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Abstract

Portfolio choice and the implied asset pricing are usually derived
assuming maximization of expected utility. In this paper, they are de-
rived from risk-value models which generalize the Markowitz-model.
We use a behaviorally based risk measure with an endogenous or ex-
ogenous benchmark. A richer set of sharing rules is obtained than in
an expected utility world. If the risk measure is modelled by a negative
HARA-function, then sharing rules are convex or concave relative to
each other. More importantly, the pricing kernel convexity increases
with heterogeneity of investors. Therefore an increase in heterogene-
ity raises investors’ needs for trading options and makes all European
options more expensive relative to the price of the underlying asset.
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1 Introduction

Recently, traditional financial theories of asset pricing have come under inten-
sive discussion. Quite a number of market phenomena have been discovered
which cannot or at least cannot easily be explained by traditional theories.
The equity premium puzzle [Mehra and Prescot 1985], short- and long term
predictability of stock returns [Jegadeesh and Titman 1993, De Bondt and
Thaler 1985], high volatility of stock prices [Shiller 1981, 1989] and the
success of strategies based on value and size | Vuolteenaho 2000] are just ex-
amples for those phenomena. Interestingly enough these puzzles are not only
found at the New York Stock Exchange but they are also present in markets
world wide, see, e.g., Rouwenhorst (1998) and Schiereck, De Bondt and We-
ber (2000) for the persistence of short-term predictability. These results are
complemented by the analysis of individual trading behavior [Odean 1998 a]
which reflects biases known from psychological research as well as from exper-
imental work which clearly shows that expected utility does not adequately
describe peoples’ behavior [Gneezy and Potters 1997, Sarin and Weber 1993,
Thaler et al. 1997, Weber and Camerer 1998|.

The question remains if these puzzles can be solved within the framework
of expected utility (EU) or if new theories incorporating behavioral ideas
are needed. Ultimately those theories will be chosen which can explain the
(some) puzzles and which are based on more meaningful assumptions. In the
following, we will present a behavioral asset pricing theory which is based
on more realistic behavioral assumptions. This theory allows us to address
the important question which impact heterogeneity of investors has on asset
pricing, in particular, on option pricing.

Quite a number of different behavioral theories have been developed

lately. Most of them focus on specific behavioral aspects of individual deci-



sion making. There are papers that build on overconfidence to explain the
amount of trading [Daniel, Hirshleifer and Subrahmanyam 1998, Odean 1998
b]. Another stream of research is based on the value function part of prospect
theory [Barberis, Huang and Santos 2000, Barberis and Huang 2000, Hong
and Stein 1999, Zuchel and Weber 2000] and tries to understand the ob-
served correlation in stock returns. We will base our work on yet another
body of knowledge from psychology, i.e., the understanding of what people
perceive when they talk about the riskiness of an asset. This enables us to
come up with a risk-value framework which is behaviorally based and better
describes peoples’ risk judgments than EU.

Risk is at the center of most theories about asset valuation. It is therefore
essential to understand what investors perceive the risk of an asset to be.
Investors' risk judgments should serve as a basis of asset valuation. Therefore
results of psychological research on risk perception and risk judgment are
essential for asset valuation.

This paper starts from risk-value models. In a risk-value model, risk and
value are taken as primitives. To evaluate an alternative, the decision maker
first separately derives value and risk of this alternative. Then value and
risk are combined into an overall preference. While value is always defined
as the expected outcome, the essential question relates to the measure of
risk. Markowitz also used a risk-value model with risk being measured by
the variance of the outcome.

Quite a number of attempts have been made to come to a more realistic
concept of risk.!

New results suggest that risk perception can be modelled as the expected

value of the transformed deviation of the outcome from a benchmark. The

IThe inclusion of third moments of the return distributions, see Kraus and Litzenberger
(1976), or taking semi-variance as a measure of risk, see Bawa and Lindenberg (1977) are
examples of early attempts which, however, are not based on psychological research.



benchmark can be exogenous (any target or aspiration level) or endogenous,
e.g. the expected outcome. The transformation is achieved by a risk func-
tion. Empirical work suggests that the risk function can be a monotonically
decreasing convex function, with positive deviations from the benchmark re-
ducing risk and negative deviations increasing risk. Such a risk function
reflects the practitioners’ view that negative deviations constitute ”risk” and
positive deviations ”chances”. At some point in our analysis, we will re-
strict the risk function to be of the negative HARA (hyperbolic absolute risk
aversion)-type. This measure still captures major empirical findings on risk
perception.

Using this behavioral framework we get two classes of results. First, we
determine the shape of the investors’ sharing rules in equilibrium. Two defi-
nitions of sharing rules will be used. The absolute sharing rule is the function
which relates the investor’s portfolio payoff to the aggregate payoff, i.e. the
exogenously given payoff to all investors. The relative sharing rule is the
function which relates an investor’s payoff to the payoff of another investor.
In the EU context, Cass and Stiglitz (1970) and Rubinstein (1974) showed
that for expected utility maximizers using a utility function of the HARA-
class with the same exponent, relative sharing rules are linear. In risk-value
models where risk is measured by a negative HARA function, relative shar-
ing rules are linear if and only if this risk function is quadratic. Otherwise
strictly convex or concave relative sharing rules are obtained. More het-
erogeneity among investors translates into more concavity or convexity of
relative sharing rules.

Nonlinear relative sharing rules relate our model to the literature on
portfolio insurance [Leland 1980, Brennan and Solanki 1981, Benninga and
Blume 1985, Franke, Stapleton and Subrahmanyam 1998, Grossman and
Zhou 1996, Benninga and Mayshar 2000]. Leland defines portfolio insurance



as a portfolio policy which leads to a convex absolute sharing rule. The in-
tuition behind his concept is that a convex absolute sharing rule gives the
investor a higher payoff when the aggregate payoff is low (= low state) as
compared to a linear or concave sharing rule. Our results show that an in-
vestor with a risk function of the HARA-type who demands a higher expected
portfolio return or has a higher initial endowment than another investor buys
a sharing rule which is strictly convex relative to that of the other investor.
Thus, the first investor buys portfolio insurance from the second investor.

Second, our equilibrium analysis yields a pricing kernel which is declin-
ing and convex in aggregate consumption. Hence, as Dybvig (1988) points
out, there exists a von Neumann-Morgenstern utility function such that a
representative investor with this function would imply the same pricing ker-
nel. Hence there would be no need to talk about risk-value models. The
important contribution of this paper is, however, to derive the impact of
investor heterogeneity on this pricing kernel. It will be shown for HARA-
based risk functions that the convexity of the kernel increases monotonically
in a simple measure of heterogeneity. More heterogeneity is reflected in more
convexity /concavity of relative sharing rules. The more convex/concave rel-
ative sharing rules are, the stronger is the need of investors to trade options,
the higher option prices will be relative to the price of the underlying asset.
Hence the implied volatility derived from the Black-Scholes model increases
with heterogeneity. This might explain the observation that stock index
options appear to be more expensive than suggested by the Black/Scholes
model [Christensen and Prabhala 1998]. Also, our results could help to ex-
plain why the pricing kernels estimated from stock index option prices are
leptokurtic and negatively skewed [Longstaff 1995, Brenner and Eom 1996,
Jackwerth 2000].

The paper is organized as follows. In section 2, we will review some of



the theoretical and empirical research in decision theory on how to measure
risk. Based on this analysis, we will discuss some general properties a risk
measure should have. In section 3, risk-value efficient portfolios are derived.
Equilibrium is analysed in sections 4 and 5. In section 4, we first investigate
individual sharing rules for a rather general class of risk functions and then for
HARA functions. In section 5, results about the pricing kernel are derived.
Its convexity will be shown to increase with the heterogeneity of investors.

Section 6 summarizes the main results.

2 Risk Measurement

2.1 Background?

The separation of value and risk is quite popular in finance. Investors usu-
ally talk about the risk of an investment which then is evaluated against its
expected return. Thus, decisions are made by evaluating risk and return sep-
arately and trading off both components. Taking risk and value separately
allows different investors to have different tradeoffs even though their risk
measures may be the same, in contrast to EU. The explicit consideration of
the investment risk has become even more important in the light of recent
regulations which require broker houses to inform their clients about the risk-
iness of their investments. Risk judgments have also become quite important
in bank regulation and management.

Still the most important measure of risk is variance with value being the
endogenous benchmark. Variance is easy to use, and risk-value models based
on variance as a risk measure are compatible with expected utility. The
problem is, however, that variance does not capture peoples risk perception

as can be easily demonstrated by the following example:

2See Sarin and Weber (1993) and E. Weber (1997) for reviews on risk measurement.



A= (.5,%10;.5,$—10) B =(.2,%$20;.8,$—5) C=(8,%5;.2,$—
20).

The vector (p, $x; 1 — p, $2") denotes an alternative which has a p-chance
of getting $2 and a 1-p-chance of getting $z'. All three alternatives have the
same expected value and the same variance. However, most subjects judge
C to be the most risky alternative: they seem to dislike the relatively large
loss potential in alternative C.

To model risk perception, the literature on behavioral decision making
has proposed and tested different theories [see Brachinger and Weber (1997)
and Jia, Dyer and Butler (1999) for an overview]. An exponential model
[Sarin 1984] and a power function model [Luce and E. Weber 1986] were
found to fit the data quite well [Keller et al. 1986 and E. Weber and Bottom
1990]. These models define risk as the expected value of a function of the
outcomes or of the deviations of the outcomes from a possibly endogenous

benchmark. Thus, the risk of a random variable e can be written as

Risk(e) = E[F(e — &)] (1)

F is a function with F'(0) = 0, e denotes the random payoff of the alter-
native and € the benchmark. This risk measure is general enough to include
risk measures which describe people’s risk perception, e.g. the exponential
risk measure. Jia and Dyer (1996) define a standard measure of risk as in
equation (1) with (—F') being a von Neumann-Morgenstern utility function.
The benchmark é equals the expected payof.

There are two fundamental ways for defining a benchmark: exogenously
or endogenously. An exogenous benchmark is set by the investor, e.g., it
can be the outcome level the investor wants to surpass. This benchmark can

have any sign. This benchmark may be affected by portfolio gains or losses in
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previous periods as suggested by Barberis, Huang and Santos (2000) and by
other factors which have been shown to be important in financial behavior.

An endogenous benchmark depends on the characteristics of the payoff
distribution. The most prominent endogenous benchmark is the expected
value of the payoffs as in variance and other moments. This benchmark im-
plies that the risk measure is location free, i.e. risk does not change if the
return distribution is shifted by adding or subtracting a positive number.
Hence risk is independent of the expected payoff. This is a desirable prop-
erty since the expected payoff (value) is already used as a primitive in the

preference function.

2.2 Properties of a Risk Measure

We now describe the risk measure in more detail. Risk will be measured
according to equation (1) as the expectation of a function of the deviation
of a random variable e from a benchmark €. In the case of an exogenous
benchmark € is a given number, in the case of an endogenous benchmark e
is the expected value E(e).

For simplicity we define the deviation é:=e — é.

As a next step we postulate three key properties of the risk function F
which are based on the psychological studies cited before:

i) Outcomes above the benchmark reduce risk and outcomes below in-
crease risk, F'(é1) > F(0) > F(é;) for é; < 0 < é. In addition, we require
monotonicity: A higher payoff will contribute less to risk than a lower payoff,
thus F’ < 0.

ii) Mean preserving spreads increase risk, thus F” > 0.

iii) The sensitivity to a mean preserving spread is larger in the loss domain
(relative to the benchmark) than in the gain domain. Requiring monotonicity

then implies that the sensitivity decreases if the payoff increases; thus we



require " < 0.3

As proposed by Jia and Dyer (1996), risk functions with F” < 0, F” > 0,
and F" < 0 correspond to utility functions with v’ > 0, ©” < 0 and «" > 0,
i.e. with positive prudence [Kimball 1990).

Standard models of risk perception, e.g. the exponential model, have the
properties noted above. Note that variance neither fulfills property i) nor
property iii). The three properties imply that alternative C (see example
last section) is judged the most risky. Risk judgments found in a number of
empirical studies, see, e.g., Keller, Sarin and Weber (1986), are consistent
with the risk ranking implied by these properties. Property iii) is reflected in
a variety of empirical results that show that people judge alternatives with
potential catastrophic outcomes as being especially risky, see, e.g., Slovic
(1987).

In the following sections we will derive results using properties i) - iii).
The risk function, in general, varies from investor to investor. It is defined on
the range (¢, ¢é). In order to guarantee optimal internal solutions to portfolio
choice, we add the assumption that F'(é) — —oo for é — é and F' (é) —
0 for é — é. At the end, in order to get further results, we need more
detailed information about the risk measure. At that point we will assume
that the risk function belongs to the set of negative HARA-functions. We

consider negative HARA-functions with properties i) - iii). They include

3The necessity of F”” < 0 can be seen as follows:

Let y, z be two states with the same payoff and the same probability p; in both states
the payoff deviates from the expected value by A. Their contribution to the total risk of
the portfolio is then given by 2pF (A). Now replace the payoff deviation A in the states
y and z by a mean preserving spread around A, that is: the deviation from the expected
payoff is A — « in state y and A + « in state z (a > 0). Notice that the expected payoff is
not changed and hence it does not influence the risk contribution of the other states. The
new contribution of the states y, z to the total risk is pF' (A — «) + pF (A + «). The risk
increase, denoted RI, is then given by: RI, (A) = pF (A — ) +pF (A + a) — 2pF (A)
and the strict convexity of F'is equivalent to RI, > 0 for all A and all & > 0. We require
for an increase in A that RI’, (A) = pF’' (A —«) +pF’ (A+ «) —2pF’ (A) < 0. This
holds iff F"" <0 .



the exponential function, an important function to describe people’s risk

judgments. The negative HARA- class is defined as

F () __ 127 (A+— ¢ )7 (2)

Y

where v € IR\ { 0,1 }; A > 0. In the case v = 0 we obtain F(é) =
—In(A + é) and in the case v = —oo we get F'(é) = exp(—Bé) with B > 0.
For v > —o0 the domain of F' is constrained by (A +¢é/(1 —+)) > 0. A has
to be sufficiently high. For v < 1, we need inf é > —A(1 — ~); for v > 1,
we need sup é < —A(1 — ) . Since it makes little sense to constrain é from

above, we shall mostly assume v < 1. We have F’ < 0, F” > 0 and

F" () = z—_Q (A+ ¢ )73 (3)

— 1—»v

As we require F"”'(é) < 0, v < 1 or v > 2 is implied. Therefore, we will

only consider functions with v < 1 or v > 2, mostly v < 1.

2.3 Risk-value Models and EU Models

So far we have concentrated on modelling risk. We will now briefly dis-
cuss the relationship between risk-value models and EU models. Risk-value
models combine the primitives risk and value into a preference measure with-
out constraining the tradeoff between value and risk. In the expected util-
ity model the utility function determines both, risk measurement and the
tradeoff between risk and value. Thus, the decision maker cannot determine
measurement and tradeoff independently.

Jia and Dyer (1996) consider risk-value models as defined in equation

(1). They show that preference orders which can be derived from a risk-value

10



model can be derived from an expected utility model only if a very strong
condition, called risk independence, holds for expected utility. Basically,
this condition requires that lotteries with the same expected payoff can be
preference ranked by their risk measures such that this ranking does not
change when the expected payoff changes.* This condition holds only for
very few utility functions which, in turn, imply very specific risk measures.
Thus, risk-value models are more general. This is in the spirit of behavioral

research to allow for a wider range of behavior.

3 Efficient Portfolios

We assume a two date-economy with a perfect and complete capital market.
At date 0 investors choose their portfolios which pay off at date 1. A state of
nature at date 1 is defined by the exogenously given aggregate payoff ¢; i.e.
the sum of payoffs to all investors.” ¢ is a positive variable, ¢ € (g,g) with
the probability density being positive for every € € (g,2). Since we are not
interested in time preferences, the whole analysis is done in forward terms.
Equivalently, the risk-free rate can be assumed to be zero. Define:

p. : = probability density of ¢,

e. : = number of claims contingent on state ¢, purchased by the investor;
each claim pays off $1 if and only if state ¢ obtains,

m.: = forward pricing kernel; for every state ¢ it denotes the price of a
claim contingent on that state divided by the state probability density, 7. >
0; E(m) = 1.

Wy : = the investor’s initial forward endowment (wealth), Wy > 0. Since

the investor is endowed with state-contingent claims, W} equals the forward

4See Bell (1995a, b) for further discussion on this issue.

5The market is said to be complete if for every ¢ € IRT there exists a claim which
pays off § 1 if ¢ > ¥ and zero otherwise [see Nachman 1988]. We assume the existence of
g, € IRT U {oo}such that the state space is identified by (g, ).

11



market value of these claims.

R*: = expected gross portfolio return on the forward endowment required
by the investor.

The pricing kernel is assumed to be twice continuously differentiable. To
simplify notation, the state index will be dropped unless necessary for clarity
of exposition.

In risk-value models the investor, first, derives the set of risk-value efficient
portfolios and, second, chooses one of these portfolios according to his tradeoff
between risk and value. The advantage of our analysis is that asset pricing
in a risk-value equilibrium can be analyzed as in the CAPM-world without
making assumptions about this tradeoff.

A risk-value efficient portfolio minimizes the risk subject to the constraint
that the expected portfolio payoff F(e) does not fall below some exogenously
given value WyR* (payoff constraint). Hence, the expected gross portfolio
return has to be equal or higher than R*. In this section, the prices for state-
contingent claims are assumed to be exogenously given. Then an efficient
portfolio is the solution to the following problem.

Minimize

E [F (e)] (4)

subject to the budget constraint:

E [en] = Wy (5)

and the payoff constraint:

12



E (e) > WyR* (6)

Varying R* parametrically allows us to derive all risk-value efficient port-

folios. In the following the function

f(&)i=——F== (7)

will be of special importance. From the properties of the risk function

F(F' <0, F" >0, and F" <0), we immediately get:f > 0, f' <0, f” > 0.

3.1 Risk-Value Models With an Endogenous Bench-
mark

Using this notation we can write the first order condition for a solution to the
minimization problem (4) - (6) with an endogenous benchmark e = E(e), (n
is the Lagrange-multiplier of the budget constraint (5) and A the Lagrange-
multiplier of the payoff constraint (6) ) as® (after dividing by the probability
density)

—f(é) + E[f (&)l = nme + A V e (8)

As E(m) = 1, taking expectations yields

O=n+A 9)

The solution of the minimization problem exists and is unique if a) for every e satisfying
the constraints (5) and (6) the value of the objective function is finite and b) for every
A,n and e satisfying the first order condition (8) E[er] is finite [Back and Dybvig 1993].

13



Since raising R* raises the risk of the efficient portfolio, A > 0 so that, by
(9), n < 0. Substituting A in equation (8) yields

—Elf@)]+ f(é&)=n[l —7]; Ve (10)

Defining 6. = (1 — 7.) this equation can be rewritten as :

—E[f(e)] + f(é) = nb; Ve (11)

The investor’s efficient portfolio is characterized by equation (11) and
constraints (5) and (6). 6. is the difference between the forward price of
the risk-free claim, 1, and the probability deflated forward price of a state
e-contingent claim. 6. is negative if the probability deflated forward price of
a state e-contingent claim exceeds the forward price of the risk-free claim. 6
has zero expectation. The higher 6., the cheaper are the state e-contingent
claims, and the more state -contingent claims the investor buys because a
higher level of these claims raises — f(é.).

The risk-value efficient frontier can be derived by varying parametrically
the required expected return R*. If R* is not greater than 1, then the La-
grange multiplier A = 0 and risk is zero. All endowment is invested in the risk-
free asset so that e. is the same for every state. A grows with R* (R* > 1), be-
cause the objective function is strictly convex. Since A = dE[F(é)]/d(W,R*)
for efficient portfolios, it follows that the risk-value efficient frontier is strictly

convex as shown in figure 1.
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Risk

E(e(o)) — WO WO(R* - 1)

Fig.1 The risk-value efficient frontier depicts the minimal portfolio risk as a func-
tion of the required expected portfolio return R*. The thin curve represents
the frontier for an endogenous benchmark, the thick curve for an exogenous
benchmark.

3.2 Risk-Value Models With an Exogenous Benchmark

Now consider risk functions with an exogenous benchmark e; e §0. Then in
the first order condition (8) for a risk-value efficient portfolio the second term
disappears since portfolio choice has no effect on the benchmark. Hence the

first order condition reads:

—f(é.) = nme + \; Ve. (12)

Again, A > 0 so that n < 0 follows.

Taking expectations yields

—E[f(e)] =n+A (13)
so that subtraction of (12) from (13) leads to
—E[f(e)] + f(é:) = nbe; V e. (14)

15



Compare the solution of the exogenous benchmark model with that of
the endogenous benchmark model. From equation (12), raising the payoff
in some state always reduces risk in the case of an exogenous benchmark.
From equation (8), for an endogenous benchmark an increase in some payoff
lowers [raises] risk if the payoff é. is lower [higher] than f~(E[f(é)]). This
follows from the impact of the payoff increase on the benchmark. Yet, in
the case of an exogenous benchmark, the risk reduction is higher the lower
the payoff. Therefore, the risk reduction induced by raising the payoff in
some state minus the expected risk reduction induced by raising the payoff
in every state, —f(é.) + E|[f(é)], in the exogenous benchmark model has the
same properties as the risk reduction in the endogenous benchmark model.
This explains why the first order conditions (11) and (14) look precisely the
same although the optimal portfolios are different because of the different
benchmarks.

In spite of the formal identity of (11) and (14) the optimal solutions to
both problems differ substantially. If the payoff constraint (6) is not binding,
then the optimal solution to the endogenous benchmark-problem is to buy
only the risk free asset. The exogenous benchmark-problem without the
payoff constraint is formally the same as the traditional state preference -EU-
choice problem Max E[u(e)| subject to the budget constraint (5). This follows
since minimizing risk with the risk function being a negative utility function
is formally the same as maximizing expected utility. Hence the investor
minimizing risk with an exogenous benchmark chooses a risky portfolio e )
even if the payoff constraint (6) is not binding. This implies E(eqy) > Wy
or, equivalently, an expected gross portfolio return E(R) > 1. The payoff
constraint becomes binding only if the required expected payoff is raised

above this expectation, i.e. if WoR* > E(e(y)); (see figure 1).

16



We summarize the differences between risk-value models and expected

utility models as follows.

1. The risk-value model with an exogenous benchmark is formally the
same as the expected utility model if the payoff constraint (6) is not
binding. If the payoff constraint is binding, then the investor has to
take more risk so as to satisfy the payoff constraint. Hence the payoff
constraint adds a new element to the optimization. For risk functions
with an endogenous benchmark the investor takes risk if and only if

the payoff constraint is binding.

2. If the benchmark is endogenous, then risk measurement depends on
this endogenous benchmark which conflicts with the axioms of von

Neumann/Morgenstern.”

"A third difference between risk-value models with an endogenous benchmark and
EU-models relates to satiation. In the EU-model, marginal utility is always positive, by
assumption. In the risk-value model, the investor may be worse off if she receives an
additional payoff in some state with a high portfolio return. Consider as an example the
preference function P(e,risk) with o« > 0 and e = E(e), P(e,risk) = ae —risk, with risk
as defined in equation (1). Differentiate the preference function with respect to e. . This
yields:

oP
0 e,

= Pe [a + f(és) - E[f (é)H .

If the portfolio payoff is random, there must exist a state ¢ withf(é.) < E[f(é)] (for
example, the state with the lowest 7.). Then, given a sufficiently small «, we have 0
P /de. < 0. Hence an increase in the state e-portfolio return may reduce the investor’s
welfare which contradicts the usual assumption of non-satiation. If, however, all prices for
state-contingent claims, 7., are positive, then the investor always chooses his/her optimal
portfolio such that he/she never reaches or crosses satiation. This follows since a risk
free-asset exists and the investor can always purchase fewer claims contingent on these
critical states, invest the saved money in the risk-free asset and, thereby, increase his/her
welfare.

17



4 Equilibrium: Investors’ Sharing Rules

4.1 General Risk Functions

Next equilibrium in the capital market will be investigated. We assume the
existence of an equilibrium. If there exist multiple equilibria, we analyse
anyone of them. Every investor chooses a risk-value efficient portfolio. All
investors are assumed to have homogeneous expectations. First, individual
sharing rules will be analysed in equilibrium (Section 4). After considering
general risk functions (Section 4.1), we restrict ourselves to HARA-based
risk functions (Section 4.2). Second, the equilibrium pricing kernel will be
derived and analyzed (Section 5).

Individual investors are indexed by ¢. Hence all investor-dependent vari-
ables have to be indexed by i. Then condition (11) for an endogenous bench-

mark reads
—E[fi(é&)]+ fi(éie) =m; 05 Ve, i. (15)

Condition (14) for an exogenous benchmark is the same. Unless stated
otherwise, the following results hold for efficient portfolios with an endoge-
nous and with an exogenous benchmark. A; > 0 and 1, < 0, will be assumed
throughout. Then we can derive a proposition which relates investors’ port-

folio choices to the pricing of state-contingent claims.

Proposition 1 : For every investor, his/her optimal payoff is decreasing

and convex in the probability-deflated price for state-contingent claims.

Proof. 8

8By the implicit function theorem, é; (&) is twice continuously differentiable since f;
(é;) and 6. = 0(e) are twice continuously differentiable.
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Differentiate equation (15) with respect to 6. Recall, f;(é;) > 0, f/(&) <
0, and f/(é;) > 0. Hence it follows that e; is an increasing and convex
function in . As # = 1 — 7, e; is a decreasing, convex function in 7. This
proves proposition 1 H

An absolute sharing rule relates investor i’s payoff e; to the aggregate
payoff . Proposition 1 states de;/dm < 0. Aggregation across investors
implies de/dm < 0. Hence it follows that de;/de > 0. The positive slope of
the absolute sharing rule does not come as a surprise. This is still in line with
EU-theory. The major difference between the risk-value and the EU-model
is reflected in the shapes of the sharing rules. Equation (15) implies for two
investors ¢ and j in the risk-value model

—Elfi (&)l + filée) _ —E[f; (&)1 + fi ()

= ;. Ve 16
- —1; ( )

Define s; := E[fi(é;)]/ — n; to be investor ¢ ’s sharing constant. Equation
(16) can be written then as
fi8ie) fiée)

—s; + = —s§;+————=; Ve 17
-~ R a— (17)

The new element in risk-value models as compared to expected utility
models are the sharing constants. They are generated in the case of an ex-
ogenous benchmark by the payoff constraint and, in the case of an endogenous
benchmark, by the impact of a payoff change on the benchmark. In order to
grasp the intuition behind the sharing constants, consider the inverse sharing
constant - n,/E[f; (é;)]. —n;, is the efficient increase in risk due to a marginal
reduction in the initial endowment available for buying claims, holding the

required expected payoff Wy R* constant. This risk increase depends on the
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risk function which is determined up to a linear positive transformation.
Hence we need to standardize these marginal risk increases to make them
comparable across investors. This is done by dividing - 7, through the ex-
pected slope of the risk function based on the efficient portfolio, E[f; (&;)]-
Hence the inverse sharing constant measures the standardized efficient risk
increase due to a marginal reduction in the initial endowment.

In order to gain some insight into the mechanics of the risk-value model,
we analyse the impact of changes in initial endowment and in the required
expected return on an investor’s sharing constant. For simplicity of notation,
we drop the index i in Lemma 1.

Lemma 1: Consider risk-value efficient portfolios under the condition
A > 0and n < 0. Then, given the prices of state-contingent claims, the
sharing constant s declines when

— the initial endowment Wy increases, or

— the required expected return R* increases.

Proof. See Appendix A.

From Lemma 1 it is apparent that the sharing constants differ across
investors. The sharing constants, in fact, prohibit linear sharing rules. This
is illustrated by proposition 2 which does not constrain f”(é) to be positive.
It should be noted that each investor has a linear absolute sharing rule if all

relative sharing rules are linear, and vice versa.

Proposition 2 : Let f"(é) be unconstrained in sign. Then in an equilibrium
with risk-value models every investor has a linear (absolute) sharing rule if

and only if every investor uses a quadratic function F(€é).

Proof. See Appendix B.
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Proposition 2 provides a strong result about the shape of the sharing rules.
In a risk-value world the sharing rules are linear if and only if every investor
uses variance or a related quadratic risk measure (which both behaviorally
are not appropriate), or, equivalently, if and only if the sharing constant
disappears. This is true only for quadratic risk functions. Then f(é) = a+ bé
so that f(é) — E(f(é)) = ble — E(e)) = bé. In contrast, for EU- models,
Rubinstein (1974) has shown that linear sharing rules are obtained whenever
all investors have a HARA-utility function with the same ~.

In the following, we require again f”(é) > 0 and analyse the sharing rule of
investor ¢ relative to that of investor j, i.e. the relative sharing rule e;(e;). In
analogy to Leland (1980), we say that investor ¢ purchases portfolio insurance
from investor j if his sharing rule e; is strictly convex in e;. Proposition 3

provides conditions for trading portfolio insurance.

Proposition 3 : In a risk-value equilibrium the following statements are
equivalent:

— Investor i’s sharing rule is strictly convex [linear]| [strictly concave] relative

to that of investor j.

— The coefficient of absolute prudence of investor i’s risk function, —f(€,)/f(€,),
multiplied by de;/de;, is everywhere greater than [equal to] [smaller than] the

coefficient of absolute prudence of investor j’s risk function.

> =)< -y ﬁ (18)

Proof. See Appendix C.
Proposition 3 provides necessary and sufficient conditions for the shape of
an investor’s sharing rule relative to that of another one. The shape depends

on the investors’ coefficients of absolute prudence given efficient portfolios.
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These conditions are related to those obtained by Leland (1980) in an EU

equilibrium.

4.2 HARA-Based Risk Functions

In this section, we derive more specific results assuming that the risk function
F belongs to the negative HARA-class. F'(é) is given by equation (2) with
v > 2 or v < 1. 7 is assumed to be the same for all investors.

A necessary condition for the existence of an equilibrium in the case of a
non-exponential risk function (y > —o0) is

S (At

i 1—1

A~

€e . o " N
A—|—1_7>0, Ve WlthA:;AiandeEZZeig.

This condition must hold because A;+ é;. /(1—7) >0 Vi, ¢ is required
by the FOC (11) resp. (14). Let e = ),

;, €, then é. = ¢ —e. Hence an

equilibrium requires A+ (¢ —€) / (1 —~) > 0. For the more important case
v < 1 this implies ¢ > e—A(1—7),Ve. If Wy = >, W, then in equilibrium
W is the forward market value of the aggregate payoff ¢, i.e. Wy = E(em(e)).

We first show that investor i’s sharing rule relative to that of investor j

is either concave, linear or convex.

Proposition 4 : Consider two investors i and j who measure risk by a neg-
ative HARA-function with v being the same for both. Then the following

statements are equivalent:

— Investor i’s sharing rule is strictly convex [linear| [strictly concave] rel-
ative to that of investor j.
— Investor i’s sharing constant is smaller than [equal to][greater than] that

of investor j.

Proof. See Appendix D.
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Proposition 4 illustrates our earlier claim that the sharing constants in
the optimality condition (11) resp. (14) generate room for a larger variety
of sharing rules. While in the EU-model with HARA-utility all investors
have linear sharing rules, in the risk-value model one investor’s sharing rule
relative to another one’s is concave, linear or convex. It is the difference
between the sharing constants of both investors which determines convexity,
linearity and concavity. If all sharing constants are the same, then linearity
obtains as in the EU- model, and a representative investor exists. Conversely,
heterogeneity of investors may be measured by differences in the sharing

constants.

Corollary: The convezity of investor i’s sharing rule relative to that of

investor j grows with the difference in the sharing constants (s; — s;).

Proof. Consider a sequence of investors such that s; — s;41 = A with
A being a small positive number; 7 = 1,...,J — 1.. Then the convexity of
é;+1(é;) is positive. Hence the convexity of é;,4(é;) must increase in k, and,

hence, in s; — 55, B

More insight can be gained by analysing the investor’s sharing rule in
terms of the gross return R rather than the payoff e. Since R := e/W,, the
risk function can also be written as [R := R — R with B = E(R) for an
endogenous benchmark resp. R being the exogenous benchmark]

pir(R) - 1 (;i)

except for the case of the exponential risk function (v = —oc). In this

~

case E[F(R)] = Elexp(—BW,R)].
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The investor minimizes his risk subject to the budget contraint F(Rw) = 1
and the return constraint E(R) > R*. The solution gives the efficient return
sharing rule.

The ratio A/Wj is crucial for risk measurement if v > —oo. Depending

on the investor, the ratio A/Wj might be independent of W or not. Define

A AR
Wo Wy 1-—7°
Then
EF(R) = -1"F (A* +i)7 (19)
¥ Wo 1—v)

Investors differ in terms of Wy /A* for v > —o0 resp. BW, for v = —c0
and the required expected return R*. Hence the sharing constants of two
investors differ because of differences in these parameters. Applying Lemma
1 shows that the sharing constant of an investor declines when Wy /A* resp.
BW) or the required expected return R* increases.

This proves

Proposition 5 : Given the pricing kernel, the difference between the shar-
ing constants of investors i and j, (s; — s;j), is monotonically increasing in
(Wo;/A; — Waoi/ A7) for v > —oo resp. (B;Wo; — BiWo;) for v = —oo and
(R}~ RY).

Before we discuss the sharing rules of these investors, it is helpful to
understand the impact of Wy/A* resp. BW,. The curvature of the risk
function, — f/(R)/f(R), similar to absolute risk aversion, increases monoton-
ically in Wy/A* resp. BW,. Therefore we denote Wy/A* resp. BW, as the

investor’s risk sensitivity. With 1 > v > —o0, risk sensitivity is higher for
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a more aggressive investor, i.e. an investor, who uses a higher exogenous
benchmark return or, in the case of an endogenous benchmark, demands a
higher expected portfolio return.

Proposition 6 characterizes the sharing rules of investors.

Proposition 6 : Consider two investors i and j who have HARA-risk func-

tions with the same 7.

a) Suppose that the risk sensitivity, Wy /A" for v > —oo resp. BW, for
v = —00, is higher for investor i than for investor j and/or she demands
a higher expected portfolio return. Then investor i’s sharing rule is strictly
convez relative to that of investor j.

b1) Suppose that for both investors the risk sensitivity is the same, but
investor i demands a higher expected portfolio return. Then there exists some

portfolio return R' such that

R, < [=][>]R; for R;<[=][>]R"

b2) Suppose that the risk sensitivity is higher for investor i but both in-
vestors demand the same expected portfolio return. Then there exist R® and

R% with R°< R such that

R; > Rj for Rj < R" and Rj > ROO,

R; < Rj for RO < Rj < ROO.

Proof. See Appendix E.
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Figure 2

RO

/

bl) Investor i demands higher ex- b2) Investor i has a higher risk
pected portfolio return. His shar- sensitivity. His sharing rule is
ing rule is convex relative to that convex relative to that of in-
of investor j such that R; and R; vestor j such that both inter-
intersect once. sect twice.

Proposition 6 is illustrated in Figure 2. If two investors ¢ and j have
the same expected portfolio return and the same risk sensitivity, then their
portfolio returns are the same in every state. If investor ¢ has a higher
risk sensitivity and/or demands a higher expected portfolio return, then her
sharing rule is convex relative to that of the other investor. The special cases
bl) and b2) will help to understand the intuition behind this result.

Proposition 6 bl) says that an investor ¢ who ceteris paribus demands
a higher expected portfolio return than investor j chooses a portfolio such
that in the low states (R; < R') her portfolio return is lower and in the high

states (R; > R!) it is higher. Hence, a higher expected return forces her
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to take more risk. Now suppose, she would choose a sharing rule which is
linear relative to that of the other investor but has higher slope (such as in
EU-portfolio analysis). This would raise her risk dramatically because her
return would fall strongly in the low states and the strict concavity of her
marginal risk function would reinforce the impact on risk. Therefore, she
rebalances her portfolio by buying more claims in the low states yielding a
convex sharing rule relative to investor j. This result may be counterintuitive
since one may feel that investors who demand a higher expected return are
more aggressive and, therefore, should sell portfolio insurance.

Proposition 6 b2) states that, given the same expected return, the more
risk sensitive investor chooses a portfolio such that her return is higher in
the very low and in the very high states, but lower in between. Thus, the
more risk sensitive investor cuts back large negative deviations of her return
from the benchmark return in the very low states and, thereby, reduces her
risk. Moreover, she raises positive deviations in the very high states which
also reduces her risk. In order to obtain the same expected return, she has
to accept lower returns in the states in between in which the deviations are
small anyway.

Nonlinear sharing rules are also obtained in EU - equilibria based on
HARA utility with distortions. Grossman and Zhou (1996) analyze the
equilibrium for two investors who maximize expected utility. Suppose that
both optimization problems are identical except that the second investor also
makes sure that his random wealth never falls below a given floor. Then this
investor buys options from the other one. Benninga and Mayshar (2000)
prove a related result for an equilibrium with two investors who maximize
their expected utility without a floor. Both have constant relative risk aver-
sion, but at different levels. Then the investor with higher relative risk aver-

sion buys options from the other investor. Franke, Stapleton and Subrah-
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manyam (1998) obtain a related result when investors have HARA-utility
and face background risk.This risk destroys linearity of the sharing rules.A
poor investor suffers more from a given level of background risk than a rich

investor and, therefore, tends to buy portfolio insurance.

5 The Pricing Kernel and Investor Hetero-
geneity

5.1 General Risk Functions

In this section we analyze the pricing kernel in a risk-value equilibrium. We
first investigate how in equilibrium the price for state-contingent claims is
related to the aggregate payoff. Proposition 7 provides the result. Note that
proposition 7 is true also if some investors have endogeneous and the others

have exogenous benchmarks.

Proposition 7 : In a risk-value equilibrium the probability-deflated price for
state-contingent claims, ., is decreasing and convex in the aggregate payoff

g’

Proof: The sum of the payoffs of individual investors is the aggregate
payoft. Hence proposition 1 implies that the aggregate payoff is decreasing
and convex in . Therefore m must be decreasing and convex in the aggregate
payoff B

The result of proposition 7 does not come as a surprise. It is also obtained
in an EU-equilibrium if every investor has a von Neumann-Morgenstern util-

ity function with positive prudence. The differences between the risk-value-

9For very high aggregate payoffs the market price for state-contingent claims could be
negative. This would violate the assumption of arbitrage-free markets. A negative price
for some state-contingent claims requires, however, that every investor is beyond satiation
in that state, a possibility that can be safely ignored (see also footnote 7).
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and the EU-equilibrium become transparent when we assume HARA-based

risk functions.

5.2 HARA-Based Risk Functions

We assume that all investors have HARA-based risk functions with the same
~v. We will show that more heterogeneity of investors raises the convexity of

the pricing kernel ¢(e):

The convexity of the pricing kernel is essential for option pricing. Consider
two economies with pricing kernels 7 (¢) and m(g) such that the convexity
of the first pricing kernel is higher everywhere and the forward price of the
aggregate payoff-distribution is the same, E[e ()] = Elems(e)].Then based
upon a result of Franke, Stapleton and Subrahmanyam (1999) proposition 8
shows that all European options on e are more expensive under the more

convex pricing kernel 7 (¢).

Proposition 8 : Let m(¢) and ma(e) be two forward pricing kernels with
the underlying asset’s forward price Elem(€)] = Elems(e)] being the same.
Assume that the convexity of m1(e) exceeds that of mo(e) for every . Then

all European options on € are more expensive under my(g) than under my(€).

Proof. See Appendix F.

Given the importance of the pricing kernel we investigate it in the risk-
value equilibrium. Two investors are said to be heterogeneous if their sharing
constants differ. The more they differ, the more convex or concave are the

relative sharing rules, the higher is the convexity of the pricing kernel as will
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be shown in Proposition 9. Heterogenity of investors will be measured by
the ”variance” of their sharing constants.

Let denote

so that > g, = 1. Moreover, define V (¢), a hyperbolic ”variance” measure

k2
of the sharing constants, as

= : [fi(é1e)/ —m —si+s]™"
V(é) = ;gle Zgjg[fl(élg)/ — 1 — 81+ Sj]*l 1 (20)

This variance measure is endogenous since all terms are determined by
the equilibrium. It basically measures the differences between the sharing
constants which are determined by the differences in risk sensitivities and
required portfolio returns (Proposition 5). If all sharing constants are the
same, then this ”variance” is zero. Thus, this ”variance” tends to increase
with differences among investors in risk sensitivities and required portfolio

returns.

Proposition 9 : Assume that every investor uses a risk function belonging
to the HARA-class with ~ being the same for every investor. Then for v >

—00 the convexity of the pricing kernel is

oe) = (A+ égy)_l“z[uvw

1-— v—1
~ -1 2
[ v —2 1 d“e;
= (A — i— | 3 . (21
( +1—7) [7—1+7T’(6)22.:S de? ve. (1)



For the exponential risk function (y = —o0) equation (21) holds with

-1
[A+é./(1 —~)]"" being replaced by |32 1/B;
J

Proof. See Appendix G.

Proposition 9 reveals the impact of investor heterogeneity on the convex-
ity of the pricing kernel. By equation (21), the heterogeneity is reflected in
the variance measure of the sharing constants which varies with e. If all shar-
ing constants are equal, then V (¢) = 0. Hence the convexity of the pricing
kernel is minimal. The higher the variance is, the higher is the convexity of
the pricing kernel.

Alternatively, the heterogeneity between investors is reflected in the con-
vexities of their absolute sharing rules. The second part of equation (21)
shows that the convexity of the pricing kernel is minimal if all sharing
rules are linear. The sum 3 s;d%e;/de? is a weighted sum of the convexi-
ties d?e;/de?. If the weights ;1 were the same across investors, then the sum
would be zero. Hence it is the difference in weights which makes the sum
nonzero. Proposition 5 tells us that the sharing constant s; is determined
by investor ¢’s risk sensitivity and her required portfolio return. The higher
these parameters are, the lower is her sharing constant, the more convex is
her sharing rule. Consider, for example, an economy with two investors only.
Investor ¢ (h) has low (high) risk sensitivity, both demand the same portfolio

return R*. Then investor ¢ (h) buys a concave (convex) sharing rule. Since

0 < s, <s; and — d%e;/de? = d?ey /de?, Z sjd2ej/d€2 <0, Ve.
J
In general, the inverse relationship between s; and d?e;/ds? across in-
vestors renders the sum Y s;d%¢e;/de* negative. Hence, divided by 7/(¢), it is

1
positive.
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Interestingly, heterogeneity of investors always raises the convexity of the
pricing kernel. This is intuitively appealing since investors being very risk
sensitive and/or demanding a high portfolio return have a strong appetite
for portfolio insurance, i.e. they have a strong appetite for claims in the very
low and in the very high aggregate payoff-states. This makes these claims
more expensive relative to claims in the intermediate states.

In order to illustrate this, consider the case 1 > v > —oo and let investor
h have the lowest sharing constant. He is very risk sensitive so that his
Wy /A* is high and he demands a high portfolio return R*. Since his W,/A*
is high, —A* /Wj is high. Hence in a state with a very low aggregate payoff,
this investor has to buy enough claims so as to assure R > — A*(1 —~)/W,.
Therefore he has to buy a substantial fraction of the available claims driving
up the price of these claims. Also in the very high payoff-states he buys a
very high fraction of the available claims. This can be seen by analyzing g;..
gn. may be interpreted as investor h’s fractional purchase of claims on the

aggregate payoff, distorted by the constants A, and A.

Proposition 10 : Assume 1 > v > —oo. Investor h is the unique investor
with the lowest sharing constant. Then gn. increases monotonically in € and

approaches 1 for e — oo.

Proof. See Appendix H.

Proposition 10 shows that investor h being very risk sensitive and de-
manding a high portfolio return buys a high fraction of all claims in the very
high-payoff states. In these states claims are relatively cheap enabling the
investor to earn a high return.

Since gpe — 1 for € — o0, V (¢) — 0 for ¢ — oco. Investor A dominates

pricing in the high payoff-states so that the measure of investor heterogeneity
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converges to zero. Yet the convexity of the pricing kernel approaches 0 and,

thus, becomes minimal since for € — oo,
. -1 . —1
7_2 e 7_2 Che
— A — (A 0.
C(E)_W—l( +1—7> Hv—l(}ﬁl—v) -

Similarly, it can be shown in the case of exponential risk functions (7 = —o0)

for investor h having the lowest sharing constant that e;./e approach(las 1 for
e — oo and that V () — 0 for ¢ — oo implying ¢ (¢) — (Z 1/BZ->

It is interesting to compare the convexity in this risk—vahlle equilibrium to
that in an EU-equilibrium in which all investors use a HARA-utility function

with the same exponent y. Assume that v > —oo and the sum )| A; in the
i

EU-world equals |>"(4; — R;/[1 — 7])] in the risk-value world. If v = —o0,
then asssume > (1/ lBZ) to be the same in both worlds. Then the convexity of
the EU—pricinngernel is the same as that of the risk-value pricing kernel if all
sharing rules are linear in the risk-value equilibrium. Since sharing rules are
linear in the EU-equilibrium anyway, this finding reinforces the importance
of heterogeneity of investors: If in both worlds there exists a representative
investor, i.e. if all sharing rules are linear, then the convexity of the pricing
kernel is the same in both worlds. Otherwise the convexity is higher in the
risk-value world because a representative investor does not exist.

The important result is that all European options are more expensive rela-
tive to the underlying asset, the more convex the pricing kernel is. Since con-
vexity in the HARA-based risk-value equilibrium increases with investor het-
erogeneity, relative option prices increase with investor heterogeneity. Stated
differently, the more the sharing rules deviate from linearity, the higher is the
investors’ need for option trading, the more expensive are European options
relative to the underlying asset. Hence investor heterogeneity might pro-

vide an explanation for the observation that stock index options appear to
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be more expensive than suggested by the Black/Scholes model [Christensen
and Prabhala 1998]. Also, our results could help to explain that the pricing
kernels estimated from stock index option prices are leptokurtic and nega-

tively skewed [Longstaff 1995, Brenner and Eom 1996, Jackwerth 2000).

6 Conclusion

The paper considers portfolio choice and asset pricing in a world where in-
vestors’ preferences are modelled by a risk-value approach. We consider risk
functions with an exogenous and with an endogenous benchmark. Both mod-
els yield similar results. In contrast to expected utility, risk-value models do
not constrain the tradeoff between value and risk given a risk measure. This
approach is consistent with the widely observable separation of value and
risk in finance. We have defined properties the risk measure should have.
These properties are verified using empirical findings on risk judgments and
are related to the properties of utility functions.

Looking at efficient individual sharing rules in risk-value models, the first
order conditions display an additional term, the sharing constant. This con-
stant generates a larger variety of sharing rules as compared to expected
utility models. In the risk-value world with the risk function being a nega-
tive HARA-function, these sharing constants determine whether an investor’s
sharing rule is convex, linear or concave relative to that of another investor.
Highly risk sensitive investors tend to buy portfolio insurance from less risk
sensitive investors. Also, the more aggressive investors, i.e. those who de-
mand a higher expected portfolio return, take more risk, but also tend to
buy portfolio insurance.

The pricing kernel is declining and convex in the aggregate payoff. This

is true also in an expected utility equilibrium if the third derivative of the
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utility function is positive. Yet asset pricing turns out to be different in a
risk-value equilibrium based on HARA-risk functions as compared to an ex-
pected utility equilibrium based on HARA-utility functions. In the risk-value
world the convexity of the pricing kernel increases with the heterogeneity of
investors which is reflected in the non-linearity of their sharing rules. The
more heterogeneous investors are, the more demand for options trading ex-
ists, the more convex is the pricing kernel, the more expensive are Furopean
options relative to the underlying asset.

These results suggest a need for further research on asset pricing and
investor heterogeneity in an expected utility framework, but also in others

like the risk-value model.
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Appendix A: Proof of Lemmma 1

First, we consider an increase in Wy to bW, holding the required expected
return R* constant; b > 1. Then 7 changes to an; a > 0. Define é; := (e —é€)
for the initial endowment W, and define é, := (e—é) for the initial endowment

bWy. Then we need to show that

or

aE[f(e1)] > E[f(é)]. (22)

From equation (15) it follows that V ¢,

—E[f(é)] + f(éw) = an 0. = a(=E[f(é1)] + f(é1c))- (23)

As the mean absolute deviation between payoffs across states has to grow
with Wy, the monotonicity of f implies that also the mean absolute deviation
| E[f(é)] — f(é)] | has to grow. Hence a > 1. Now assume, by contradiction,

that inequality (22) is not true. Then equation (23) implies

f(ébg) Z be(élg); Ye. (24)

As a > 1 and f > 0, this implies

fése) > f(ére); Ve
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Since f’ < 0, it follows that é,. < é;. and hence

€pe < €1e; Ve,

which contradicts the budget constraint (5). Therefore inequality (22)

must be true.

Second, we consider an increase in R* so that é; changes to é,.. Then n
changes to a°n. Hence the sharing constant decreases if inequality (22) holds
with a and b being replaced by a® and b°. Therefore the same method by
which the first part of Lemma 1 has been proven can be applied here. |

Appendix B: Proof of Proposition 2

a) Sufficiency: Suppose that F'(é) is a quadratic function. Then f(é) =
a+ bé. Hence (17) implies linear relative sharing rules for two investors ¢ and

j. Therefore all absolute rules are also linear.

b) Necessity: Differentiate (15) with respect to ; this yields

dez- do

.fz'l(éis)d_g =1 e (25)

Now suppose a linear absolute sharing rule for every investor: é;. = a; +

B, €, so that ‘fl—? = (,. Then it follows from (25) for any two investors ¢ and j

e - f}(éjs)%; Ve. (26)
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In the traditional state preference-model, the investor maximizes his ex-
pected utility F [u (e)] subject to the budget constraint (5). Let o denote the
Lagrange-multiplier of the budget constraint. Then the first order conditions
imply for two investors ¢ and j

, 1 , 1
ui(eic)— = uj(eje)—; Ve (27)

1 My

Cass and Stiglitz (1970) have shown that in the EU-model all investors
can have linear sharing rules only if u(e) belongs to the HARA class with the
exponent v being the same for all investors. Since (26) is formally the same
as (27), it follows for the risk-value model that all investor can have linear
sharing rules only if f(é) belongs to the HARA class with (v — 1) being the
same for all investors. Therefore we can rewrite (17) as
1 (Az- + M>7_1 + = (Aj + M>7_1 =s5—8;; Ve

n; -~
Suppose that s; # s;. Then, the last equation can hold for every € only

if v = 2. Hence F(é) must be quadratic for every investor. [ |
Appendix C: Proof of Proposition 3

Differentiating equation (16) with respect to e; yields

fie) dei  £i&)
—n; de; =y (28)

Hence de;/de; is a constant if and only if fj(é;)/fi(é;) is a constant.
Then investor i’s sharing rule is linear relative to that of investor j. In-
vestor i’s sharing rule is strictly convex [concave| relative to that of investor

g if fi(é;)/ fi(é;) is strictly increasing [decreasing] in e; and, hence, in the
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aggregate payoff . This result can be restated using the coefficient of the
negative third to the second derivative of the F-function, — f/(é;)/f/(é). This
coefficient is called the coefficient of absolute prudence of the investor’s risk
function; it is the analogue to Kimball’s coefficient of absolute prudence. Mul-
tiplying equation (28) by —1, taking logs and differentiating with respect to
e; yields

d In(de;/de;) fi(&) N fi(é) de;

de; i) T TRG) de 29)

This proves the equivalence of the first two statements in Proposition
3. Substituting de;/de; in equation (29) from equation (28) shows that
d In(de;/dej)/de; > [=] [<] 0 if and only if (18) holds. [ |

Appendix D: Proof of Proposition 4

For any HARA function,

G
[fie)]*

_9 )
— /filé).

Hence, by the last statement of Proposition 3, e;(e;) is strictly convex
[linear] [strictly concave] if and only if
fz(ez) < [:] [>]f](6])’ vej.
- =1
Hence, by equation (17), e;(e;) is strictly convex [linear] [strictly concave]
if and only if investor i’s sharing constant is smaller than [equal to] [greater

than| that of investor j. This proves Proposition 4. |
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Appendix E: Proof of Proposition 6

The proof will be shown for v > —oo. It is the same for v = —o0.

a) First, we prove statement a). Consider the minimisation of the objec-
tive function (19) s.t. E[Rw| =1 and E(R) > R*.
Hence for two investors i and j with A, /Wy, = Aj;/Wo,; and R} = Rj it fol-
lows that the efficient portfolio returns are the same. By Lemma 1, investor
1’s sharing constant decreases when her initial endowment increases or when
she demands a higher expected portfolio return. Then, by Proposition 4, her

sharing rule is strictly convex relative to that of investor j.

bl) Now we prove statement bl). As R;(R;) is strictly convex, the curves
R;(R;) and R;(R;) can intersect at most twice. They have to intersect at
least once, otherwise the budget constraint E[Rw| = 1 cannot hold for both.
Hence we have to show that two intersections are impossible. Equation (28)
yields in the HARA-case, starting from objective function (19),

2—y

A7 R
d& o W(),; + 1—")/ &
dRrR. | 4 R; .'
! W;j - 1—J’Y i

At an intersection R; = R; so that Wy, /A; = Wy;/A; implies that the
bracketed term equals 1. Hence the slope dR;/dR; at an intersection is
unique. Therefore convexity of R;(R;) rules out two intersections. Given one
intersection at R; = R!, a higher expected portfolio return can be obtained
only if in the states R; < R' relatively expensive claims are sold and in the
states R; > R' relatively cheap claims are bought. Thus dR;/dR; > 1 for
R; = R%.
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b2) Finally we prove statement b2). The strict convexity of R;(R;) implies
that R;(R;) and R;(R;) can intersect at most twice. R; = R} requires at
least one intersection. Suppose there exists one intersection only. As 7(¢) is
monotonically decreasing, purchasing claims in some low states ¢ < e and
selling claims in some high states € > ' such that this transaction is self-
financing implies a lower expected return. Thus, one intersection contradicts

R} = R} so that two intersections are implied. ]
Appendix F: Proof of Proposition 8

Franke/Stapleton/Subrahmanyan (1999) have shown the following. Con-

sider two pricing kernels 7 (g) and ma(e) with E[m(e)] = Elma(e)] = 1 and
Elem(€)] = Elema(e)]. Suppose that these kernels intersect twice such that
m1(e) > ma(e) for low and high of levels of € and m1(g) < m2(e) in between.
Then all European options on ¢ are more expensive under 7 (¢).
Hence in order to prove Proposition 8 it suffices to show: If m(e) is more
convex than my(e) everywhere, then these pricing kernels must intersect twice
such that for low and high e-levels m(g) > m2(e) and vice versa in between.
Franke/Stapleton/Subrahmanyan (1999) have shown that the pricing kernels
must intersect at least twice to produce the same forward price of the un-
derlying asset. More than two intersections will be shown to be impossible.
c1(e) > ca(e) Ve implies

din[-mi(&)] _ din[-my(e)]
B de =T de

_ din[-m{(5)/ — mi()]

or
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so that —7/(e)/ — mh(e) must decline in e everywhere. Suppose that
—m(e)/ — m(e) > 1 at the first intersection of m(¢) and mo(e). Hence it
must be less than 1 at the second intersection and greater than 1 at the
third intersection. But the latter condition contradicts the condition that
—mh(e)/ — m4(e) declines. Hence a third intersection cannot exist. Also
m1(e) > ma(e) before the first intersection and after the second intersection

and vice versa in between follows. |
Appendix G: Proof of Proposition 9

Differentiate the first order condition (15) with respect to €. This yields

1( A de; _ 1(_N. .
j‘;-(eig)al—5 = —n7'(e); Vi,e. (30)

Multiply this equation by -1, take logs and differentiate with respect to
¢. This yields

f,l'/,(éig d@i dzei d€2 .
f’(é )) de de—ﬁdﬁ: = —C(S); \ 1,¢&. (31)

First, we prove the first part of equation (21). Multiply equation (31) by

de;/de and aggregate across investors. This yields

> () ey ve 2

since Y, d%¢;/de* = 0.

In the HARA-case with v > —oo,
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[i(Ee) _ =2 ( AL b )1 _ =2 —file),

~ = — ;o Vai,e 33
TN R —~) ~7-1 e (33)

Hence

2
’7_2 éig dei/ds

cle) = —— A+ — ; Ve 34

© 7_12( 1_7><Ai+1%7 (34)

Divide (30) by f/(é;.) and aggregate. This yields

1= 7@ Y -n/fle) =@ (4 2 ) /A 39

K3 K2

Now divide (30) by f;(é;-). This and (35) yield

filei) dei _ —mi_ 0y ./ fi(Cic) (36)

Fle) &~ R T /) (A + 1)

The left hand side of this equation, multiplied by -1, equals the term in
the squared bracket of (34). Hence it follows that

€ie
2l

Ai+1_

le) = 122 (7Y ve o
=12 X, i/ £(@0) (A5 + 5 | <f i(e“))

Define g;. = (Az- + %) / <A+ 18_—7> Vi,e sothat ) g =1Ve.
Then (37) yields
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=2 e\ " ' -,/ fi(é:) i
0(5) = ")/—1 <A+ 1—")/> ;gzs (ngjg(_nj/fj(éjg))
v =2 e. \ * ]
_ ﬁ(’“l—v) [1+V(e)]; Ve, (38)

with V'(¢) being defined in equation (20). The latter follows from f;(é;.)/—
n; = fi1(é1)/ —ny — s1 + si; Vi. This proves the first part of equation (21).

Now we we prove the second part of equation (21). Substitute f/'(é;.)/ f!(é:)
in equation (31) from (33) and multiply the equation by —(A; +é;./(1 —7)).
This yields

Y- 2de At én/(1-) de _ .
v—1de d@i/dﬁ: de? C(E) A+ 1—~ ;o Ve (39)

The factor of d?e; /de? equals the inverse first term in equation (36). Hence

it follows from equation (36) and (15) that this factor equals

filéie) 1 —1+4m +s;
—-n; () a ' (e) .

(40)

Insert (40) in (39) and obtain after aggregation across investors since

S d%e;/de* = 0,

7_2 Si 2 2 ée
7_1+ % W’(a)del/dg c(e) ( +1_7), Ve (41)
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This proves the second part of equation (21). The proof of proposition 9

is the same for v = —o0. [ |
Appendix H: Proof of Proposition 10

For a HARA-based risk function with 1 > v > —oo the FOC (11) resp.
(14) yields

5. v—1
(Az-+ = ) = —nlm. —1+s]; Vi, (42)
I—n
or
éz’e e )
At = = (pifm — 14+ s)775 Ve, (43)
-

Aggregating across investors yields A+é./(1—+). Dividing the aggregate
equation by A; + é;./(1 — ) yields 1/g;. and hence,

J

—n;|me — 1+ 55 =
Vg =3 (_;’jﬂg ) m

so that

d(l/gzg) _ Z 1 —_7’]1 T— Te — 1 + S; Efl S5 — S W’(&f)
de - 1—v \\—n; Te—14s; (me — 1+ 55)? '

] (45)

Assume v < 1 and s, < s; Vi. Then 7'(e) < 0 implies d(1/gs.)/de < 0 so
that dgp./de > 0.
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It remains to be shown for v < 1 that g, — 1 for ¢ — oo. For ¢ — o0,
é;- — oo for at least one investor. By equation (43), é;. — oo if m.—14s; — 0.
Since 7, — 1+ s; > 0 Vi,e and s, < 5; Vj, j # h,m. =14+ 5; — 0 for e — o0
must hold for ¢ = h only. Hence é,. — oo and, therefore, by equation (44),
ghe — 1 for e — oo. It follows from 7. — 1+ s, — 0 for ¢ — oo and 7. > 0

that s;, must not exceed 1. [ |
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