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Recent Developments in Non- and Semiparametric

Regression with Fractional Time Series Errors

Jan Beran and Yuanhua Feng

University of Konstanz

Abstract

This paper summarizes recent developments in non- and semiparametric regres-

sion with stationary fractional time series errors, where the error process may be

short-range, long-range dependent or antipersistent. The trend function in this

model is estimated nonparametrically, while the dependence structure of the error

process is estimated by approximate maximum likelihood. Asymptotic properties of

these estimators are described brie
y. The focus is on describing the developments

of bandwidth selection in this context based on the iterative plug-in idea (Gasser et

al., 1991) and some detailed computational aspects. Applications in the framework

of the SEMIFAR (semiparametric fractional autoregressive) model (Beran, 1999)

illustrate the practical usefulness of the methods described here.

Keywords: Nonparametric regression, FARIMA error processes, bandwidth se-

lection, iterative plug-in, SEMIFAR model.

1 Introduction

Nonparametric regression has become a rapidly developing �eld of statistics in the recent

years. Most of the contributions in this area focus on models with independent identically

distributed (i.i.d.) (or at least uncorrelated) errors (see the monographs of M�uller, 1988,

H�ardle, 1990, Fan and Gijbels, 1996, Wand and Jones, 1996 and Eubank, 1999 among

others). Most literature on nonparametric regression with dependent errors focuses on

some special type of short memory cases where asymptotic results are identical to those in

the case of i.i.d. errors (see e.g. Bierens, 1983). However, in general cases (in cases with

long memory, antipersistence and in most cases with short memory), the �nite sample and

asymptotic performances of a nonparametric regression estimator will be changed so that

theoretical results, computational algorithms developed based on the i.i.d. assumption are

no longer applicable (see e.g. Altman, 1990, Hall and Hart, 1990, Hart, 1991, Herrmann

et al., 1992, Ray and Tsay, 1997, Beran, 1999 and Beran and Feng, 2002a, b).
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This paper is devoted to summarize recent results on equidistant, non- and semipara-

metric regression with a stationary fractional time series error process, including long

memory, short memory and antipersistence. The focus is on the investigating data-driven

algorithms based on the iterative plug-in (called IPL in this paper) idea (Gasser et al.,

1991). Some related computational aspects will also be discussed. The parameter estima-

tion and applications are carried out in the framework of the SEMIFAR model (Beran,

1999). Research on random design nonparametric regression with strongly dependent

errors can be found e.g. in Cs�org�o and Mielniczuk (1995, 1999). Note in particular that

asymptotic results for �xed and random design nonparametric regression are not the same,

if the data have long memory, since the e�ect of the dependence does not play the same

roll in the two designs. Another recent review of nonparametric regression with correlated

errors may be found in Opsomer et al. (2000), where the emphasis is quite di�erent to

the topics discussed here.

The paper is organized as follows. Kernel and local polynomial estimators are described

in Section 2 with a brief summary of their asymptotic properties. Section 3 is devoted to

the crucial problem of bandwidth selection, where an IPL algorithm and related computa-

tional aspects are discussed in detail. Estimation of the unknown parameters is discussed

in Section 4. Data examples illustrate the practical usefulness of the SEMIFAR model in

Section 5. Final remarks in Section 6 conclude the paper.

2 Nonparametric regression with dependent errors

Research on the topics discussed here began about ten years ago. The model considered

is the equidistant nonparametric regression

Yi = g(xi) + �i; i = 1; :::; n; (1)

where xi = i=n, g : [0; 1] ! < is a smooth function and �i is a second order and strict

stationary process generated by an (at least) uncorrelated innovation series "i through a

linear �lter. Denote by 
(k) = cov (�i; �i+k) the autocovariances of �i. It is assumed that


(k) ! 0 as jkj ! 1. Equation (1) represents a nonparametric regression model with

short memory (including i.i.d. �i as a special case), long memory and antipersistence.

Here, a stationary process �i is said to have long memory (or long-range dependence), if

the spectral density f(�) = (2�)�1
P

(k) exp(ik�) has a pole at the origin of the form

f(�) � cf j�j�2Æ(as �! 0) (2)
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for some Æ 2 (0; 0:5), where cf > 0 is a constant and `�' means that the ratio of the left

and the right hand sides converges to one (see Beran, 1994 and references therein). Note

that, for Æ 2 (0; 0:5), (2) implies that 
(k) � c
jkj2Æ�1 so that
P

(k) = 1. Hence now

�i has long memory. If (2) holds with Æ = 0, then we have 0 <
P

(k) = 2�cf < 1

and �i is said to have short memory, including i.i.d. errors and all causal and invertible

Box-Jenkins ARMA processes (Box and Jenkins, 1976) as special cases. On the other

hand, a stationary process is said to be antipersistent, if (2) holds with Æ 2 (�0:5; 0)
implying that

P

(k) = 0. Most of the results described in this paper are valid for all

Æ 2 (�0:5; 0:5).

Altman (1990) and Hart (1991) proposed kernel estimator of g for errors with short

memory. This was extended to the case with long-memory errors by Hall and Hart

(1990). Beran (1999) (see also Beran and Feng, 2002a) investigated kernel estimation

of g for Æ in the whole range (�0:5; 0:5). Note in particular that the derivation of the

properties of a kernel estimator with antipersistent errors requires di�erent techniques

due to the fact that
P

(k) = 0. The results in Beran (1999) are generalized to local

polynomial estimation of g(�), the �-th derivative of g, by Beran and Feng (2002b). Note

that the de�nitions of the kernel and local polynomial estimators under model (1) are the

same as for nonparametric regression with i.i.d. errors, since both estimators are linear

smoothers. Let K(�;k)(u) denote a kernel function of order k for estimating g(�) (see e.g.

Gasser et al., 1985 and M�uller, 1988) with compacted support [�1; 1]. For x 2 (0; 1), a

kernel estimator of g(�)(x) (of the Nadaraya-Watson-Type) is given by

ĝ(�)(x; h) =
1

nh�+1

nX
i=1

K(�;k)(
xi � x

h
)Yi; (3)

where h is the bandwidth. See Nadaraya (1964) and Watson (964) for the original pro-

posal of ĝ. Note that for equidistant design there is no signi�cant di�erence between the

de�nition (3) and the Gasser-M�uller estimator (Gasser and M�uller, 1984).

It is well known that a Kernel estimator is a�ected by the so-called boundary e�ect

(Gasser and M�uller, 1979). A well known estimator with automatic boundary correction

is the local polynomial approach introduced by Stone (1977) and Cleveland (1979). For

detailed discussion on local polynomial �t see e.g. Ruppert and Wand (1994) and Fan and

Gibels (1995, 1996). Let K be a second order kernel with compact support [�1; 1]. Let h
denote the bandwidth. The local polynomial �t of g(�) (� � p) is obtained by solving the

weighted least squares problem

Q =
nX

i=1

8<
:Yi �

pX
j=0

�j(xi � x0)
j

9=
;
2

K

�
xi � x0

h

�
) min : (4)
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Here �!�̂� estimates g(�). Local polynomial �t in nonparametric regression with fractional

time series errors is investigated in Beran and Feng (2002b). It is well known that lo-

cal polynomial �t is asymptotically equivalent to some kernel estimates (see e.g. M�uller,

1987 and Hastie and Loader, 1993). This relationship even holds in the boundary area,

provided that a corresponding boundary kernel is used (see Feng, 1999). These two esti-

mators are also asymptotically equivalent under model (1) (see Beran and Feng, 2002b).

Because of this equivalence, we propose to carry out a local polynomial �t using the

bandwidth selected with the corresponding kernel estimator, since a kernel estimator is

computationally much simpler than a local polynomial �t and a data-driven procedure

based on a kernel estimator runs much faster.

In the following we will therefore restrict attention to the kernel estimator on the interval

[�; 1 � �], where � > 0 is introduced to avoid the boundary e�ect (see H�ardle et al.,

1988). The formulae of the asymptotic bias of a kernel estimator do not depend on the

dependence structure and will hence be omitted. It is well known that the change in the

asymptotic variance of ĝ(�) is just a constant, if the errors have short memory (Altman,

1990, Hall and Hart, 1990 and Hart, 1991). However, the order of magnitude of var (ĝ(�))

changes, if the errors are long-range dependent or antipersistent (Beran, 1999 and Beran

and Feng, 2002a, b). The variance of ĝ(�) at a point x 2 [�; 1��] is given by

var [ĝ(�)(x)]
:
= (nh)2Æ�1h�2�V (5)

for all � and all � 2 (�1; 1), where V is a constant. This result shows that the variance

of ĝ converges slower to zero than for i.i.d. errors, if the errors have long memory and

faster, if the errors are antipersistent. This result reduces to the well known formula of

the asymptotic variance of a kernel estimator with i.i.d. errors, if Æ = 0 and V is replaced

by

V = �2
Z 1

�1
K2

(�;k)(x)dx: (6)

If the uniform kernel is used, then we have

V =
22Æcf�(1� 2Æ) sin(�Æ)

Æ(2Æ + 1)
(7)

for all Æ 2 (�0:5; 0:5) (see corollary 1 in Beran, 1999). Explicit formulae for V in general

cases are given in Beran and Feng (2002b). Earlier results for � = 0 and Æ > 0 are given

by Hall and Hart (1990).

As a goodness of �t criterion, the MISE (mean integrated squared error) de�ned on

[�; 1��] will be used. We have

MISE
:
= h2(k��)

I(g(k))�2(�;k)

(k!)2
+ (nh)2Æ�1h�2�(1� 2�)V; (8)
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where �(�;k) denotes the kernel constant and

I(g(k)) =

Z 1��

�
[g(k)(x)]2dx : (9)

The asymptotically optimal bandwidth, which minimizes the dominating part of (8) is

hA = Coptn
(2Æ�1)=(2k+1�2Æ) ; (10)

with

Copt =

2
42� + 1� 2Æ

2(k � �)

(k!)2(1� 2�)V

I(g(k))�2
(�;k)

3
5
1=(2k+1�2Æ)

: (11)

This result shows that, compared to i.i.d. data, not only the constant but also the order

of magnitude of hA are changed, if the errors are long-range dependent or antipersistent.

A bandwidth of larger order is required in the former case and a bandwidth of smaller

order in the latter.

Furthermore, let hM denote the optimal bandwidth which minimizes the MISE. It can

be shown that the di�erence between hA and hM is given by

(hA � hM)=hM
:
= O(h2M) = O(n2(2Æ�1)=(2k+1�2Æ)) (12)

for all �, k and Æ 2 (�0:5; 0:5) (Beran and Feng, 2002c). For i.i.d. errors with � = 0, this

result reduces to the well known equation:

(hA � hM)=hM
:
= O(n�2=5) (13)

for k = 2 and

(hA � hM)=hM
:
= O(h2M) = O(n�2=(2k+1)) (14)

for arbitrary (even) k (see e.g. Herrmann and Gasser, 1994).

If a bandwidth of the optimal order O(n(2Æ�1)=(2k+1�2Æ)) is used, then the rate of con-

vergence of ĝ(�) is of order Op(n
(2Æ�1)(k��)=(2k+1�2Æ)). Under the condition that �i is a

linear process with i.i.d. Gaussian innovations, Hall and Hart (1990) showed that, for

ĝ with � � 0, this rate of convergence is optimal in the minimax sense. In a recent

paper, Feng (2002a) showed that this is the minimax optimal rate of convergence of a

nonparametric regression estimator for all �, k and Æ 2 (�0:5; 0:5). This result also holds
for non-Gaussian innovations satisfying some regular distribution conditions.

Another question is, whether ĝ(�) is asymptotically normal? Recall that �i is generated

by a linear �lter of the innovations �i. The assumption that �i are uncorrelated (0; �2)
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random variables is not suÆcient for the asymptotic normality of ĝ(�) (see e.g. Taqqu,

1975). On the other hand, if �i are i.i.d. (0; �2) random variables, i.e. if �i is a linear

process, then under regular conditions ĝ(�) is asymptotically normal (see e.g. Ibragimov

and Linnik, 1971). Beran and Feng (2001a) obtained some weaker suÆcient conditions for

the asymptotic normality of ĝ(�). As a special case, it is shown that, ĝ(�) is asymptotically

normally distributed, if �t follow a GARCH model (generalized autoregressive conditional

heteroskedastic, Engle, 1982 and Bollerslev, 1986) with �nite fourth moments and �t is

generated by �i through a FARIMA model (fractional ARIMA), i.e. if �i is a FARIMA-

GARCH model with �nite fourth moments (see e.g. Ling and Li, 1997).

3 Bandwidth selection

A key point for the practical implementation of a nonparametric approach is the selection

of the bandwidth. Numerous approaches are proposed to perform this in nonparametric

regression with i.i.d. errors. Well know traditional methods are the CV (cross-validation,

Clark, 1975), the GCV (generalized CV, Graven and Wahba, 1979) and the R-criterion

(Rice, 1984) among others. For a survey on traditional proposals see H�ardle et al. (1988).

It is well known that all of the traditional methods share large sample variation and

the very slow rate of convergence Op(n
�1=10). In recent years, some modern bandwidth

selectors are proposed including the IPL approach (Gasser et al., 1991, Herrmann, 1994

and Herrmann and Gasser, 1994), the direct plug-in approach (Ruppert et al., 1995), the

double-smoothing method (Gasser et al., 1984, M�uller, 1985, H�ardle et al., 1992, Heiler

and Feng, 1998, Feng, 1999 and Feng and Heiler, 2000) and another approach closely

related to the double-smoothing idea (Fan and Gijbels, 1995). Feng (1999) and Feng

and Heiler (2000) showed that the double-smoothing bandwidth selection rule can be

explained as a criterion obtained by bootstrap in nonparametric regression (H�ardle and

Bowman, 1988). In a recent paper (Beran, Feng and Heiler, 2000) a bandwidth selector

which combines the plug-in and the double-smoothing ideas, was proposed. The key idea

of Beran et al. (2000) is: bootstrapping the bias and plugging-in the variance. The

IPL idea is also extended to select bandwidth in multivariate nonparametric regression

(Herrmann et al., 1995).

In recent years it has been noticed that a bandwidth selector developed for nonparamet-

ric regression with i.i.d. error performs very badly, when the errors are correlated (see e.g.

Altman, 1990 and Herrmann et al., 1992). A data-driven procedure for nonparametric

regression with i.i.d. errors tends to select smaller bandwidths resulting in undersmooth-
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ing when the correlations are predominantly positive and larger bandwidths resulting in

oversmoothing when negative. For instance for a plug-in method, two main reasons for

this phenomenon are: 1. The constant in hA is changed, if the errors are short-range

dependent and 2. The method for estimating this constant based on the i.i.d. assumption

is wrong, if the errors are correlated. These problems become even worse when the data

are long-range dependent or antipersistent due to the strong change of the dependence

structure and the change of the order of hA.

This motivates the development of bandwidth selectors for nonparametric regression

with correlated errors. Many well known bandwidth selection criteria are adapted to

select bandwidth in nonparametric regression with short-range dependent errors, see e.g.

Altman (1990) for adaptations of the CV and the GCV, Hart (1991) for a modi�ed

R-criterion, Herrmann et al. (1992) for an adapted IPL procedure and Chiu (1989)

for another proposal. To adapt the approaches to select bandwidth in nonparametric

regression with long-range dependent or antipersistent errors is however more diÆcult.

This is the main topic of the rest part of this section. Hereafter we will focus only on the

IPL idea, because of its higher rate of convergence (compared to the CV, the GCV and

the R-criterion), stability, computational simplicity and wide applicability.

To our knowledge, a bandwidth selector in nonparametric regression with long memory

is proposed �rst by Ray and Tsay (1997) by modifying the IPL idea of Gasser et al.

(1991) and Herrman et al. (1992). This proposal was further modi�ed by Beran (1999)

for selecting the bandwidth in the SEMIFAR model, where also the bandwidth selection

in nonparametric regression with antipersistent errors is considered. Recent research in

this context can be found in Beran and Feng (2002b, c), where the idea in Beran (1999)

is discussed in more detail. Note in particular that, in Beran (1999) and Beran and Feng

(2002a, c), the trend function, the dependence structure and the nonstationarity in a time

series are modelled simultaneously. A large simulation study showed that, the IPL idea

works well for nonparametric regression with fractional time series errors.

An IPL bandwidth selector in the current context is obtained based on (10) and (11)

by replacing the unknowns Æ, V and I(g(k)) with proper estimates. The key question is

how should these unknowns be estimated? Estimation of Æ and V will be discussed in

the next section. In the following we will discuss the estimation of I(g(k)), provided that

approaches for estimating Æ and V are given beforehand. A natural estimator of I(g(k))

is

Î(g(k)) = n�1
n�[n�]X
i=[n�]

[ĝ(k)(ti)]
2 (15)

with a bandwidth hk, where [ � ] denotes the integer part. Let L(k;l) denote the l-th order

7



kernel for estimating g(k). Then under given conditions we have

E[Î(g(k))� I(g(k))]
:
= 2h

(l�k)
k

�(k;l)

l!

Z 1��

�

g(k)(t)g(l)(t)dt+ (nhk)
2Æ�1h�2kk (1� 2�)V (16)

and

var [Î(g(k))]
:
= o[(nhk)

(4Æ�2)h�4kk ] +O(n2Æ�1): (17)

These results are given by Gasser et al. (1991), Herrmann and Gasser (1994) and Ruppert

et al. (1995) for i.i.d. errors and Beran and Feng (2002b) for fractional time series errors.

Note that, in general, the mean squared error (MSE) of Î(g(k)) is dominated by the

squared bias, i.e.

MSEfÎ(g(k))g :
=

(
2h

(l�k)
k

�(k;l)

l!

Z 1��

�
g(k)(t)g(l)(t)dt+ (nhk)

2Æ�1h�2kk (1� 2�)V

)2

:

The optimal bandwidth for estimating I(g(k)) which minimizes the MSE is of the order

O(n(2Æ�1)=(k+l+1�2Æ)). This bandwidth is not the same as the optimal one for estimating

g(k) itself. If a bandwidth hk = O(n(2Æ�1)=(k+l+1�2Æ)) is used, then we have MSE(Î(g(k))) =

O(n2(l�k)(2Æ�1)=(k+l+1�2Æ)). In the most important special case with k = 2, l = 4, the

optimal choice is hk = O(n(2Æ�1)=(7�2Æ)) which results in MSE
�
Î(g00)

�
= O(n4(2Æ�1)=(7�2Æ)).

We see that for selecting the bandwidth h we have to at �rst select a pilot bandwidth

hk for estimating I(g(k)). This seems to be paradoxical, but it is a problem faced by all

modern bandwidth selection rules. The IPL idea is motivated by �xpoint search (Gasser

et al, 1991 and Herrmann and Gasser, 1994). Starting with an h0, hk;j is calculated

from hj�1 with an in
ation method. The original in
ation method proposed by Gasser

et al. (1991) is hk;j = hj�1 � n�, called the multiplicative in
ation method (MIM), where

� (the so-called in
ation factor) is a suitably chosen constant. This idea was also used in

Herrmann et al. (1992) and Ray and Tsay (1997) and was discussed in detail in Herrmann

and Gasser (1994). Beran (1999) introduced another in
ation method hk;j = h�
j�1, called

the exponential in
ation method (EIM). This idea is discussed in detail in Beran and Feng

(2002b, c). Note that, the rate of convergence of an IPL bandwidth selector using the

MIM and the EIM is the same, if corresponding in
ation factors � are used (see later).

The EIM was introduced to reduce the required number of iterations. It can be shown

that, under same conditions, the required number of iterations using the EIM is much

smaller then that using the MIM (see Beran and Feng, 2002b for examples). This plays

a more important role, if the errors are long-range dependent, since in this case an IPL

procedure using the MIM requires too many iterations (see Ray and Tsay, 1997).

The following algorithm was proposed by Beran and Feng (2002b) using the EIM.

It works well for nonparametric regression with short- and long-range dependent and
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antipersistent errors. Hereafter only estimation of g with k = 2 and l = 4 will be

considered for simplicity. The algorithm is de�ned as follows:

i) Start with the bandwidth h0 = �0n
�1=3;

ii) For j = 1; 2; ::: estimate g using hj�1 and let ri = yi� ĝ(ti). Estimate Æ and V from

ri with an appropriate method;

iii) Set h2;j = h�
j�1 with � = (5� 2Æ̂)=(7� 2Æ̂) and set

hi =

0
@1� 2Æ̂

�2
(�;2)

(1� 2�)V̂

Î(g00(t; h2;j))

1
A
1=(5�2Æ̂)

� n(2Æ̂�1)=(5�2Æ̂); (18)

vi) Increase j by 1 and repeat steps ii) and iii) until convergence is reached or until a

given maximum number of iterations have been done. And set ĥ = hj.

In a semiparametric model, the starting bandwidth has to satisfy the condition h0 ! 0

and nh0 !1 as n!1, since the unknown parameters have to be estimated in the �rst

iteration. Here we propose to use h0 = �0n
�1=3 as a default starting bandwidth, where

�0 is a small positive number and n�1=3 is the smallest possible order of the optimal

bandwidth with any Æ 2 (�0:5; 0:5). It is well known that the choice of h0 does not

change the rate of convergence of ĥ. In the case when Æ is known or when there is an

estimate of Æ, it is preferable to start with an h0 of order n
(2Æ�1)=(5�2Æ) (see the algorithm

proposed in the next section).

The bandwidth ĥ selected by an IPL method is a �xpoint of this procedure. For many

data sets there exists only one �xpoint. In this case, ĥ does not depend on h0. However,

sometimes there exist several �xpoints for a given data set (see Herrmann and Gasser,

1994 and Feng, 2002b, c for examples). The \reasonable" bandwidth is the one obtained

by starting with a moderate h0. The same ĥ is achieved for all h0 in a proper interval

(which depends however on the data set). Another �xpoint is selected, if h0 lies outside

this interval. We propose to use a default h0 with the hope that this h0 lies in the proper

interval for almost all practical data sets. In case of doubt, one may run the program with

several di�erent h0's, to �nd all possible �xpoints for a given data set and then select the

optimal bandwidth from these �xpoints by further analysis. For more details see Feng

(2002b, c).

The in
ation factor � = (5 � 2Æ̂)=(7 � 2Æ̂) is chosen in order that the MSE of Î(g00)

is of the optimal order, when convergence is reached. The optimal choice of � is � =
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2(1 � 2Æ)=[(5 � 2Æ)(7 � 2Æ)] for the MIM (Beran and Feng, 2002b), which is � = 2=35

for Æ = 0 (see Herrmann and Gasser, 1994). The choice of � = (1 � 2Æ̂)=(2(5 � 2Æ̂)) for

the MIM used in Gasser et al. (1991), Herrmann et al. (1992) and Ray and Tsay (1997)

is made so that the variance of Î(g00) given in (17) achieves the order O(n(2Æ�1)), which

results in a variance term of order O(n(2Æ�1)=2) in the selected bandwidth. It is well known

that, for Æ = 0, O(n�1=2) is the lower bound of the rate of convergence of any bandwidth

selectors (see Hall and Marron, 1991). We think, for Æ > 0, O(n(2Æ�1)=2) should be the

lower bound of the rate of convergence of any bandwidth selectors. Hence with this choice

of � we obtain a most stable bandwidth selector. The most stable choice of � for the EIM

is simply � = 1=2. Another possibility is to choose � so that ĝ00 is optimized (see Beran,

1999 and Beran and Feng, 2002a, b). Although the most stable choice of � works well

for the MIM. The corresponding choice, i.e. � = 1=2 for the EIM does not work well for

small n, since now the in
ation with the formula h2;j = h
1=2
j�1 is too strong. Hence, for the

EIM, the MSE optimal choice of � is both theoretically and practically preferable.

Beran and Feng (2002b) show

ĥ = hM
n
1 +O(n2(2Æ�1)=(5�2Æ)) +Op(n

2(2Æ�1)=(7�2Æ))
o
: (19)

The O(n2(2Æ�1)=(5�2Æ)) term in (19) is due to the di�erence between hA and hM, which

provides a natural bound for the rate of convergence of a plug-in bandwidth selector.

Note however that this term is asymptotically negligible compared to the error in Î(g00).

Remark 1. Note that for an IPL bandwidth selector, only the order of magnitude

of the pilot bandwidth is considered. The constant in h2 is ignored. This ensures the

computational simplicity of an IPL algorithm. It is shown by numerous variants of the

IPL idea that this simpli�cation works well in practice, since the behaviour of ĥ is mainly

determined by the order of magnitude of h2.

Remark 2. In the case when
R
g00(x)g(4)(x)dx < 0 the MSE(Î(g00)), and hence the

performance of ĥ, can be further improved, provided that the constant in h2 is properly

estimated so that the two dominate terms in (16) sum up to zero (see Ruppert et al.,

1995, Heiler and Feng, 1998 and Feng, 1999). However, this is not discussed here due to

the additional computational requirements for estimating g(4) and the constant in h2.
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4 A semiparametric framework

Note that estimation of Æ and V is equivalent to that of Æ and cf in (2), where Æ is the

long-memory parameter and cf determines the short-range dependence structure of the

error process. These two parameters can be estimated semiparametrically. Ray and Tsay

(1997) propose to estimate Æ at �rst nonparametrically using the method introduced by

Geweke and Porter-Hudak (1983) based on the log-periodogram, and then estimate cf

parametrically under the parametric assumption that �i follows a FARIMA model. Note

that there are some problems for Æ̂ obtained based on the log-periodogram (see e.g. Beran,

1994. pp. 96-97). Furthermore, under the assumption that �i follows a FARIMA model, Æ

can also be estimated semiparametrically following the approximate maximum likelihood

proposed by Beran (1995, 1999).

To perform this, Beran (1999) proposed the SEMIFAR model, where the process or its

�rst di�erence series follow a semiparametric regression model with fractional time series

errors. A SEMIFAR model is a process Zi satisfying

�(B)(1� B)Æf(1� B)mZi � g(xi)g = �i; (20)

where m 2 f0; 1g, Æ 2 (�0:5; 0:5), �i are e.g. i.i.d. normal and (1� B)Æ is the fractional

di�erence operator introduced by Granger and Joyeux (1980) and Hosking (1981) (see also

Beran, 1994 and references therein). Set Yi = (1 � B)m and �i = (1 � B)�Æ�i, provided

m is known, we obtain the nonparametric regression model (1). The process �i has the

property given in (2). Let �2� denote the variance of �i and �1, ..., �p denote the unknown

coeÆcients of �(B). Then cf is determined by �2� , �1, ..., �p. The other two unknown

parameters Æ and m can be written as one parameter d := m + Æ, since m is either one

or zero. The unknown parameter vector � = (�2� ; d; �1; :::; �p)
T can be estimated from the

residuals �̂i(m) = Yi� ĝ(xi; m) by the approximate maximum likelihood in Beran (1995).

The order of the AR part can then be selected using BIC (see Brean, 1999). Following the

results in Beran et al. (1998) it can be shown that, p̂ selected by the BIC is consistent.

The SEMIFAR model provides not only a tool for estimating � but also a framework

for simultaneously modelling of trend (g), short-range dependence (by means of �(B)),

long-range dependence (Æ) and nonstationarity (if m = 1). For estimating the SEMIFAR

model, we need a data-driven algorithm combining the nonparametric estimation of g and

maximum likelihood estimation of �. The original algorithm proposed by Beran (1999)

with some minor improvements is de�ned as follows:

Step 1: De�ne L = maximal order of �(B) that will be tried, and a suÆciently �ne grid

11



G 2 (�0:5; 1:5) n f0:5g. Then, for each p 2 f0; 1; :::; Lg, carry out steps 2 through

4.

Step 2: For each d 2 G, set m = [d+0:5], Æ = d�m, and Yi(m) = (1�B)mZi, and carry

out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let h0 = �0n
(2Æ�1)=(5�2Æ) and set j = 1.

Step 3b: Calculate ĝ(ti;m) using the bandwidth hj�1. Set �̂i = Yi(m)� ĝ(ti;m).

Step 3c: Set ~ei(d) =
Pi�1

j=0 �j(Æ)x̂ii�j, where the coeÆcients �j are obtained from

�(B)(1� B)Æ by matching the powers in B.

Step 3d: Estimate the autoregressive parameters �1; :::; �p from ~ei(d) and obtain

the estimates �̂2� = �̂2� (d; j) and ĉf = ĉf (j). Estimation of the parameters can

be done, for instance, by using the S-PLUS function ar.burg or arima.mle. If

p = 0, set �̂2� equal to n�1
P

~e2i (d) and ĉf equal to �̂2� =(2�).

Step 3e: Set h2;j = (hj�1)
� with � = �0 = (5� 2Æ)=(7� 2Æ), improve hj�1 by

hj =

 
1� 2Æ

I2(K)

(1� 2�)V̂

Î(g00(t; h2;j))

!1=(5�2Æ)

� n(2Æ�1)=(5�2Æ) : (21)

Step 3f: Increase j by one and repeat steps 3b to 3e until convergence is reached or

until a given number of iterations has been done. This yields for each d 2 G

separately, the ultimate value of �̂2� (d), as a function of d.

Step 4: De�ne d̂ to be the value of d for which �̂2� (d) is minimal. This together with the

corresponding estimates of the AR parameters, yields an information criterion, e.g.

BIC(p) = n log �̂2� (p) + p logn, as a function of p and the corresponding values of �̂

and ĝ for the given order p.

Step 5: Select the order p that minimizes BIC(p). This yields the �nal estimates of �0

and g.

For more details see Beran (1999). It is proposed to use e.g. �0 = 0:2 as a default value.

A simulation study and applications show that this algorithm works well in practice (see

Beran, 1999, Beran and Feng, 2002a and Beran and Ocker, 1999, 2001).

Beran (1999) and Beran and Feng (2001a) showed that, under given conditions,

� �̂ is asymptotically normally distributed.

12



� pn-consistent estimator is available.

The drawback of the above algorithm is that the required computing time is very long,

in particular when the grid of d is �ne. Hence, some fast variants of this algorithm

were proposed by Beran and Feng (2002c). Simulation results given in Beran and Feng

(2001b, 2002c) show that also these variants work well in practice. In the SEMIFAR

packet developed by Beran in S-Plus1, a variant of the above algorithm is proposed as a

standard version of the SEMIFAR model, which is written in an S-Plus function called

SEMIFAR. This S-Plus SEMIFAR function will be used in the next section.

5 Applications

In the following, the SEMIFAR model will be applied to some data examples to show

its practical usefulness. These examples are chosen so that the di�erent applicabilities

of the SEMIFAR model can be shown. Earlier applications of the SEMIFAR model

may be found in Beran (1999) and Beran and Ocker (1999, 2001). Applications of other

approaches mentioned in this paper may be found in the cited works (Altman, 1990, Hart,

1991, Herrmann et al., 1992 and Rayand Tsay, 1997).

The �rst example is a traditional example of long-memory time series, i.e. the yearly

minimum water levels in the Nile River at Roda Gauge near Cairo from 622 to 1281

(called the Nile Data). The second example is the transformed series ri = jYi � Yi�1j1=4,
where Yi are the observations of the daily S&P500-Index series from Jan. 03, 1994 to

Jun. 30, 1999 (called SAPd25). See Ding et al. (1993) and Beran and Ocker (2001)

for more discussions on this transformation. As a third example, time series of the daily

copper spot price from Jan. 02, 1997 to Sep. 02, 1998, is used (called Copper Price).

The last example is the time series of the daily exchange rate between US Dollar and

Euro (USD/Euro) from Jan. 03, 1999 to Oct. 19, 2001. The estimated parameters m̂, ĥ

and Æ̂ together with a 95% con�dence interval for Æ are given in Table 1. The answers to

the questions, if the estimated long memory parameter is signi�cant and if the estimated

trend is signi�cant, are also given in Table 1. Note in particular that the null hypothesis

for m̂ = 1 is of the form H0 : g � 0. The four time series together with the estimated

trends are shown in Figures 1(a) to (d). The estimated trends shown in Figures 1(c) and

(d) are the cumulative sums of ĝ. The order of the autoregressive part was selected form

1The SEMIFAR packet developed by Beran in S-Plus is now published as a part of S+FinanceMetrics.

See the web-site of Insightful.
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Table 1: The estimation results for the four examples

Time Series m̂ Æ̂ 95%-CI for Æ Æ̂-sig ĥ ĝ-sig

Nile Data 0 0.369 [0.309, 0.429 ] Y 0.155 N

SAPd25 0 0.017 [-0.024, 0.058] N 0.080 Y

Copper Price 1 -0.173 [-0.247, -0.100] Y 0.077 Y

USD/Euro 1 0.002 [-0.058, 0.063] N 0.124 Y

0; 1; :::; 5. However, we have p̂ = 0 for all the four examples implying that there is no clear

short memory in these time series. p̂ is hence not listed in Table 1.

Results in Table 1 show that:

1. The time series of the minimum water levels of the Nile River seems to be a sta-

tionary, purely long-memory time series;

2. The transformed time series ri from the S&P Index can be modelled by a nonpara-

metric regression model with a signi�cantly increasing trend and i.i.d. errors. This

signi�cant trend shows that the di�erence series of the S&P 500 Index is no more

covariance stationary. If the trend is not estimated and adjusted, we will obtain

a wrong conclusion, that there is strong long memory for this data set due to the

nonstationarity.

3. The di�erences of the daily copper spot price follow a nonparametric regression

model with a signi�cantly decreasing trend and antipersistent errors. The antiper-

sistence means that there is an overdi�erencing in the �rst di�erences of this series.

4. The di�erences of the daily exchange rates between US Dollar and Euro in the ob-

served period seems to be a nonparametric regression with a signi�cantly decreasing

trend and i.i.d. errors, i.e. the original time series seems to be a random walk with

a smooth, nonparametric drift.

6 Final remarks

In this paper recent developments in the area of non- and semiparametric regression with

fractional time series errors were summarized. The focus was on computational aspects,

in particular the selection of the bandwidth, semiparametric estimation of the parameters
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Figure 1: The four time series together with �tted trends.
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and so on. Theoretical results were discussed only brie
y. Readers who are interested in

these topics are referred to Hall and Hart (1990), Beran (1999), Beran and Feng (2001,

2002a, b) and Feng (2002a). New applications of the IPL idea in a related context are

proposed by Feng (2002b, c), where IPL bandwidth selectors for decomposing seasonal

time series (Feng, 2002b) and for estimating the scale change in nonparametric regression

with heteroskedastic time series errors (Feng, 2002c) are proposed. Furthermore, only

results of kernel and local polynomial estimation in �xed design nonparametric regression

are discussed here. Research on other related topics such as smoothing-splines, wavelet

methods and estimation in random design nonparametric regression may be found e.g. in

Cs�org�o and Mielniczuk (1995, 1999), Wang (1996) and numerous references in Opsomer

et al. (2000).
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