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Penalizing function based
bandwidth choice in

nonparametric quantile regression

Klaus Abberger, University of Konstanz, Germany

Abstract:

In nonparametric mean regression various methods for bandwidth choice ex-

ist. These methods can roughly be divided into plug-in methods and methods

based on penalizing functions. This paper uses the approach based on penalizing

functions and adapt it to nonparametric quantile regression estimation, where

bandwidth choice is still an unsolved problem. Various criteria for bandwitdth

choice are de�ned and compared in some simulation examples.

Key Words: nonparametric quantile regression, bandwidth choice, cross-

validation, penalizing functions

1 Introduction

Although most regression investigations are concerned with the regression mean

function other aspects of the conditional distribution of Y given X are also of-

ten of interest. For �xed � 2 (0; 1), the quantile regression function gives the

�th quantile q�(x) in the conditional distribution of a response variable Y given

the value X = x. It can be used to measure the e�ect of covariates not only

in the center of a population, but also in the lower and upper tails. Especially

of interest is the case where the data pattern shows heteroscedasticities and

asymmetries.
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Various nonparametric estimation methods for quantile regression have been

discussed. These methods include spline smoothing, kernel estimation, nearest-

neighbour estimation and locally weighted polynomial regression. Yu and Jones

(1998) propose two kinds of local linear quantile regression. They also develop a

rule-of-thumb bandwidth choice procedure based on the plug-in idea. Starting

point is the asymptotically optimal bandwidth minimizing the MSE. Since this

bandwidth depends on unknown quantities the authors introduce some simplify-

ing assumptions. These assumptions result in the bandwidth selection strategy

h� = hmeanf�(1� �)=�(��1(�))2g1=5: (1)

� and � are the standard normal density and distribution function and hmean

is a bandwidth choice for regression mean estimation with one of the several ex-

isting methods. As it can be seen this procedure leads to identical bandwidths

for the � and (1��) quantiles. Although this strategy might work very well in

some situations our special interest lies in asymmetric data patterns where the

above rule is to restrictive.

Abberger (1998) adapts the cross-validation idea to kernel quantile regres-

sion and presents some simulation examples. Also asymmetric data patterns

based on the lognormal distribution are included.

This paper tries to use penalizing function based criteria to choose the band-

width in nonparametric quantile regression. In the next section these criteria

are presented and simulation examples are discussed in Section 3.

2 Quantile estimation and bandwidth choice

A locally weighted linear quantile regression estimator is de�ned by setting

q̂�(x) = â, where â and b̂ minimize

nX
i=1

��(Yi � a� b(Xi � x))K

�
x�Xi

h

�
(2)
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with kernel function K(�), bandwidth h and loss function

��(u) = �1fu�0g(u) � u+ (�� 1)1fu<0g(u) � u (3)

introduced by Koenker and Basset (1978) in connection with the parametric

quantile regression. For a discussion of this estimator see Heiler (2000) or Yu

and Jones (1998), which also derive the MSE of this estimator. To calculate q̂�

we use an iteratively reweighted least squares algorithm. Initial estimates are

conditional quantiles calculated with a kernel estimator of the Nadaraya-Watson

type (see Heiler (2000)).

log(h(ASE)/h(AAWE))
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Figure 1: Estimated density of log di�erences between ASE and AAWE optimal

bandwidths for simulated data

Estimation by minimizing equation (2) can be interpreted as M-estimator

or in the notation of Bickel and Doksum (2001) as minimum contrast estimate

with contrast function ��. In general they de�ne a discrepancy function

D(�0; �) � E�0�(Y; �) (4)
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as a function of � which measures the (population) discrepancy between � and

the true value �0.

Nonparametric estimation of quantile regression requires the choice of a

bandwidth. In nonparametric mean regression procedures for bandwidth choice

usually ground on the MSE. Various de�nitions of the optimal bandwidth are

available. One candidate is the bandwidth that minimizes MISE (mean inte-

grated squared error) for the given sample size and design. This bandwidth

is optimal with respect to the average performance over all possible data sets

for a given population, rather than for the performance for the observed data

set. Another choice is the bandwidth that minimizes the average squared error

(ASE) for the observed data set. Between these two concepts we chose the later

one. For further discussion of this issue see e.g. Mammen (1990), Grund et al.

(1994), H�ardle (1988).

Another natural choice in quantile regression is based on the discrepancy

function (4). It is

E[��(Y �m(x))] = �(�Y (x)�m(x)) +

Z m(x)

�1

F (yjx)dy (5)

and thus the optimal bandwidth is that one for which the corresponding quantile

estimator minimizes

1

n

nX
i=1

(Z q̂�(Xi)

�1

F (yjXi)dy � �q̂�(Xi)

)
: (6)

In the sequel this criterion will be called average alpha weighted error (AAWE).

The di�erence between ASE (which in quantile regression is 1=n
P
(q�(Xi)�

q̂�(Xi))
2) and AAWE is demonstrated for a data pattern which is further con-

sidered in the simulation examples section. The true underlying distribution is

exponential with density

f(y) = ae�ay�11fy>�1=ag(y); a > 0: (7)
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Figure 2: Estimated 0.75 quantiles with ASE and AAWE optimal bandwidths

for a simulated data set

This density is asymmetric and has expectation Zero for all a > 0. With

x = 1; :::; 600 we chose a = 1:5+sin( x
1002�). For 1000 repetitions the bandwidths

minimizing the average errors estimating the 0:75-quantiles with a kernel esti-

mator are calculated. Figure 1 shows the density of log(hASE=hAAWE). There

is a high peak at 0 indicating that the chosen bandwidths coincide quite often.

But there is also a slight left skewness observable. This indicates a tendency

of the AAWE method to smooth stronger than the ASE procedure. Figure 2

shows a \typical\ example where the ASE bandwidth is smaller than the AAWE

bandwidth. Since the conditional distribution in the peaks is much 
atter than

in the valleys where the conditional distribution is very steep, derivations in the

valleys are in the AAWE sense more important than errors in the peaks. This

perspective is quite natural for quantile estimation, especially when we think of

doing quantile forecasts.
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In local linear mean regression the estimators are usually linear, that means

they are of the form ŷ = m̂(x) = Hy, where the matrix H is commonly called

the smoother matrix and depends on x but not on y. The trace of H can be

interpreted as the e�ective number of parameters used in the smoothing (e.g.

Hastie and Tibshirani (1990), sec. 3.5). One possible strategy to �nd a suitable

smoothing parameter is to chose the bandwidth which is the minimizer of

log(�̂2) + 	(H); where (8)

�̂2 =
1

n

nX
i=1

fyi � m̂h(Xi)g
2 (9)

and 	(�) a penalty function designed to decrease with increasing smoothness

of m̂h. Common choices of 	 lead to GCV (	(H) = �2 logf1 � tr(H)=ng),

Rice`s T (	(H) = � logf1 � 2tr(H)=ng) and AICc (Hurvich et al. (1998) )

(	(H) = f1 + tr(H)=ng=f1� [tr(H) + 2]=2g).

These smoothing parameter selectors can be adapted to quantile regres-

sion estimation. The �rst modi�cation concerns log(�̂2). Since the quantile

estimator (2) falls into the class of M-estimators we can proceed as usual in

M-estimation (see e.g. Hampel et al. (1986)) and interpret the �� function as

\-loglikelhood=�� \. So the AIC criterion and all the other above mentioned

criteria can be adapted by using 1
n

Pn
i=1 ��(yi � q̂�(xi)) instead of �̂.

The second modi�cation concerns the smoother matrix H . Estimator (2)

does not lead to a linear estimator ŷ = Hy. Because the actual estimator is

carried out by iteratively reweighted least squares the smoother matrix H can

be approximated by the implied smoother matrix from the last iteration of the

iteratively reweighted least squares �t of the model.

With these modi�cations we arrive at the following strategy to �nd a suitable

smoothing parameter for local linear quantile regression: choose the bandwidth
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to be the minimizer of

2 log

 
1

n

nX
i=1

��(yi � q̂�(xi))

!
+	(H); (10)

where 	(�) is one of the above mentioned penalizing functions and H the ap-

proximative smoother matrix.

3 Simulation examples

In this section, some simulation results are presented. The underlying density

functions were of the exponential type shown in equation (7). The two models

Model I: a = 1:5 + sin(
x

100
2�) (11)

Model II: a = 10 � exp(�1=200 � x) (12)

with x = 1; :::; 400 are considered. For each setting 100 repetitions were cal-

culated. The 0:25- and 0:75- quantiles were estimated for both models. Band-

widths are chosen with the help of the above discussed methods based on penal-

izing functions and in addition with the cross-validation method which chooses

hCV = min
h

(
nX
i=1

��(Yi � q̂(�i)� (Xi))

)
; (13)

with q̂
(�i)
� (Xi) the so called leave-one-out estimator. This is the estimator for the

conditional quantile at Xi which is calculated without the observation (Yi; Xi).

To avoid boundary e�ects only the 200 observations x = 101; :::; 300 in the

middle are used for bandwidth choice.

The estimated densities of log(hCV =hAAWE), log(hGCV =hAAWE) and log(hAICc
=hAAWE)

for the two quantiles and both models are shown in the Figures 3-6. We also

calculated Rice`s T but the results are quite similar to the AICc criterion so

these results are not shown in the graphs.
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With Model I the arithmetic mean of hAAWE for the 0:25 quantiles is 19:95

and for the 0:75 quantiles the mean is 58:1. This di�erence in the means con�rms

the need of methods which can handle asymmetric data patterns.
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Figure 3: Estimated densities of log(h�=hAAWE) for 0.25 quantiles of Model I

Figure 3 shows the results for the 0:25 quantiles of Model I. The three es-

timated densities have all modi around Zero. But the peaks for the penalizing

methods are higher and sharper than for the cross-validation method where the

density is 
atter.

Also in Figure 4 which presents the results for the 0:75 quantiles of Model

I the cross-validation density is relatively 
at. But in this case it is the only

density with modus around Zero. The penalizing methods tend to undersmooth.

A similar behaviour can be obtained for Model II visualized in Figure 6 and

7. The mean of hAAWE for � = 0:25 is 109.6 and for � = 0:75 the mean is
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Figure 4: Estimated densities of log(h�=hAAWE) for 0.75 quantiles of Model I

245.6. This di�erence is again a result of the asymmetric density. And just as

for Model I the penalizing methods tend to undersmooth the upper quantile.

These results remain unchanged when hASE is used as reference bandwidth

instead of hAAWE because in these examples the di�erence between hASE and

hAAWE is not such large.

Figure 7 shows the estimated densities for the 0.75 quantiles of Model I but

now 100 observations are used for bandwidth choice instead of 200. The penal-

izing methods still undersmooth but the smaller sample size leads to stronger

di�erences between the methods. The AICC method undersmooth less than

the GCV method.

To sum up the simulation results it can be stated that the penalizing func-
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Figure 5: Estimated densities of log(h�=hAAWE) for 0.25 quantiles of Model II

tion based methods for bandwidth choice can lead to a reduction in variability

compared with the cross-validation method. But for this we have to take into

account the tendency of penalizing methods to undersmooth when large band-

widths are appropriate. Maybe this disadvantage can be get under control with

the development of adapted penalizing functions. Simulations based on smaller

sample sizes show that the AICC penalizing function undersmooth less than

some other penalizing functions.
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Figure 6: Estimated densities of log(h�=hAAWE) for 0.75 quantiles of Model II
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Figure 7: Estimated densities of log(h�=hAAWE) for 0.75 quantiles of Model I

(bandwidth choice with 100 observations)
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