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Abstract

This paper investigates the time between transactions on �nancial markets. It is

assumed that the interval between transactions is a random variable and the relation-

ship between the probability to observe a transaction at each instant of time and the

type of the previous trade is investigated. To estimate these e�ects, a semiparametric

proportional hazard model is used which is based on approaches proposed by Han and

Hausman (1990) and Meyer (1990). Considering grouped durations the log-likelihood

is formed by using di�erences in the survivor function. Hence, the model corresponds

to an ordered response approach whereby the baseline hazard is estimated simulta-

neously with the coe�cients of the covariates and is calculated by the thresholds.

Clustering of the durations is taken into account by including lagged durations. A

test is proposed to check for serial correlation in the errors based on the concept of

generalized residuals along the lines of the work of Gourieroux, Monfort and Trognon

(1987). Unobservable heterogeneity is implemented parametrically by a gamma dis-

tributed random variable entering the hazard function. It is shown that the resulting

compounded model follows a BurrII form. In an empirical analysis high frequency in-

traday transaction data from the London International Financial Futures and Options

Exchange (LIFFE) is investigated.

JEL classi�cation: C25 C41 C52 G15
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1 Introduction

The development of high frequency data bases makes it possible to analyze the workings of

�nancial markets based on the lowest aggregation level, i.e. on the basis of transaction data.

The availability of a maximum amount of information contained in the data provides the

opportunity to gain insights into market microstructures and allows for testing the validity

of implications originating from theoretical microstructure approaches.

An important feature of transaction data is that it occurs in irregular time intervals, i.e. one

trader is allowed to transact at any point in time. On one trading day (see Figure 2 1) there

are periods in which transactions are generally infrequent, but there are also hours which

have very high rates of activity. This may be due to some observable events such as the

arrival of a news release or to unobservable events which are to be thought of as stochastic

process. In market microstructure theory the timing of trades plays an important role in the

learning mechanism of market participants who draw inferences from the trading process.

In this context durations can be regarded as means to aggregate information on market ac-

tivities 2, but also as indicators for the speed of the price adjustment process caused by news

events 3. Hence, studying the waiting times between events is essential for understanding

the economics of �nancial markets.

It is assumed that the waiting time between two successive transactions is a random vari-

able, implying the occurrence of probabilities to observe a trade at each instant of time.

Theoretical approaches, like Admati and Peiderer (1988, 1989) and Easley and O'Hara

(1992), suggest relationships between the probability of the existence of information and

the characteristics associated with each trade, i.e. the price, the bid-ask spread, the volume

and the duration between transactions. Hence, the probability of a trade occurring at each

instant of time varies according to the type of the previous transaction.

In this study the time between trades is examined based on Bund Future trading from the

London International Financial Future and Options Exchange (LIFFE). The Bund Future

1See Section 'Descriptive Statistics'.
2E.g. Coppejans and Domowitz (1998) use durations to compare the relative importance of information

sets in limit order book trading.
3Engle and Lunde (1998) determine the speed of price adjustment by using a bivariate point process to

jointly investigate transaction and quote arrivals.
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is one of the most actively traded future contracts in Europe, resulting in a highly liquid

market. Based on this data this paper investigates relationships between the economic char-

acteristics of a transaction and the time until the next trade, i.e. the impact of the bid-ask

spread, the volume and the price of a transaction on the conditional expectation of the

waiting time until the next event are analyzed.

A speci�c feature of high frequency transaction data is the occurrence of clustering, which

is found in di�erent empirical investigations. Clustering structures are found in several

economic variables, such as prices (Gwilym, Clare and Thomas, 1998 or Aitken et. al.,

1996), volatilities (Bollerslev and Domowitz, 1993 or Andersen and Bollerslev, 1997) or du-

rations (see Engle and Russell 1995, 1997, 1998). Admati and Peiderer (1988) propose

a model which explains the concentration of trading in particular time periods within a

trading day. In this approach the clustering of waiting times arises from strategic behaviour

of informed and liquidity traders. The liquidity traders are partitioned in "discretionary"

liquidity traders who have some choice over the timing of trades and "nondiscretionary"

liquidity traders whose timing is random. It is shown that "discretionary" liquidity trading

and also informed trading is typically concentrated. In the framework of Easley and O'Hara

(1992) waiting times between trades carry information about the actual state of the market.

They assume the existence of an uninformed market maker who uses market-activities to

infer the existence of information. In this context concentrated-trading patterns arise from

an information event which increases the number of informed traders.

To take duration clustering into account, Engle and Russell (1995, 1998) propose an Au-

toregressive Conditional Duration (ACD) model for intertemporally correlated event arrival

times. The ACD model is based on a parametric speci�cation for the conditional mean

of the duration which captures the past trading history. Dividing each duration by their

conditional mean yields "standardized" durations which are to be assumed as i.i.d. Thus,

the ACD model provides a baseline hazard based on standardized durations 4.

This study uses a semiparametric proportional hazard model which also allows for the con-

sideration of autoregressive structures but provides a nonparametric baseline hazard rate

4Lunde (1996) proposes a model which provides an alternative to the ACD framework. He captures
duration clustering by allowing an unobserved stochastic process to drive the expected duration and the
hazard function.
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based on "non-standardized" durations. In this framework the error terms are to be assumed

as conditional i.i.d., given the covariates. I.e. the explanatory variables have to capture all

serial dependence leading to conditionally independent error terms. Based on a speci�cation

with conditionally i.i.d. disturbances a nonparametric baseline hazard for the durations is

obtained without requiring to specify standardized waiting times. The approach is based

on concepts by Han and Hausman (1990) and Meyer (1990). The main idea is to consider

grouped durations which can be seen as a necessary device to sort information in the data

and making it possible to treat the model in terms of an ordered response speci�cation. 5

Using grouped durations the sample likelihood depends on the baseline hazard only through

a �nite number of discrete points and leads to a reduction in dimensionality (see An, 1998).

An advantage of this model is that it obtains a nonparametric baseline hazard rate which

is estimated simultaneously with the parameters of the covariates and is calculated by the

thresholds.

A major reason to use categorized durations is the high number of ties. At the LIFFE the

minimum time between events which can be recorded is one second. The occurrence of a

high number of low durations generates the existence of ties, i.e. more than 50% of the re-

ported durations between events have the discrete values 1,2,...,10 seconds 6. The presence

of ties makes it possible to treat each value as one category implying no loss of information

and allowing for a close aproximation of the baseline hazard rate.

To take data clustering into account lagged durations are included. Furthermore, an un-

derlying autoregressive process may not only cause correlations in the durations but also in

the errors, leading to invalid inference procedures. Thus, it is necessary to check for serial

correlation in the error terms. In this context a test is proposed based on the concept of

generalized residuals (Gourieroux, Monfort and Trognon, 1987) which makes it possible to

�nd a speci�cation that captures the autoregressive structures and leads to conditionally

noncorrelated error terms, given the explanatory variables. In such a speci�cation all serial

dependence has to be captured by the covariates leading to the assumption of conditionally

5The model is based on the general relationship between conventional models for ordered response
speci�cations and related approaches for grouped durations (Sueyoshi, 1995), whereby the likelihood of
a particular observation on a grouped duration is the probability of observing a series of binary outcomes.

6See Figure 1.
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i.i.d. error terms.

A further advantage of the model from Han and Hausman is the fact that it is easy to con-

trol for unobservable heterogeneity. Lancaster (1979) and Heckman and Singer (1984) show

that ignoring unobserved heterogeneity can lead to biased estimates of the hazard function.

In econometric duration literature two directions exist concerning the implementation of

unobservable heterogeneity. E.g. Heckman and Singer (1984), Honore (1990) and Bearse,

Canals and Rilstone (1994) use nonparametric speci�cations for heterogeneity e�ects, but

also need parametric forms for the baseline hazard rate. Cox (1972), Kiefer (1988), Han

and Hausman (1990) and Meyer (1990) allow non-parametric baseline hazards, but specify

unobservable heterogeneity by parametric distributions. 7

In this study heterogeneity e�ects are speci�ed parametrically by a random variable which

enters the hazard function multiplicatively. An important advantage of this approach is that

the survivor function of the compounded model can be calculated in closed form and that

it does not require numerical integration. By specifying unobservable heterogeneity using

a gamma distribution, a gamma compounded hazard model is obtained. It will be shown

that the survivor function of the resulting mixed proportional hazard model has a BurrII

form, a generalization of the logistic distribution. Thus, an ordered response approach is

obtained which parametrically nests the ordered logit model.

The outline of the paper is as follows: Section 2 describes the econometric approach. Section

3 discusses testable hypothesis originated by market microstructure models. Section 4 gives

empirical �ndings based on the analysis of LIFFE data. Section 5 presents conclusions.

2 An econometric approach to analyzing durations

2.1 A gamma compounded hazard model for grouped durations

This section provides an econometric approach for duration analysis which is based on

arbitrarily grouped duration data. It is assumed that the time between the ith and the

(i+1)th transaction is a random variable Ti; i = 1; : : : ; n; which follows an unknown baseline

distribution. The model from Han and Hausman (1990) is based on the proportional hazard

7An (1998) proposes a mixed proportional hazard model which allows both the baseline hazard and the

distribution of the unobserved heterogeneity to be exible.
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speci�cation of Cox (1972) which assumes a nonparametric baseline hazard �0:

�(tijXi) = �0(ti)exp(�X 0

i�); i = 1; : : : ; n; (1)

whereby ti denotes the time between two succeding trades, Xi a R � 1-vector of covariates

and � a R � 1-vector of coe�cients.

In duration literature di�erent approaches exist to estimate this speci�cation. Cox (1975)

treats the baseline function as a nuisance function and estimates the parameter vector by

proposing a partial likelihood which does not depend of the baseline hazard. Kalbeisch

and Prentice (1980) extend this approach by considering a baseline function which can be

estimated by discrete baseline hazard parameters. Mo�tt (1985) estimates the parameter

vector and the baseline hazard simultaneously, but his speci�cation does not guarantee that

the probabilities are bounded between 0 and 1. Meyer (1990) and Han and Hausman (1990)

form the likelihood by using di�erences in the survivor function which makes it possible to

estimate the baseline hazard jointly with the regression parameters whereby the probabil-

ities of surviving each period are constrained to lie in the unit interval. An advantage of

this framework is that it is relatively easy to implement unobservable heterogeneity. Such

e�ects are included by specifying a random variable ! which acts multiplicatively with the

hazard function, whereby it is assumed that ! is independent of Xi. The compounder can

be regarded as an additional degree of freedom which captures a part of the variations of

the endogenous variable which cannot be explained by the covariates 8. Thus, the better

the model is speci�ed, the lower the variance of this variable should be. Like Lancaster

(1979) and Han and Hausman (1990), it is assumed that this random variable has a gamma

distribution with mean one and variance ��1. Given the covariates and unobservable het-

erogeneity e�ects, the conditional hazard is equal to

�(tijXi; !) = �0(ti)exp(�X 0

i� + �); i = 1; : : : ; n; (2)

where ! = exp(�): The survivor function of the compounded hazard model is obtained by

calculating the conditional survivor function and integrating out !:

S(tijXi) =

1Z
0

S(tijXi; !)g(!)d!

8It has to taken into account that the compounder is time invariably and, thus, cannot capture the entire
ommitted variations.
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=

1Z
0

exp

2
4�exp(�X 0

i� + �)

tiZ
0

�0(s)ds

3
5�(�)�1!��1��exp(��!)d!

=
h
1 + ��1exp(�X 0

i�)�0(ti)
i
��
; (3)

where �0(ti) denotes the integrated baseline hazard rate and g(!) the density of the gamma

distribution.

Let t�i � ln[�0(ti)]; then the hazard model can be written in the form

t�i = X 0

i� + ln(�)� ei; i = 1; : : : ; n; (4)

with

F (ei) =
1

[1 + exp(�ei)]� :

Hence, the speci�cation can be written in the form of a linear regression model for the

transformed duration t�i with an error term following a BurrII(�) distribution. The BurrII(�)

distribution can be seen as a generalization of the logistic distribution, thus, the logistic

distribution corresponds to the BurrII(1) distribution.

Using the fact that

lim
x!1

(1 +
x

n
)n = exp(x);

it is shown that

lim
�!1

h
1 + ��1exp(�X 0

i�)�0(ti)
i
��

= exp(��0(ti)exp(�X 0

i�));

i.e. for ��1 = V ar(!) ! 0 the BurrII distribution goes to an extreme value distribution.

Hence, if no unobservable heterogeneity e�ects exist the proportional hazard model can be

written as t�i = X 0

i� � ei; whereby ei follows an extreme value distribution 9

f(ei) = exp(�ei � exp(�ei)):

For the error terms of equation (4) it is assumed conditional independence, given the co-

variates Xi. To take into account duration clustering lagged durations have to be included,

9See Johnson, Kotz and Balakrishnan (1994).
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i.e. all serial dependence has to be captured by the Xi's leading to conditional i.i.d. error

terms 10.

Considering grouped durations allows for the formation of the log likelihood by calculating

the probabilities of one trade occurring in particular categories. In this framework the spec-

i�cation corresponds to an ordered response model and obtains a nonparametric baseline

hazard which can be calculated by the estimated thresholds of the chosen categories. De�ne

�k � ln[�0(tk)]; (5)

where tk; k = 1; : : : ; K; denote the bounds of the chosen categories. The conditional

probability of failure, i. e. the occurence of a trade, in category k, conditioned on Xi is

Pr [tk�1 < ti � tkjXi] = Pr [�k�1 < t�i � �kjXi] =

X0

i
�+ln(�)��kZ

X0

i
�+ln(�)��k�1

f(s)ds; (6)

where f(s) denotes the density function of the BurrII(�) distribution, given by

f(s) =
�exp(�s)

(1 + exp(�s))�+1
:

Hence, equation (4) can be seen as the latent model of the resulting ordered response

approach. The log likelihood function takes the form

l(�; �) =
nX
i=1

kX
k=K

yit ln

X0

i
�+ln(�)��kZ

X0

i
�+ln(�)��k�1

f(s)ds; (7)

where the indicator variable yit is de�ned by

yit =

(
1 ; if ti 2 [tk�1; tk]

0 ; else
:

A nice feature of this approach is that the nonparametric baseline survivor function is

obtained directly by the estimated thresholds. It can be calculated at the k discrete points

by

S0(tk) =
1

[1 + exp(�k � ln(�))]�
; k = 1; : : : ; K: (8)

10In the ACD framework Engle and Russell (1998) de�ne standardized durations by dividing each duration
by their conditional expectation, given the past trading history. These standardized durations are to be
assumed as i.i.d.
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The baseline hazard rate can be approximated by

�0(tk) � S0(tk)� S0(tk+1)

S0(tk)
� 1

�t
; k = 1; : : : ; K: (9)

2.2 Testing for serial correlation

If autocorrelations between the waiting times exist it is necessary to include lagged dura-

tions in the regression. Thus, serial dependence has to be captured by the Xi's leading to

conditional independence of the error terms given Xi. To check for serial dependence of the

errors a test for serial correlation is proposed. This test opens up the possibility of �nding

a suitable speci�cation that captures autoregressive structures and leads to noncorrelated

error terms that ensures valid inference processes. The test for serial dependence is based on

the concept of generalized residuals proposed by Gourieroux, Monfort and Trognon (1987).

The authors provide a direct relationship between the score of the observable and the la-

tent model. By using generalized residuals the observable score can be calculated by the

conditional expectation of the latent score. As shown in Section 2.1 the latent model can

be written as

t�i = X 0

i� + ln(�)� ui; (10)

with ui = �jui�j+ei; where ei is i.i.d. following a BurrII form and j denotes the number of the

tested lag. The null hypothesis is H0 : �j = 0: Along the lines of the work of Gourieroux,

Monfort and Trognon the observable score is equal to the conditional expectation of the

latent score, given the observable endogenous variable, i. e.

@l(t; )

@ 
= E

"
@l�(t�;  )

@ 

����� t
#
;

where  denotes the parameter vector and l�(:) the latent score. The log likelihood function

of the latent model is

l�(t�; �; �; �j) =
nX

i=j+1

lnf(ui � �jui�j)

=
nX

i=j+1

[ln(�) + �jui�j � ui � (� + 1)ln [1 + exp(�jui�j � ui)]] ; (11)

where f(:) denotes the BurrII density function. Under the null, � is given by

� =
@l(t; �; �; 0)

@�
=

nX
i=j+1

E0[ui�jjti]
"
1� (� + 1)E0

"
exp(�ui)

1 + exp(�ui)

����� ti
##
: (12)
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The conditional expectations of the disturbances under the null are called generalized residu-

als and are denoted by ~ui = E0[uijti] and ~wi = E0

h
exp(�ui)

1+exp(�ui)

��� tii : Based on these generalized
residuals (see Appendix), the score statistic is given by

�̂ =
nX

i=j+1

~̂ui�j
h
1� (�̂ + 1) ~̂wi

i
: (13)

In the Appendix it is shown that under the null the expectation of ~̂wi is given by

E[ ~̂wi] =
1

� + 1
:

Thus, under the H0 the expectation of the estimated score is E[�̂] = 0. Using the asymptotic

normality of the score, i.e.

1p
n
�̂

d�! N

0
@0; plim 1

n

nX
i=j+1

~u2i�j [1� (� + 1) ~wi]
2

1
A ;

the chi-square statistic is obtained by

S =

"
nP

i=j+1
~̂ui�j

h
1� (�̂ + 1) ~̂wi

i#2
nP

i=j+1
~̂u
2

i�j

h
1� (�̂ + 1) ~̂wi

i2 � �2
1: (14)

3 Market Microstructure

The main focus of market microstructure theory is the investigation of how market par-

ticipants draw inferences from the trading process. In microstructure literature several

approaches exist which model relationships between characteristics associated with transac-

tions, such as bid ask spread, volume, price and waiting time between events. See O'Hara

(1995) for a survey. In this literature traders are often partitioned into informed market

participants, who only trade after obtaining private information, and liquidity traders (noise

traders) whose trading is based on exogenous reasons, like liquidity or portfolio-balancing

aspects. An important assumption of many microstructure approaches is the existence of

an uniformed market maker learning from order ow characteristics.

In the trading models of Glosten and Milgrom (1985) and Kyle (1985) insiders and liquid-

ity traders submit orders to a specialist who sets prices such that his expected pro�ts are
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zero given the information set. The disadvantage of these models is that the waiting times

between events have no informational content.

Admati and Peiderer (1988) and Easley and O'Hara (1992) assume that trades take place

sequentially with only one trader being allowed to transact at any point in time. In the

approach of Easley and O'Hara (1992) the specialist updates his conditional expectations in

response to order ow characteristics. His expectations are based on a priori probabilities

for the arrival of orders executed by insiders and the composition of the traders. Thus, the

specialist behaves according to a Bayesian learning process and uses no-trade-intervals to

infer the existence of new information. Observing a buy, a sell or the absence of trading he

determines a posteriori probabilities for the presence of news.

In this framework a positive correlation between the bid ask spread and the probability for

the existence of information is proposed. This relationship arises because the higher the

probability for the existence of information, the higher the probability for the presence of

insiders and, thus, the higher the probability that the market maker executes transactions

with informed market participants. Because these insiders have an informational advantage,

the market maker transacts at a loss. He compensates his losses by setting a wider spread

between bid and ask. Because a higher probability for the presence of news implies lower

expected waiting times, a negative correlation between bid ask spread and the expected

duration until the next trade is proposed. This implication is formulated in the testable

hypothesis H1:

Hypothesis H1: The bid ask spread carries information and has a negative impact on the

time until the next transaction.

Furthermore, Easley and O'Hara (1987) assume that informed traders prefer to trade larger

amounts at any given price, thus, the strategy of the market maker must depend on trade

sizes. Blume, Easley and O'Hara (1994) investigate the informational role of volume. In this

framework volume captures the important information contained in the quality of traders'

information signals. Easley and O'Hara (1992) consider the market makers' belief, given an

observed trading history, and propose informational content of aggregate volumes. These

implications are summarized in H2:

11



Hypothesis H2(a): Aggregated volume has a negative impact on the expected durations.

In this context it has to taken into account that aggregate volumes are inuenced by past

durations, i.e. the lower the time between trades within a certain time interval, the more

events occur within this time interval and the higher the aggregated volume is. To investi-

gate pure volume e�ects which are not inuenced by the time between the events, average

volumes are used:

Hypothesis H2(b): Average volume has a negative impact on the expected durations.

Admati and Peiderer (1988) assume two types of uninformed traders, "discretionary" liq-

uidity traders, who have some choice over the time at which they transact, and "nondiscre-

tionary" liquidity traders whose orders are assumed to arrive in a random fashion. In this

framework it is optimal for liquidity traders and also for insiders to trade together leading to

concentrations of trading in particular time periods and suggests clustering of transactions.

In the Easley and O'Hara (1992) framework the interval between two arrival times carries

information about the actual state of the market. Because the probability for the occurrence

of further transactions increases with the probability for the existence of information, the

durations are positive autocorrelated. Engle and Russell �nd evidence for this hypothesis

by analyzing IBM transactions (Engle and Russell, 1995, 1998) and foreign exchange data

(Engle and Russell, 1997). In this study this feature will also be investigated for Bund

Future transactions and is formulated in H3:

Hypothesis H3 The durations are positive autocorrelated.

In this context the implementation of lagged endogenous variables is not only useful to

check this hypothesis but is also necessary to ensure the conditional independence of the

error terms given the explanatory variables (see Section 2.1).

4 Empirical �ndings

4.1 The data

The hypotheses derived in section 3 will be tested by Bund-Future transaction data from

the LIFFE. The Bund-Future is a notional German government bond of DEM 250,000 face

12



value which matures in 8.5 to 10.5 years at contract expiration. The months of March, June,

September, and December are the four contract maturities per year.

The study uses intradaily data of the 22 trading days in August 1995 corresponding to 38977

transactions. The dataset obtains time stamped prices, bids, asks and volumes associated

with the transactions.

The dependent variable is obtained from the time between two successive trades. Figure 1

11 shows the distribution of the durations indicating a high number of ties especially for low

values. The existence of these ties makes it possible to consider each low duration as one

category which enables to calculate a close approximation to the baseline hazard. Thus, the

regressions are based on the categories [0;1],(1;2],. . . ,(49;50],(50,1).

Explanatory variables are obtained from the characteristics of each transaction. To test

Hypothesis H1 a dummy for certain tick sizes of the bid ask spread is used. Because almost

98% of the reported spreads are equal to one or two (see Figure 4), a dummy is generated

which indicates tick sizes larger than at least two ticks.

For testing the volume hypotheses H2(a) and H2(b) aggregated and average volumes are

included, while for checking Hypothesis H3 lags of the durations are used.

Furthermore, it is possible to generate further explanatory variables. To investigate the

informational content of the volume associated with one single trade a dummy is used

which indicates above average volumes of the past trade. Figure 3 shows the distribution of

transaction volumes with an obvious peak at 41 units 12. This feature arises from the fact

that at the LIFFE transactions are registered by price reporters who record the volume of

each trade by approximate values, for example, the price reporters indicate middle volumes

with the value 41. Therefore, it seems reasonable to generate a dummy variable which

indicates volumes larger than at least 41 units as an explanatory variable.

The impact of prices can be examined by using midquotes, which are de�ned by

mqi =
bidi + aski

2
:

This de�nition eliminates the problem of "bid-ask bounces" (see Roll, 1984).

Figure 5 shows the distribution of midquote changes between successive trades. To inves-

11See section 'Descriptive Statistics'.
12One unit corresponds to 250,000 DEM.
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tigate the impact of midquote changes on the expected duration a dummy is used, which

indicates midquote changes larger than at least 1.5 ticks. Additionally, a dummy is gener-

ated, which registers whether midquotes have not changed in the last 5 trades. This variable

can be seen as a proxy for volatility. On the basis of this dummy it is possible to investigate

the impact of past midquote movements on the probability for the occurence of further

transactions.

On the basis of this data it is possible to identify buys and sells by assuming that a transac-

tion is a buy (sell) if it occurs at a price equal or higher (lower) than the previously reported

ask (bid) quote. Along the lines of microstructure theory, frequent changes between sells

and buys (or vice versa) indicate trading by noise traders, who transact only for private

reasons. This leads to the testable hypothesis that the hazard rate will increase if in the

last few transactions only buys (sells) followed one another. This implication will be tested

by a dummy which indicates changes between buys and sells in the last 5 transactions.

An often observed feature of transaction data is the existence of intraday and interday

seasonalities (see Goodhart and O'Hara, 1997, Guillaume et. al., 1997). Figure 6 shows

the average hourly durations of the LIFFE Bund Future market which is open from 8:30

a.m. to 5:15 p.m. A U-shaped pattern of daily market activities is evident with transactions

occurring, on average, every 11 seconds at the opening, every 31 seconds at lunch time and

every 12 seconds at the closing. Engle and Russell (1997, 1998) generate seasonal adjusted

durations by dividing each waiting time by its seasonal component which is obtained by

spline regressions. In this study seasonal patterns are taken into consideration by dummy

variables which partition one trading day in �ve time-intervals. Furthermore, intradaily

seasonalities within a trading week (see Figure 7) are investigated by dummies indicating

the particular days of the week.

To avoid endogeneity all explanatory variables enter the equation in lagged form i.e. the

impact of the characteristics of the previous trade on the expected waiting time until the

next transaction is investigated.
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4.2 Results

Regression 1 (Table 1) shows the results of a pooled regression of LIFFE Bund Future trans-

actions for August 1995, corresponding to 22 single trading days. To take the clustering of

the waiting times into account, lagged log-durations are included. Based on this speci�ca-

tion the null hypothesis of no serial correlation has not to be rejected at the 5% level.

The negative coe�cient of the spread-dummy illustrates a positive correlation between the

size of the bid ask spread and the probability for the existence of information13. Hence, the

probability for the occurence of a further transaction increases with the size of the spread,

con�rming H1.

To check Hypothesis H2(a) time aggregates of volumes are included. The strikingly high

signi�cance of the aggregated volumes within the �rst 5 minutes implies that this variable

contains the main part of informational content. The sign of the coe�cient of this variable

indicates a negative impact on the expected duration, con�rming H2(a). The parameters

of the other volume variables provide no clear results. The coe�cients of these covariates

are very close to zero which impairs the signi�cance of these variables substantielly. Hence,

based on these explanatory variables no clear empirical evidence is found.

In this context it also has to taken into account that aggregated volumes are inuenced

by past durations (see Section 3) causing correlations between the volume variables 14. To

eliminate these correlations and to investigate Hypothesis H2(b), average volumes are used

(see Regression 2, Table 2). In this context a signi�cant negative coe�cient of the average

volumes within a time horizon of up to 5 minutes is obtained, while average volumes dating

back longer have a positive impact on the expected waiting time. Thus, for the impact of

average volumes of LIFFE Bund Future transactions on the expected time until the next

trade no clear empirical evidence is found.

The inclusion of average volumes makes it possible to use higher lags of log-durations with-

out causing correlations between these covariates and the volume variables. The lagged

durations enter the regression in aggregated form. Regression 2 shows that waiting times

13Note that a negative coe�cient of the covariate increases the hazard rate and, thus, reduces the time
until the next transaction.

14To avoid correlations between the transformed lagged durations and the aggregated volumes only four
lags are used whereby the volume variables are generated by trades that occurred before the fourth lag.
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until lag 60 have a positive signi�cant impact on the expected duration. Thus, positive

autocorrelations between the durations are evidently, whereby H3 cannot be rejected.

Hence, based on this results it is found empirical evidence for the market microstructure

hypotheses H1, H2(a) and H3, whereby for average volumes no clear result is obtained.

Furthermore, a signi�cant negative coe�cient for the dummy indicating above-average vol-

umes of the previous trade is found. Thus, informational content of volumes associated

whith single trades is evidently.

For the dummies indicating midquote movements and changes of buys to sells (or vice versa)

signi�cant negative values are presented. Thus, midquote changes indicate the existence of

information and have a negative impact on the expected waiting time.

The signi�cant value of the dummy registering buy-sell changes implies that the probability

for the occurence of information increases if only buys (sells) follow one another. Frequent

changes between buys and sells indicate that no important information exists and that mar-

ket activities are dominated by noise trading.

For the intraday seasonality dummies signi�cant coe�cients are obtained. In particular the

intraday variables indicate a strong impact of seasonal patterns on the time between trades

within one trading day. Waiting times between trades which occur between 12:00 and 14:00

are signi�cantly higher, while lower waiting times at the opening and closing are evident,

con�rming the hypothesis of U-shaped patterns of daily market activities (see Admati and

Peiderer, 1988, Bollerslev and Domowitz, 1993, or Madhavan, Richardson and Roomans,

1997). For the coe�cients of the dummies indicating trading at Wednesday and Thursday

signi�cantly 15 coe�cients are obtained. Hence, weak evidence is found for inverse U-shaped

seasonalities of the weekly trading structure with higher durations at Monday and Friday

and lower durations at he middle of the week.

For the variance of the heterogeneity variable small values are obtained, implying the exis-

tence of only weak unobservable e�ects. Based on Regression 2 a value of V ar[!] = ��1 =

0:0671 is obtained. Thus, the estimation is based on a BurrII(14.903) distribution which

is skewed to the right and is very close to the extreme value speci�cation (see Figure 8).

Thus, the extreme value speci�cation can be seen as a very close approximation to the

15At the 10% level.
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BurrII(14.903) distribution. Furthermore, the heterogeneity parameter di�ers signi�cantly

from � = 1; corresponding to an ordered logit approach, implying that the ordered logit

model is misspeci�ed.

Running regressions by omitting covariates show that a part of the omission is captured

by the variance of the heterogeneity parameter. The less of the variation of the dependent

variable can be explained by the covariates, the higher the variance of the heterogeneity

variable. By including only the �rst lag of the transformed duration as one explanatory

variable, a value of V ar[!] = ��1 = 0:3809 is obtained (see Regression 4, Table 3), which

is signi�cantly higher than in Regression 1 or 2. Thus, the heterogeneity parameter be-

haves like a residual variance. Addison and Portugal (1998) �nd a similar result by using

proportional hazard models with a parametrically speci�ed baseline hazard which follows a

Burr distribution. Of course it has to be taken into account that the heterogeneity variable

cannot entirely compensate for the omission of covariates because the parameter is time

invariably.

To check the robustness of the estimated coe�cients of the covariates di�erent categoriza-

tions are used. Table 2 (Regression 3) shows the results of a regression based on only four

categories [0;5],(5;10],(10;20],[20,1). It is recognizable that the estimation of the coe�cients

is not inuenced by the chosen categorization.

Figure 9 and 10 16 show the baseline survivor function and hazard rate based on Regression

2. To demonstrate the e�ects caused by misspeci�cations of the heterogeneity variable Fig-

ure 9 and 10 show also the estimated baseline functions based on an ordered logit model.

It is recognizable that the misspeci�cation of the ordered logit approach is reected in the

baseline survivor function and hazard rate. Comparing the densities of the BurrII and the

ordered logit speci�cation (see Figure 8) it is recognizable that the ordered logit model has

more (less) probability mass in the lower (upper) tail, leading to higher (lower) values of the

baseline survivor function for higher (lower) durations. This misspeci�cation of the ordered

logit model is also reected in the baseline hazard rate leading to a signi�cantly di�erent

shape of the nonparametric function. This result indicates the importance of including a

exible heterogeneity parameter.

16For all estimated values of the estimated baseline survivor and hazard functions signi�cance at the 1%
level is obtained.
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The baseline hazard based on the gamma compounded model has an increasing non-monotonic

shape until it reaches 7 seconds, then it is followed by a slowly decreasing hazard. Hence, it

is recognizable that the traders need about 7 seconds to react to the arrival of the last trans-

action. Because of this delay the probability for the occurrence of further trades increases

within this time. After this period the impact of information on the trading behaviour of

market participants seems to decrease. Bisi�ere and Kamionka (1998) obtain very similar

shapes of baseline hazards by analyzing high frequency data from the Paris Bourse with a

competing risk model.

5 Conclusions and outlook

This paper deals with the analysis of the time between trades in �nancial markets. It uses

an approach which is based on concepts by Han and Hausman (1990) and Meyer (1990)

and provides a nonparametric baseline hazard. The main idea is to regard the waiting time

between events as categorized durations making it possible to form the likelihood by using

di�erences in the survivor function. In this framework a nonparametric baseline hazard is

obtained which can be calculated by the thresholds and, thus, can be estimated simultane-

ously with the coe�cients of the covariates.

To take into account clustering of transaction data and to ensure the conditionally inde-

pendence of the error terms, lagged durations have to be included. A test for autocorrela-

tion in the errors based on the concept of generalized residuals (Gourieroux, Monfort and

Trognon, 1987) makes it possible to �nd a suitable speci�cation which takes the autoregres-

sive structure of the data into account and also leads to noncorrelated errors and, thus, valid

inferences. Hence, in such a speci�cation all serial dependence is captured by the covariates

leading to conditionally independent errors, given the explanatory variables.

The implementation of a gamma distributed random variable which speci�es unobservable

heterogeneity and enters the hazard rate multiplicatively leads to a gamma compounded

hazard model whereby the survivor function can be calculated in closed form. It is shown

that the resulting ordered response approach is based on a latent model which has a BurrII

form.

This paper investigates relationships between the economic characteristics of a transaction
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and the time until the next trade. Three hypotheses originating from market microstructure

models are tested on the basis of Bund Future transactions from the LIFFE:

1. The bid ask spread has a negative impact on the time until the next transaction.

2. Aggregated and average volumes of past transactions are negative correlated with the

waiting time until the next event.

3. The durations are positive autocorrelated.

Based on the empirical analysis evidence is found for the market microstructure hypotheses

1 and 3, whereby for volumes no clear results are obtained. Especially for the informational

content of average volumes no signi�cant evidence can be shown.

Furthermore it is shown that midquote movements indicate the existence of information and

have a signi�cant impact on the time between trades. Using a dummy registering changes

between buy and sell transaction shows that frequent changes indicate that no essential

information exists and that market activities are dominated by noise traders.

The heterogeneity parameter behaves like a residual variance, i.e. the less of the variations

of the endogenous variable can be explained by the covariates, the higher the heterogeneity

variance.

Estimating the resulting baseline hazard provides a shape which increases until 7 seconds

and decreases slowly for higher values. This result shows that traders react whith delay to

the arrival of the last transaction.

Furthermore, it is recognizable that misspeci�cations of the heterogeneity variable lead to a

biased baseline survivor and hazard function showing the importance of including a exible

heterogeneity parameter.

Future research will be concerned with the power of this approach to other �nancial markets,

especially the screen based automated trading system of the Deutsche Terminb�orse (DTB).

At the DTB the Bund Future is traded in an almost identical fashion, therefore transaction

data based on these two exchanges can be used to compare both trading systems.

Furthermore, it would be interesting to analyze price durations, i.e. waiting times between

certain price changes 17. Because it is easy to take into account censoring of the data it is

possible to investigate price changes which occur over night. In this context calculating the

17See e.g. Engle and Russell (1997, 1998) or Darolles, Gourieroux and Le Fol (1998).
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probability for price movements in certain time intervals can be seen as an instrument for

risk management strategies.

6 Appendix

Calculation of the generalized residuals

If ti 2 [tk�1; tk]; the generalized residuals are calculated by

~ui = E0[uijti] = E[�ijti] =

biR
ai

s
�exp(�s)

[1+exp(�s)]�+1
ds

FEi
(bi)� FEi

(ai)

and

~wi = E0

"
exp(�ui)

1 + exp(�ui)

����� ti
#
= E

"
exp(��i)

1 + exp(��i)

����� ti
#
=

g(bi)R
g(ai)

sfg(E)(s)ds

Fg(Ei)(g(bi))� Fg(Ei)(g(ai))
;

where

ai = X 0

i� + ln(�)� �t�1;

bi = X 0

i� + ln(�)� �t

and FEi
(:) denotes the BurrII(�) distribution function

FEi
(ei) =

1

[1 + exp(�ei)]� :

fg(Ei)(s) and Fg(Ei)(s) denote the density respectively the distribution function of the trans-

formed residuals

g(ui) =
exp(�ui)

1 + exp(�ui) :

The density fg(�)(g(e)) is obtained by transformation. Let w = g(�) the transformation and

h(w) = y = g�1(�) the inverse transformation, then

f�(h(w)) = �y(1� y)�):

Thus, the density of the transformed random variable is given by

fg(�)(w) =
f�(h(w))

jg0(h(w))j = �(1� w)��11[0;1](w);
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whereby the distribution function can be calculated by

Fg(�)(w) = 1� (1� w)�1[0;1](w):

The expectation of ! is obtained by E[!] = 1
�+1

:
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8 Descriptive Statistics

Figure 1
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Figure 2

Figure 3
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Figure 4

Figure 5
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Figure 6

Figure 7
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9 Estimation and Diagnostic Results

Regression 1

variables coe�. t-val.

Hypothesis H1

Bid ask spread � 2 -0.0367 -2.760

Hypothesis H2(a)

Aggregated volumes 0-5 min. -0.7572 -34.224
Aggregated volumes 5-10 min. 0.0475 2.934
Aggregated volumes 10-15 min. -0.0130 -0.801
Aggregated volumes 15-20 min. -0.0605 -3.649
Aggregated volumes 20-25 min. -0.0014 -0.088
Aggregated volumes 25-30 min. -0.0327 -2.375

Hypothesis H3

Lag 1 of log-duration 0.0968 15.506
Lag 2 of log-duration 0.0406 6.936
Lag 3 of log-duration 0.0313 5.292
Lag 4 of log-duration 0.0348 5.773

Further explanatory variables

Volume � 41 -0.0360 -1.664
No midq. movements. (5 trades) 0.0921 5.431
Midquote changes � 1.5 -0.2266 -4.200
No changes buys-sells (5 trades) -0.0712 -3.517

Seasonal patterns

Trades between 10:00 and 12:00 0.0802 4.327
Trades between 12:00 and 14:00 0.2406 10.997
Trades between 14:00 and 16:00 0.0784 4.479
Trades between 16:00 and 17:15 -0.0004 0.022
Trades at Tuesday -0.0060 -0.302
Trades at Wednesday -0.0312 -1.581
Trades at Thursday -0.0345 -1.739
Trades at Friday 0.0154 0.729

Heterogeneity variance ��1 0.0534 2.478

�2(23) 9253.33

Mc Kelvey-Zavoina-R2 0.1537

Teststat. Partial Ser. Corr. Lag1 1.6977
Teststat. Partial Ser. Corr. Lag2 2.4741
Teststat. Partial Ser. Corr. Lag3 0.6132
Teststat. Partial Ser. Corr. Lag4 1.5145

Table 1: Pooled Regression of LIFFE Bund Future transactions. Gamma Compounded Hazard Model.
Categorization: [0;1],(1;2],. . . ,(49;50],(50,1).
Critical value for test-statistic (5% level): 3.841.
N = 38772.
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Regression 2 Regression 3

variables coe�. t-val. coe�. t-val.

Hypothesis H1

Bid ask spread � 2 -0.0504 -3.752 -0.0425 -3.733

Hypothesis H2(b)

Average volumes 0-5 min. -0.2477 -4.472 -0.2002 -4.362
Average volumes 5-10 min. 0.0858 1.582 0.1477 2.055
Average volumes 10-15 min. 0.0163 0.267 0.0170 0.267

Hypothesis H3

Lag 1 of 1og-duration 0.1284 20.393 0.1295 18.997
Lag 2 of log-duration 0.0704 11.898 0.0782 11.975
Lag 3 of log-duration 0.0606 10.271 0.0624 9.481
Lag 4 of log-duration 0.0650 10.911 0.0634 9.637
Average Lags 5-10 0.2542 19.891 0.2692 18.840
Average Lags 10-20 0.1832 12.397 0.1866 11.292
Average Lags 20-30 0.1050 6.993 0.0996 6.001

Average Lags 30-40 0.0549 3.771 0.0441 2.636
Average Lags 40-50 0.0361 2.499 0.0341 2.056
Average Lags 50-60 0.0517 3.530 0.0602 3.666
Average Lags 60-70 0.0162 1.195 0.0038 0.248

Further explanatory variables

Volume � 41 -0.0664 -3.006 -0.0425 -1.722
No midq. movements. (5 trades) 0.0856 4.953 0.0969 4.952
Midquote changes � 1.5 -0.2505 -4.645 -0.2964 -5.954
No changes buys-sells (5 trades) -0.0925 -4.594 -0.0859 -5.954

Seasonal patterns

Trades between 10:00 and 12:00 0.0642 3.439 0.0440 2.082
Trades between 12:00 and 14:00 0.1387 6.369 0.1043 4.158
Trades between 14:00 and 16:00 -0.0326 -1.874 -0.0403 -2.080
Trades between 16:00 and 17:15 -0.0246 -1.339 -0.0132 -0.642
Trades at Tuesday -0.0268 -1.327 -0.0159 -0.699
Trades at Wednesday -0.0425 -2.119 -0.0356 -1.562
Trades at Thursday -0.0692 -3.466 -0.0640 -2.848
Trades at Friday -0.0342 -1.600 -0.0333 -1.407

Heterogeneity variance ��1 0.0671 3.834 0.0641 2.111

�2(27) 8183.61 6709.50

Mc Kelvey-Zavoina-R2 0.1444 0.1441

Teststat. Partial Ser. Corr. Lag1 0.0698 0.0122
Teststat. Partial Ser. Corr. Lag2 0.4081 0.0319
Teststat. Partial Ser. Corr. Lag3 0.0159 0.0071
Teststat. Partial Ser. Corr. Lag4 0.2412 0.0068

Table 2: Pooled Regression of LIFFE Bund Future transactions. Gamma Compounded Hazard Model.
Regression 2: Categorization: [0;1],(1;2],. . . ,(49;50],(50,1).
Regression 3: Categorization: [0;5],(5;10],(10;20],(20,1).
Critical value for test-statistic (5% level): 3.841.
N = 38977.
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Regression 4

variables coe�. t-val.

Lag 1 of 1og-duration 0.3408 33.606

Heterogeneity variance ��1 0.3809 10.411

�2(1) 2736.96

Mc Kelvey-Zavoina-R2 0.0561

Table 3: Pooled Regression of LIFFE Bund Future transactions. Gamma Compounded Hazard Model.
Categorization: [0;1],(1;2],. . . ,(49;50],(50,1).
N = 38977.

Figure 8: Logistic (closely spaced dots), Burr(14.903) (dots) and extreme value distribution (solid).18

18The BurrII(14.903) density is calculated at the values x� ln(14:903).
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Figure 9: Baseline survivor functions based on the ordered logit (dots) and gamma comp. model (solid).

Figure 10: Baseline hazard rates based on the ordered logit (dots) and gamma comp. model (solid).
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