U is increasing, hence C~% € A. In addition to the notation of X*, Y*

and Z* in section 3.1 we set

_ —8,U ~—35,L _ _ —8,U ~—36,L
Yt—a = Y7® 5,c—%U ¢ 7z i z2 5,c—%Y ¢

)

The following statements and their proofs are parallel to propositions 3.3,
3.9, 3.10 and lemmata 3.6, 3.7. Instead of a line-by-line imitation we could use
a transformation

b(t,z) :== —b(t, —x), 6(t,z) == o(t,z),

>~
—~~
S
SN
|

= _h(_x)7 g’(t,x,y,z) = _g(t7 —x,—y,—z)
by which
(Xz,CU,CL’Yz,CU,CL, Zz,CU,CL) H(sz,CL,CU,Yfz,CL,CU,Z'fz,CL,CU)

(_Xa:,CU.CL _Ya:,CUL‘L _Zm7CU,CL)
9 b .

and apply the results of section 3.1. This is essentially due to the fact that
above transformation does not affect validity of (3.10).

Proposition 3.14. Let C~% as defined in (3.25) and assume (3.10) holds.
Then X==0.C7"7.07"" — X =3 4nqd

U ~L _ —-8,U —é,L L _ L
0 S th‘,c ,C _th 6,0 ,C S Xf‘,o,c _th‘ 6,0,C . (3-26)

¢ ~—8U ~—6,L U ~L < ~—6U ~—6,L
Further Y% "¢ = Y29 and 777000

OONT<t<T.
U L
ch—a,c .C

U L
= 2599 for

increases as § decreases and X9 increases to X*.
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A bound for CU Define the first action time 0° of CV by
00 i= inf{t > to | XP0C" > X} = inf{t > to|CY > ciy (3.27)

and observe that o \, 0° P-a.s. With O defined suitably and I'® the solution
of the linear SDE

A~

dr® = b,(t, 0,00 dt + o(t, 1) dW,, X, =1,

the representation

t
X20C" _ xp = /0 ba(s, 0,) (X20C" = X7) ds + CV

0

t . aOvt .
+ / o(s, X200 — X¥)dW, = / rere) " dcy
0 o

leads to the analogue of Lemma 3.7:

Lemma 3.15. Let 0° and 0° as defined in (3.27) and (3.23), and assume (3.10)
holds. Then CY has P-a.s. upper and lower bounds for o <t < o9:

1 5 1 .
(7" = x7) =5 (inf_TO) <OF < (X707 - x7) 5 suwp_T).
Fte 00<s<t F? o0<s<t

Thus CY satisfies

cf < JFfp(Fio)il( sup 1“‘;?) =6-C77°  fort<o® P-as.
o?<s<t

O

Limit behaviour of cost functionals The difference of tracked and tracking
cost functional has the representation

o AT
Y vt = E[ / o(s, X2, Y2, 22) — gs, X0, Y%, 2-0) ds

+ (M(XF) = M(X72")) Xoo prer + 05 (X7 = X0) X008 (3.28)

7T

+a% (X2 — X 0) x5, +/ al dc¥ | 7,
odT [t, o AT)

Again the value is monoton in §, and (Y ~%, Z~9) converges to (Y*, Z*):

Proposition 3.16. Assume that (3.10) holds. Let, for 6,6' € Rsq, the pro-
cesses Y*‘s,Y*‘j' as defined in proposition 3.14. Then

Y, <Y7P<Yr  for 6 <& forallt P-a.s.
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Proposition 3.17. Assume that (3.10) holds. Then Y;™° converges to Y;* P-
a.s. uniformly in t, and further

lim E Y -V = .

lim [tgngls v, 0P| =0, (3.29)
T

limE[ / |Z;—Z;5|2ds] =0. (3.30)

N0 P

The convergence in (3.29) is monotone.

O

Estimates for the difference quotient %(Y* — Y_5) The structure of our
approach is the same as in section 3.1, but we have to make slight modifications
in the definitions of upper and lower bounds R“”>~% and R!*~9 for the trans-
formed process Yo, Again, the bounds converge to a common limit R that
gives an estimate for the payoff of the associated Dynkin game.

We rewrite +(Y* —Y ~°) as uncontrolled process similar to the construction
in lemma 3.11 and consider

N
(R Ry

[0,09 ATAL)

agfdcgf) and 770 := 2 (2f - 7;%).

S| =

It can be verified directly that (Y9, Z=9) is the solution of a BSDE with data

o 1 _ 1 _
é-Y = g(h(X;-) - h(XT(S))XU‘S/\TZT + afg(X: - XT 6)X7'<0'5
T<T
1 1
+ag,sg(X;.s —X;;é)xgég,r +g ai,]ng
ST [0,05AT)
N . 1 _ .
g¥ (ty, z) = (Awgtg(Xt* - X7+ AyGtXy>o Y
L1 .
- Aygtg 0) ag ng)thaﬁAr + AL ZXi<r
cY = (0,0).

Here A, g:, Ayg: and A, g are defined as:
. _ 1
A:cgt = (g(tv Xt*v Y;t*v Zt*) - g(tv Xt 6, Y:t*v Zt*)) ﬁXX*J;ﬁX*v
X — X, t ¢
1
Xy —F vy
Yy — Yt_a Xy, 02y,

1
Zy — Zt_a Xz70%z;

Aygt = (g(tv Xfév}/;*v Zt*) - g(t7Xti§,Y’t767 Z;))
A= (96, XY, Z) — g6, X0, Y0, 2;70)

Observe that Y9 > 0 by (3.1f) and proposition 3.16, and that, for ¢t < 0% A T,
Y70 =50 -y,

We will assume that (3.1) holds. Again we define processes (R“P:—% Qur-—9)
and (Rl Q!9 as solutions to the BSDE with data (£40»—9, gup:—0 Cup.—9)
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and (¢lo—9, gto=0 (Cto:=9)  where

7<T

U z,0,07\ 2 2—3,0,C*
. <Uof£3§0 g >(goi‘i§,5 0 &&22 ) g

lo,—6 ._ —3,0,CY\z—4,0,Ct Lpz—4,0,0F
€ . (X )FT XoOnr=T T a7 F Xr<g®

7<T

U . z—6,0,C07\2 z,0,cF\—1
* (omin o) (Il TPRE)( sup TRTT) x

— , ,CL
gup, 6(t7 y? Z) = (gl‘(t? Xt*7 K*)Ff 0 + gy(t, Xt*yift*)xyzoxA;;_J . y

U U,—4¢
+ L(UOSI??Z(JM as )Ct )thgs/w +9.(t) - 2Xt<r

i <r
o’<T

- — —-8,0,CF
glo, 5(15,2/72) = gw(ta Xt 67}/;*)1—‘? Xt<oOnr

-6 - U\ U6
+ (gy(t,Xt Y XyzoXay v — D( max a))C, >Xt§a5/\‘r

+92()’th§‘r
cw =0 .= ¢l .= (0,0).

Here AJr _s and A _; are defined as

Ay 5= {t <o ATIU{gy(t X7, YY) > 0
Ay _si={t<o® ATIU{g,(t, X%, Y,%) < 0}
We use the convention supgo<s<qéna; a¥ =0 for t < 0°. L denotes a Lipschitz

constant for g. R
The limiting process R is defined as the state process of a BSDE with data

f 2,0,C%\ne,0,0F Lw,0,CF 2,0,C*
€ T h’x(XT )FT X(TO/\T T + a’ F XT<0'0 + aa'OF XU‘O<T
T<T o0<T

o z,0,C*
g(ta Y, Z) = (gz(tv Xt*a th*)]-‘t 0 + gy(ta X:» Kt*)Xyzo : y)XtSO'O/\T

and control zero. Its property as limit of the difference quotient is the subject
of the following lemma, which is the analogue to lemma 3.11. The proof is
straightforward.

Lemma 3.18. Assume that (2.31) and (3.1) hold. The processes Rup.—0 y =0,
Rlo:=9 satisfy

Rlo=0 < y—0 « pup,—6 Vt €7 P-a.s. 3.31
t =5t =4

Further, Rup’ % decreases and R’ increases as § N\, 0 to the same limiting
process R deﬁned above, in LZ(0,T;R) and for all t € 7 P-a.s.

d
We now can formulate the estimate in terms of the Dynkin game 2.5:
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Lemma 3.19. Assume that (2.31) (3.1) hold. Then
1
lim S(Y; - Y;%) > R¥ (0", 7) (3.32)

holds P-a.s. for allt < o A T.

Proof. By lemma 3.18 it suffices to prove
R, > R?(0°,7) P-as. fort <o’ AT.

This follows from the comparison theorem 2.14, if the data satisfy «f > ¢R and
a(t,y,2) > g®(t,y, 2). But this is a consequence of the convexity assumptions.

Especially observe that [#:0:C” > '»:0:0 holds for the deflator processes, as b is
convex and X#0:C" > X .00, o

‘We now conclude this discussion with the

Proposition 3.20. Assume that (2.31) and (3.1) hold that there exists an op-
timal control (CY,CT) for the control problem 2.2 in (to,x). Let Vi(to,x) its
value. Then the lower left Dini derivative of V' with respect to the initial condi-
tion satisfies

A_Vi(to,z) > uf (to, z) P-a.s. (3.33)

Proof. By the optimality of (CY, —CT) in (to,z) and lemma 3.12 we have

| | * -4 to,z
llgn\lélfg(vt(to,x) = Vi(to,z —0)) > hgn\l(r)lf S(Yt -Y,%) > R (o, 7)

As 7 € Ty, is arbitrary this gives
A_Vi(to,z) > esssup, g, R (0°,7) > uf (to, x) P-as (3.34)

O

3.3 Proof and discussion

Proof of theorem 3.1. By proposition 3.20, the definitions in (2.6), proposition
3.13 and theorem 2.23 we have the relations

AT Vi(to, z) < u; (to,z) < uff (to,z) < A_Vi(to,z) < At Vi(to,z).  (3.35)

and indeed, equality holds in 3.35. So V is differentiable at z with partial
derivative equal to the solution of Isaac’s equation u; (to,z) = uj (to,z) =
ug(to, ).

Let us suppress dependence on (fg,z). By (3.22), (3.34), (3.35) and the
Isaac’s equation

essinfycq Ry(0,7°) = ess sup,cgessinfycy Ry (0, 7)
= uy = essinf,cyesssup, cq Ri(0,7) = esssup,cq Ri(0°, 7).
0

Hence (¢°,7Y) is an optimal pair or saddle point for the associated Dynkin
game. O
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Statements of the type of theorem 3.1 make it possible to transfer results on
Dynkin games to singular control problems and vice versa. In general the former
are better accessible by analytical arguments than the latter, whereas the space
of controls is more easily treated with topological arguments. The transferable
results include questions of existence — or nonexistence — of optimal policies,
structure of solutions and properties of the value functions.

In the general formulation of definition 2.2, the associated Dynkin game
depends in its data on the value of the control problem. This is due to the
nonlinearity of the BSDE in (2.2) in Y. In economic terms, this nonlinear-
ity corresponds to a nonadditive stochastic differential utility as introduced by
DurrFIE and EPSTEIN [19]. Its main feature is that, in contrast to standard
additive utility induced by linear BSDE, preferences with respect to timing dif-
ferences are not induced by discounting.

For problems with a Markovian structure and suitably smooth data solutions
of the Dynkin game have the structure of continuation and stopping regions for
the trajectory of the state process. A player intervenes when the state process
hits a specific stopping region. In the complement of the stopping regions the
game continues up to a terminal time 7. In singular control problems solutions
often exhibit a similar structure, where no control is exercised as long as the
optimal trajectory remains within a no-transaction-region. An optimal control
is “bang-bang”, i.e. it intervenes only to prevent the state from exiting this
region, thus creating a reflected state process. In this context theorem 3.1 hints
that the no-control region in the control problem and the continuation region
in the Dynkin game should agree.

An analytical study of the value function of the control problem involves the
treatment of variational inequalities derived from degenerate Hamilton-Jacobi-
Bellman PDE’s. The aim is to formulate a PDE with suitable boundary con-
ditions, such that a solution can be identified as the value function through a
verification theorem, with the boundary separating control and no-control re-
gions. An important condition at the unknown boundary is the smooth pasting
assumption which requires that the value function be twice differentiable in the
space variable. This assumption can be justified by theorem 3.1 and the princi-
ple of smooth fit that occurs in problems of optimal stopping through their well
established relation with Stefan or free boundary value problems.

Equivalence of optimal stopping and control It is also possible to take
the route backwards in our pathwise approach and construct optimal controls
from a set of optimal stopping times for different starting points. This equiv-
alence of optimal stopping and singular stochastic control was established by
BALDURSSON and KARATZAS [6] and BOETIUS and KOHLMANN [12] for mono-
tone control. The basic idea is to construct impulse controls for a finite set of
initial states and optimal stopping times. These impulse controls then form a
convergent sequence with an optimal control process as limit. This construc-
tive approach makes it possible to further investigate the structure of optimal
controls and exhibits their characterization as local times. We plan to establish
this equivalence in the general situation of (2.2) in our future work.

Problems with finite fuel It was shown in the case of Brownian motion
and monotone control by CHOW, MENALDI and ROBIN [13] with analytical and



3 DERIVING THE STOPPING PROBLEM 41

KARATZAS [34] with probabilistic arguments, and by KARATZAS and SHREVE
[37] for bounded variation control, that the statements of theorem 3.1 remain
essentially unchanged if an additional finite fuel condition is imposed on the
admissible controls. Under a natural generalization of the finite fuel condition
this property is preserved in more general situations. This was carried out by
BoEeTIUus and KOHLMANN [11], [12]. One characteristic is the fact that optimal
controls behave like optimal controls in the unrestricted problem, until they
run out of fuel and the state process rests on the “boundary” representing
the restriction. In the general formulation, this boundary is itself solution of
the uncontrolled forward equation. The only minor problem in extending these
results to our situation is to show that the tracking processes are still admissible.

On the contrary, under a strict finite fuel condition |C|r < K there may be
a timing value of control and optimal strategies are not necessarily truncated
copies of strategies in the unrestricted case. This is clear from the heuristic argu-
ment, that the relative displacement caused by a given impulse varies with time.
Intuitively, if b, > 0 then optimal controls will use up resources faster than in
the unrestricted case, as the possible relative impact of a unit of resources dem-
inishes as time increases. Saving more resources than the unrestricted strategy
will be optimal only if b, < 0.

Both concepts, strict and generalized finite fuel, coincede in the case of a
monotone or bounded variation follower for Brownian motion, i.e. if X7%? =
r + Wt'

Infinite time horizon The treatment of problems where the terminal time
is a possibly infinite stopping time is not different in principle. It is important
to ensure validity of comparison theorems and a priori estimates, for which one
may consult e.g. EL KAROUI and QUENEZ [24]. Additional requirements are
integrability conditions for the data.

Related topics in BSDE theory Backward equations with a formal simi-
larity to (2.2) appear in the context of g-semisolutions and g-semimartingales,
and reflected backward stochastic differential equation (RBSDE).

The notion of g-supersolutions and g-supermartingales was introduced by
PENG [49], [48] in his study of an extended concept of expectation to match
nonadditive utility frameworks.

The study of BSDE with a reflecting boundary was initiated, to our knowl-
edge, by EL KAroul, KAPOUDJIAN, PARDOUX, PENG, QUENEZ [21] and ex-
tended to the case of reflection at two boundaries by CVITANIC and KARATZAS
[14]. Further investigations into the subject and its applications in finance
where carried out by EL KAROUI and QUENEZ [24], HAMADENE, LEPELTIER
and MAToussI [29], HAMADENE, LEPELTIER and PENG [30], HAMADENE and
LEPELTIER [28] and MA and YONG [42] for higher dimensions. A strong motiva-
tion for the study of reflected BSDE is that they allow to model sellers prices for
american contingent claims. One of the most interesting properties is that the
state process of a solution to a RBSDE is also the value of an optimal stopping
problem, and the optimal stopping time can be determined as first action time
of the control causing the reflection.

Given the structure of solutions to the control problem in smooth situations
and typical characterizations of the value function through variational inequal-
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ities it is fairly straight forward to suggest that the value process V itself be
solution to a suitable RBSDE; however determining the reflecting boundaries is
part of the solution to the control problem.

We exploit possible links between control problems and RBSDE in the next
section.

Historical remarks

In its basic struture, the probabilistic approach to singular control taken here
is due to KARATZAS and SHREVE ([35], [36]) and was extended in [6] and [12].
However, the problems studied therein have in essence monotone controls, and
associated a one player optimal stopping problem in contrast to our situation.
Investigation of a connection with a Dynkin game was motivated by the relation
between double barrier RBSDE and Dynkin games established by CVITANIC and
KARATZAS [14].

The idea for the removal of control applied in the proofs of lemmata 3.11,
3.18 is taken from PENG [49].
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4 Characteristic RBSDE of a singular control
problem

Consider the following stochastic system in integral form:
Ay = hy(XJ =0Tl 4 (K - KY) — (K} - KF)

T
+ / (Dg(s, X079V, (tg, 2)), (T, A,, B,)) dt
t

T
- / B/ aw, (4.1)
t

alTho" < Ay < aVTho”
T T
0= / (a¥Tt* — A,)" dKY = / (A, — aFTlo) " dKE
to to
Definition 4.1. A triple (4, B,K) € (L%(0,T;R) x L%(0,T; R?) x A) satisfying
(4.1) for to <t < T P-a.s. is called a solution to the RBSDE (4.1) on [to, T].
Dependence on tg, z is noted by a superscript, but we continue to suppress
dependence on ty. Observe that the process K = (KY, —K') prevents A; from
leaving the interval [afT%,alT'?] acting only on its boundary; it is this property
that the notion of “reflection” stems from.
Recall once more the stochastic game as in definition 2.5. The following is
an adaption of CvITANI¢ and KARATZAS [14], Theorem 4.1 or MA and YoNG
[42], Theorem 8.6.1 to our situation:

Theorem 4.2. Suppose there ezxists a solution (A, B, K) to the RBSDE (4.1).
Then the Dynkin game (2.7) has a solution. Its value, which solves the Isaac’s
equation 2.7, is given as ui(z) = A7, and the pair of stopping times

61 :=inf{s € [t,T) | A® = aUT?}

I (4.2)
7y :=1inf{s € [t,T) | AY = a T2}

s a saddle point for the Dynkin game.
A proof can be found in [14]. O

Corollary 4.3. Assume that (2.31) and (3.1) hold and that there exists an
optimal control C = (CY,—CT) for the control problem 2.2 at the starting point
(to,x). Assume further that (4.1) has a solution (A*®, B,K) on [ty,T]. Then

0
Aboo® — 55 Vilto;2)  VEE [to,T] P-as. (4.3)
This is an immediate consequence of theorems 3.1 and 4.2. O

The obvious similarities in the derivation of a pair of optimal stopping times
from solutions to the control problem (2.3) and the RBSDE (4.1) exhibited in
theorems 3.1 and 4.2 lead us to the following

Hypothesis 4.4. (Equivalence of control problem and RBSDE)

1. Assume that for fixed to and for all © the RBSDE (4.1) has a solution
(A,B,K). Then there exists an optimal control in the control problem,
and the value functions and state process satisfy (4.3).
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2. Assume that (2.31) and (3.1) hold and that there exists an optimal control
C = (CY,—-CF) for the control problem 2.2 at the starting point (to,z).
Then the RBSDE (4.1) has a solution (A*® B, K), and (4.3) holds.

Discussion of hypothesis 4.4. If (4.1) has a solution (A4, B, K) for all z, then
the family of Dynkin games for initial conditions = has a (family of) solutions.
As indicated in the discussion of equivalence of optimal stopping and singular
stochastic control, with a constructive approach we can find the relation (3.2)
and an optimal control, hence (4.3) holds by corollary 4.3.

Actually the equivalence of optimal stopping and singular stochastic control
remains an open question at present, but we suggest that an extension of the
results in [12] should be possible.

Now consider the second statement. We suggest that it should be possible to
construct a solution to the RBSDE from a family of solutions to the associated
Dynkin games. The conclusion of the hypothesis then follows from corollary
4.3. O

Note that the optimal control C' and the reflection process K will not agree.
This is an immediate consequence of the fact that in many practical situations
with smooth data C is singular, i.e. not absolutely continuous with respect to
Lebesgue measure. This is a consequence of the characterization of optimal
controls through Brownian local time. On the contrary, the process K causing
the reflection is absolutely continuous with respect to Lebesgue measure, as the
information process B already absorbs the strong irregularity caused by the
release of Brownian information. So both processes C' and K are somewhat
different in nature. However, formulae (3.8), (3.27) and (4.2) suggest that their
points of increase agree.

For properties of C' see BOETIUS and KOHLMANN [12], for those of K consult
e.g. EL KAROUI and QUENEZ [24].
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