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Abstract. We consider two sequences of Markov chains induc-

ing equivalent measures on the discrete path space. We estab-

lish conditions under which these two measures converge weakly

to measures induced on the Wiener space by weak solutions of

two SDEs, which are unique in the sense of probability law. We

are going to look at the relation between these two limits and at

the convergence and limits of a wide class of bounded function-

als of the Markov chains. The limit measures turn out not to

be equivalent in general. The results are applied to a sequence

of discrete time market models given by an objective probability

measure, describing the stochastic dynamics of the state of the

market, and an equivalent martingale measure determining prices

of contingent claims. The relation between equivalent martingale

measure, state prices, market price of risk and the term structure

of interest rates is examined. The results lead to a modi�cation

of the Black-Scholes formula and an explanation for the surpris-

ing fact that continuous-time arbitrage-free markets are complete

under weak technical conditions.
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Introduction

We consider a discrete time markovian market model. Instead of
modeling the market by de�ning price processes of a certain gener-
ating system of stocks and a bond, we work with an abstract state
process, given as a Markov chain. We de�ne only the risk-free bond

maturing after one period of time and focus on the state prices. The
underlying process describes the market state and the risk-free spot
interest rate is assumed to be a function of this state. It is well known
that in an arbitrage free discrete time market there exists a risk free

probability measure or equivalent martingale measure P such that prices
of attainable contingent claims are expectations of discounted payo�s
with respect to this measure and discounted price processes are martin-
gales. In a continuous time setting the change of measure from objec-

tive probabilities to risk-free probabilities is expressed by the Girsanov
functional. We are going to consider a sequence of discrete time mar-
ket models together with objective and risk-free probabilities. We want
to establish conditions such that the market models converge (weakly
with respect to the objective probabilitiesQ) to a continuous time state

process, given as the weak solution of a stochastic di�erential equation,
which is unique in probability law, and such that, at the same time,
the risk-free probability measures weakly converge too. We will derive
a result about the convergence of prices of a wide class of bounded

contingent claims. In the case that the market is modeled as a multi-
nomial branching process we explicitly calculate the drift and di�usion
coe�cients of the continuous state process with respect to the limit of
the equivalent martingale measures. We calculate the Arrow-Debreu

state prices and show how to �t a market model to a given initial term
structure of interest rates. This will give some insight into the relation
between equivalent martingale measure, state prices, market price of
risk and zero bond prices.
Several papers address the problem of convergence of discrete time

models to continuous time models. It seems not yet to be clear which
type of convergence (weak, almost sure, D2, uniformly tight) is appro-
priate, see [5], [11], [12], [21], [4], [18] and [20] for an overview. However,
all these approaches start with an arbitrage-free continuous time model

and approximate the continuous time price processes by discrete time
price processes. Therefore the limit of the discrete time equivalent
martingale measures is assured to be an equivalent martingale mea-
sure. The approach followed here is more general since we assume only

weak convergence of the objective probability measure describing the



3

stochastic dynamics of the state process (some or even all of its com-

ponents could represent prices) and weak convergence of the discrete
time equivalent martingale measures to a measure which turns out not
to be equivalent to the objective probability measure in general. If we
assume that the market has found in its equilibrium state the prices

for a su�ciently large number of contingent claims such that the mar-
ket becomes complete, then there is a unique corresponding equivalent
martingale measure. There is a one-to-one correspondence between
such arbitrage-free price systems and equivalent martingale measures.
Therefore we are working with a sequence of incomplete discrete mar-

kets made complete by choosing equivalent martingale measures which
allow then to price any contingent claim. By this means we avoid the
problems of an equilibrium approach for the market model. Choosing
these equivalent martingale measures is done in such a way that the

weak limit of the measures exists.
The paper is organized as follows: Section 1 contains preliminary

material. We introduce the martingale problem and cite a theorem
concerning the convergence of a sequence of Markov chains to a solu-

tion of a stochastic di�erential equation. Section 2 contains the main
result about the convergence of a certain class of bounded functionals
of a Markov chain representing price processes of contingent claims.
Section 3 focuses on market models where the state process is driven
by a random walk respectively a normally distributed random variable.

In order to explicitly calculate the limit of the equivalent martingale
measures we classify the probability measures on f�1; 1gm describing
the underlying random walk driving the Markov chains. In Subsection
3.5 we consider Arrow-Debreu state prices and give an explanation

why continuous time markets using continuous square integrable hedg-
ing are complete under weak technical assumptions. In Section 3.6 a
modi�cation of the Black-Scholes European option valuation formula
is derived. Section 4 contains some remarks on Zero Bonds.

1. Preliminary Material

We are going to consider Markov processes in discrete time as well as
in continuous time. We �rst de�ne the spaces on which we will model

these processes. For H � [0;1) let 
H := C
�
H;Rd

�
be the space of

continuous functions from H into Rd and let �H
t
: 
H ! R

d ; ! 7! !(t)
be the evaluation at t 2 H. Let Bd be the Borel �-algebra of Rd and

set Ht := [0; t] \H. A metric on 
H is given by DH : 
H � 
H ! R

DH(!; ~!) :=

1X
i=1

2�i
sup

t2Hi
j !(t)� ~!(t)j

1 + sup
t2Hi

j !(t)� ~!(t)j :
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Let MH

t
:= �

�
�H
s
js 2 Ht

�
and MH := �

�S
s2HMH

s

�
. fMH

t
j t 2 Hg

is a non-decreasing family of sub �-algebras of MH which equals the

Borel �-�eld of subsets of the metric space (
H ; DH). (
H ;MH) is a
subspace of the Skorokhod space, see [16]. The set of all probability
measures on (
H ;MH) is denoted by M(
H). We will model Markov

chains on (~
; ~M) := (
N ;MN) and continuous time Markov processes

on (
;M) := (
[0;1);M[0;1)). Set �t := �
[0;1)
t

for t 2 [0;1) and

~�i := �N
i
for i 2 N .

1.1. Markov Chains. By [9], Theorem 2.4.3, p. 81, any stochastic

kernel � on (Rd ;Bd) de�nes a unique measure P�
x
2 M(~
) for all

x 2 R
d such that

P�
x
(~�0 = x) = 1;(1.1)

and P�
x
-almost sure for all i 2 N

P�
x
(~�i+1 2 Aj ~Mi) = �(~�i; A); 8 A 2 Bd:(1.2)

The triple (~�i; ~Mi; P
�
x
) is called a time-homogeneous Markov chain on

(~
; ~M).

We embed ~
 into 
 by mapping a discrete path to a piecewise linear

path by interpolation. For h > 0 de�ne �h : ~
! 
 by

! 7�!�
t 7! !

��
t

h

�� �
1� � t

h
� � t

h

���
+ !

��
t

h

�
+ 1
� �

t

h
� � t

h

��
; t 2 R

+
�
:

Since D(�h(!);�h(~!)) = ~D(!; ~!); 8 !; ~! 2 ~
 it follows that �h is

continuous. �h induces a map from M(~
) to M(
) by P 7! P � ��1
h
.

Since �ih(�h(~!)) = ~�i(~!); 8 ~! 2 ~
 it follows for all A 2 Bd that
��1
h

�
f! 2 
j �ih(!) 2 Ag

�
= f~! 2 ~
j �ih(�h(~!)) 2 Ag
= f~! 2 ~
j ~�i(~!) 2 Ag:

Therefore the following lemma holds:

Lemma 1.1. The evaluation map on ~
 at time i 2 N has the same

distribution under P 2 M(~
) as the evaluation map on 
 at time ih

under P � ��1
h
.

For a stochastic kernel � we de�ne

Ph

x
(�) := P�

x
� ��1

h
:(1.3)

This de�nition will allow us to work on one single space, namely (
;M).

For the special case where the measures �(y; �) are concentrated on
a �nite discrete subset Zy = Zy(�) � R

d for all y 2 R
d we introduce
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some more notation. Set ~M�
0 =

~M�
0(P

�
x
) :=

n
f! 2 ~
j!(0) = xg

o
and

for i > 0 de�ne recursively the set of states at time i of the process ~�� by

~M�
i
= ~M�

i
(P�

x
) :=

n
f! 2 wj!(i) = zg��w 2 ~M�

i�1; z 2 Zw(i�1)

o
, where

w(j) := !(j) for ! 2 w 2 ~M�
i
for 0 � j � i. M�

i
can be interpreted

as the set of paths of length i with positive probability under P�
x
since

for !; ~! 2 w 2 ~M�
i
we have !(j) = ~!(j); 0 � j � i. Observe that for

w1; w2 2 ~M�
i
, w1 \ w2 = ; i� w1 6= w2 and

P
w2 ~M�

i
P�
x
(w) = 1 and

~M�
i
� ~Mi for all i 2 N. For w 2 ~M�

i
; i > 0 set w�

j

:= f! 2 ~
j!(k) =
w(k); 0 � k � i � jg 2 ~M�

i�1 for 0 � j � i and w� := w�
1

. For

w 2 ~M�
i
; i � 0 and z 2 Zw(i) set [w; z] := f! 2 wj!(i+1) = zg 2 ~M�

i+1,

set w+ := f[w; z]jz 2 Zw(i)g � ~M�
i+1 and de�ne z(w) 2 Zw(i�1) for i > 0

implicitly by w = [w�; z(w)]. Note that [z2Zw(i) [w; z] = w holds for

w 2 ~M�
i
for all i 2 N.

1.2. Continuous Markov Processes. The �-algebra M together
with its �ltration fMtjt � 0g is rich enough to support continuous

Markov processes. To cite some results we need the notion of a transi-

tion probability function or stochastic kernel.

De�nition 1.2. A function �(s; x; t; A); 0 � s < t; x 2 R
d ; and

A 2 Bd is called a transition probability function if

1. �(s; x; t; �); 0 � s < t; x 2 R
d , is a probability measure on (Rd ;Bd),

2. �(s; � ; t; A); 0 � s < t; A 2 Bd, is Bd-measurable,

3. if 0 � s < t < u; x 2 R
d ; and A 2 Bd, then the Chapman-

Kolmogorov equation holds:

�(s; x; u;A) =

Z
Rd

�(s; y; u;A)�(s; x; t; dy):(1.4)

De�nition 1.3. Let � be a transition probability function and � a
probability measure on (Rd ;Bd). A triple (�t;Mt; P ), with P 2M(
) is
called a continuous Markov process (on (
;M)) with transition proba-

bility function � and initial distribution � if for allA 2 Bd and 0 � s < t

P (x0 2 A) = �(A);(1.5)

and P -almost sure

P (�t 2 AjMs) = �(s; �s; t; A):(1.6)

There exists a measure Wx 2M(
) (the Wiener measure) such that
(xt;Mt;Wx) is a Brownian Motion starting at x 2 R

d .

Denote the set of symmetric non-negative de�nite d�d real matrices
by Sd.
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De�nition 1.4. Given locally bounded measurable functions

a = (ai;j)1� i;j� d : R
+ � R

d ! Sd and � = (�i)1�i� d : R
+ � R

d ! R
d ,

with

Lt :=
1

2

dX
i; j =1

ai;j(t; �) @2

@xi @xj
+

dX
i=1

�i(t; �) @

@xi
:(1.7)

A solution to the martingale problem for (a; �) starting from (s; x) 2
R
+ � R

d is a probability measure P 2M(
) such that

P (�t = x; 0 � t � s) = 1(1.8)

and

f(�t)�
Z

s_t

s

Luf(�u)du; t � 0(1.9)

is an Mt-adapted P -martingale for all f 2 C1
0 (Rd).

1.3. Weak Convergence of Markov Chains. We are now going to
establish conditions under which a sequence of Markov chains converges
weakly to a continuous Markov process. More precisely, given a set

f�h; h > 0g of stochastic kernels on (Rd ;Bd), we seek conditions such
that P h

x
:= Ph

x
(�h) converges weakly to a measure Px 2 M(
) for

h& 0.
Denote the set of symmetric non-negative de�nite d�d real matrices

by Sd. We de�ne two functions ��
h

h
: Rd ! R

d and a�
h

h
: Rd !

Sd � R
d�d , approximating the drift- and di�usion-coe�cients of a time-

homogeneous Markov chain for small h:

��
h

h
(x) :=

�
1

h

Z
jx�yj�1

(yi � xi)�
h(x; dy)

�
1�i�d

;(1.10)

and

a�
h

h
(x) :=

�
1

h

Z
jx�yj�1

(yi � xi)(yj � xj)�
h(x; dy)

�
1�i;j�d

:(1.11)

We assume that the following conditions hold: There exist continu-
ous functions � : Rd ! R

d and a : Rd ! Sd such that for all R > 0:

lim
h&0

sup
jxj�R

j��h

h
(x)� �(x)j = 0;(1.12)

lim
h&0

sup
jxj�R

ka�h

h
(x)� a(x)k = 0;(1.13)
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where k � k denotes the operator norm, and

lim
h&0

sup
jxj�R

1

h
�h(x;Rd nB(x; �)) = 0; 8� > 0:(1.14)

Conditions (1.12)-(1.14) are quite plausible conditions which we will

need in order to establish the convergence result. However, we need
one more condition being not intuitive. De�ne the di�erential operator
L by

L :=
1

2

dX
i; j =1

ai;j
@2

@xi @xj
+

dX
i=1

�i
@

@xi
:(1.15)

De�nition 1.5. A solution to the martingale problem for (a; �) start-
ing from x 2 R

d is a probability measure Px 2M(
) such that

P (�0 = x) = 1(1.16)

and

f(�t)�
Z

t

0

Lf(�u)du; t � 0(1.17)

is an Mt-adapted Px-martingale for all f 2 C1
0 (Rd).

We can now cite the main theorem of this section which is a gener-
alization of the Donsker invariance principle, see [19], Chapter 11.2.,

Theorem 11.2.3, p. 272.

Theorem 1.6. Assume conditions (1.12)-(1.14) to hold. If there ex-

ists for each x 2 R
d
a unique solution Px to the martingale problem for

(a; �) starting from x, then limh&0 P
h

x
= Px.

1.4. Stochastic Di�erential Equations. The martingale problem is
related to the problem of solving a corresponding SDE. This relation
will lead to useful conditions on � and � allowing to apply Theorem
1.6. We will only consider time-homogeneous SDEs.
Let an m-dimensional Brownian Motion (Wt;Ft; Q) be given on the

probability space (E;F ; Q), where Ft; t � 0, is assumed to satisfy the
usual conditions.
We consider the SDE:

dX(t) = �(X(t))dt+ �(X(t))dWt; t 2 [0;1);(1.18)

X(0) = x;(1.19)

where � : Rd ! R
d and � : Rd ! R

d�m are measurable.
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There are two di�erent main notions of a solution for an SDE:

De�nition 1.7.

1. An Ft-adapted continuous process Xt; t � 0 on (E;F ; Q) is called
a strong solution of (1.18),(1.19) with respect to W if Q(X(0) =
x) = 1,

Q

�Z
t

0

j�(X(u))j+ Tr [�(X(u))�(X(u))�] du <1
�
= 1; 8 t 2 [0;1);

(1.20)

and

X(t) = x+

Z
t

0

�(X(u))du+

Z
t

0

�(X(u))dWu; 8 t 2 [0;1);(1.21)

holds.

2. A triple (X; ~W ); ( ~E;G; P ); fGtg, where ( ~E;G; P ) is a probability
space, fGtg is right-continuous, augmented �ltration of G such

that f ~Wt; Gt; 0 � t <1g is an m-dimensional Brownian motion

and X satis�es (1.20) and (1.21) (where P replaces Q and ~W
replaces W ), is called a weak solution.

Theorem 1.8. The martingale problem and SDEs are related in the

following way:

1. The existence of a solution Px for the martingale problem for

(���; �) starting from x 2 R
d
is equivalent to the existence of

a weak solution ( ~Xx; ~W ); ( ~E;G; ~P ), fGtg, to (1.18), (1.19). The

two solutions are related by Px = ~P ~X�1
x

.

2. The uniqueness of the solution P to the martingale problem is

equivalent to the uniqueness in the sense of probability law of a

weak solution.

Proof. See [17], Corollaries 5.4.8 and 5.4.9, p. 317 together with Propo-
sition 5.4.11.

If we model a market by a process being a solution of a SDE and study
properties of the market depending only on the law of that process
then existence and uniqueness in the sense of probability law of a weak

solution to this SDE is a kind of minimum requirement we need to get
a well-de�ned model by specifying the drift- and di�usion-coe�cients
�; � of the SDE. In this case, by Theorem 1.6 and Theorem 1.8 the
conditions (1.12)-(1.14) are su�cient for the weak convergence of P h

x

to Px. In general it is di�cult to prove weak existence and uniqueness
in law of solutions for a given SDE. Since strong existence and pathwise
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uniqueness implies weak existence and uniqueness in law we cite the

following result in order to have a handy criterion:

Theorem 1.9. Suppose � and � satisfy the following growth condition:

j�(x)j � K(1 + jxj); j�(x)j � K(1 + jxj);(1.22)

and the local Lipschitz condition for jxj; j~xj < N :

j�(x)� �(~x)j � KN jx� ~xj; j�(x)� �(~x)j � KN jx� ~xj;(1.23)

with K; KN 2 R. Then there is a unique strong solution for (1.18),

(1.19).

Proof. See [17].

Remark 1.10. If for instance a weak solution for a SDE exists, then

uniqueness in probability law follows from the existence of solutions to
a corresponding Cauchy problem, see [17], Theorem 5.4.28.

1.5. Convergence of Functionals of Markov Chains. In order
to price contingent claims we have to evaluate functionals of Markov
chains and calculate their limits. We present some auxiliary results.

Let a set f�h; h > 0g of stochastic kernels on (Rd ;Bd) and a set

of uniformly bounded random variables f ~fhjh > 0; j ~fhj � Kg on ~


such that for some 0 � T < 1 all ~fh are measurable with respect

to ~M[Th ]
be given. Set ~P h

x
:= P�h

x
and P h

x
:= Ph

x
(�h). We consider

functionals F h

x
:= E ~Ph

x

�
~fh
�
. Since �h( ~Mi) �Mih for all i 2 N , we �nd

M[Th ]h
-measurable random variables fh on 
 such that fh = ~fh�

�1
h

on

�h(~
). By Lemma 1.1 we have that F h

x
= EPh

x

�
fh
�
. Assume that fh

to converges uniformly on compact subsets of 
 to anMT -measurable
random variable f . If P h

x
converges weakly to Px, then limh&0 F

h

x
=

EPx

�
f
�
, since fP h

x
; h > 0g is tight. We are going to apply a version of

the Arzel�a-Ascoli theorem. De�ne the modulus of continuity on [0; T ]:

mT

�
:= max

js�tj��

0�s;t�T

j�s � �tj:(1.24)

Theorem 1.11. A subset A of 
 has compact closure if and only if

the following conditions hold:

sup
!2A

j!(0)j <1;(1.25)

lim
�&0

sup
!2A

mT

�
(!) = 0; 8 T > 0:(1.26)

Proof. See [17], Theorem 2.4.9 and Remark 2.3.13.
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We �rst show locally uniform convergence for some sequences of func-

tions on 
. Let Yh; rh; h > 0, be two families of measurable functions
on R

d converging locally uniform to continuous functions Y and r re-
spectively. De�ne fh; f : 
! R for 0 � S < T <1 by

f
S;T

h
:=

[Th ]�1X
i=[Sh ]

hrh(�ih); fS;T :=

Z
T

S

r(�t)dt:

f
S;T

h
and fS;T are MT -measurable and we �nd

Lemma 1.12. f
S;T

h
converges locally uniform to fS;T , and if gh con-

verges locally uniform on 
 to a continuous function g then Yh(gh)
converges locally uniform to Y (g).

Proof. We only show the �rst assertion. Let A � 
 be compact.
Since the function sup

T
:= sup0�t�T j�tj is continuous we �nd K :=

sup
!2A supT (!) < 1 and for  > 0 there exists a �h such that for all

0 < h � �h the following three conditions hold: supjyj�K jrh(y)�r(y)j <
, h supjyj�K jr(y)j <  and jr(y1) � r(y2)j <  if jy1 � y2j < �h

and jy1j; jy2j � K . By Theorem 1.11 we �nd a �� > 0 such that
sup

!2Am
T

�
(!) < �h for all 0 < � � ��. On A we have for h � min(�h; ��)���fS;T

h
� fS;T

��� =����
�P[Th ]�1

i=[Sh ]
hrh(�ih)�

R (i+1)h

ih
r(�t)dt

�
+
R
S

[Sh ]h
r(�t)dt�

R
T

[Th ]h
r(�t)dt

����
�
0
@[Th ]�1P

i=[Sh ]

(i+1)hR
ih

jrh(�ih)� r(�t)j dt
1
A+

R
S

[Sh ]h
jr(�t)j dt+

R
T

[Th ]h
jr(�t)j dt

�
0
@[Th ]�1P

i=[Sh ]

R (i+1)h

ih
jrh(�ih)� r(�ih)j+ jr(�ih)� r(�t)j dt

1
A + 2

�
0
@[Th ]�1P

i=[Sh ]

R (i+1)h

ih
2dt

1
A+ 2 � 2(T + 1);

hence the assertion follows.

With this lemma we immediately �nd

Proposition 1.13. Let the family rh be uniformly bounded from below

and let Yh : R
d ! R be uniformly bounded respectively let Zh : 
! R be
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a family of M[Th ]h
-measurable uniformly bounded functions converging

locally uniform to a MT -measurable function Z : 
! R. Then

lim
h&0

EPh
x

2
64exp

0
B@�

[Th ]�1X
i=[Sh ]

hrh(�ih)

1
CAYh

�
�[ Th ]h

�375 = EPx

2
4e�

TR

S

r(�t)dt

Y (�T )

3
5

(1.27)

respectively

lim
h&0

EPh
x

2
64exp

0
B@�

[ Th ]�1X
i=[Sh ]

hrh(�ih)

1
CAZh

3
75 = EPx

h
e�

R T
S
r(�t)dtZ

i
:(1.28)

A similar result holds for the limits of the conditional expectations

if rh; h > 0 is uniformly bounded from below. For �xed 0 � T < 1
and a compact A � 
 we �nd with Lemma 1.5 for  > 0 a �hT

A
> 0 such

that exp��fS;T
h

�
Zh � exp

��fS;T �Z
A

� ;

for all 0 < h � �hT
A
and all 0 � S � T . Thus for all P 2 M(
) and all

0 � s <1 EP

h
exp

�
�fS;T

h

�
Zh � exp

��fS;T�Z��Ms

i
A

� :(1.29)

De�ne measurable maps F
0;T
h

; ~F T

h
: 
! 
 by

F
0;T
h

(!) := �h

��
i 7! EPh

x

h
exp

�
�f 0;T

h

�
Zh
��Mih

i
(!)
��

;(1.30)

and

~F T

h
(!) := �h

��
i 7! EPh

x

h
exp

�
�f ih^T;T

h

�
Yh

�
�[ Th ]h

� ��Mih

i
(!)
��

:

(1.31)

By (1.29) we have for any sequence hn > 0; limn!1 hn = 0 and !n 2 

with limn!1 !n = !

lim
n!1

F
0;T
hn

(!n) =
�
s 7! EPx

�
exp

��f 0;T �Z��Ms

�
(!)
�
=: F 0;T (!);

(1.32)

and

lim
n!1

~F T

hn
(!n) =

�
s 7! EPx

�
exp

��f s;T�Z��Ms

�
(!)
�
=: ~F T (!);(1.33)

By [1], Theorem 1.5.5, p. 34, we have
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Proposition 1.14. Under the assumptions of Proposition 1.13 and

if P h

x
converges weakly to Px then P h

x

�
F

0;T
h

��1
converges weakly to

Px
�
F 0;T

��1
and P h

x

�
~F T

h

��1
converges weakly to Px

�
~F T

��1
.

With the last two propositions we will prove weak convergence of
the discounted discrete time price processes respectively discrete time
price processes.

We have now reached a quite general framework in which we can model
a sequence of approximating markets weakly converging to a contin-
uous time market model and have found conditions guaranteeing the

convergence of a wide class of bounded functionals. The advantage
of a discrete time model is that the calculations necessary to price a
contingent claim can in principle be done exactly, but with decreasing
time period h the number of operations increases dramatically. The

convergence of functionals allows to use results about continuous time
models as approximations for the discrete time models. For example,
di�erentiability, boundedness and growth conditions on �; �; Y allow
to �nd the limit of such functionals by solving a partial di�erential
equation with boundary condition, see [7].

2. Valuation of Contingent Claims

We assume a sequence of markovian discrete time complete market
models to be given. The state process with respect to the equivalent

martingale measure P�h

x
, see [10], is then given by a Markov chain de-

scribed by stochastic kernels �h. The assumption we make here is that
the �h are time homogeneous stochastic kernels. In Section 3.5 we will

argue from an economical point of view why this assumption is rea-
sonable in our time homogeneous setting, see Remark 3.20. Assuming
conditions (1.12) -(1.14) to hold for some � and a := ��� such that
the martingale problem for (a; �) starting from x 2 R

d has a unique

solution for all x, the measures P�h

x
converge weakly to a measure Px

induced by a process X being a weak solution to the SDE (1.18), (1.19)
which is unique in law.
We assume the existence of a bank account without default risk.

The risk-free spot interest paid on this account over a time interval of
length h > 0 is given by a measurable function Rh : R

d ! (�1 + �;1)

of the state variable Xt for some � > 0. De�ne rh :=
log(1+Rh)

h
. rh is the

equivalent interest rate being constant over a time interval of length h
with 1

1+Rh
= exp(�rhh) as the 1-period discount factor. rh is uniformly
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bounded from below since � > 0 is independent of h. We can think of

rh being given by either an interest rate policy of a central bank that
sets the rate rh(x) if the market is in state x, or as the equilibrium
interest rate in the market. Note that this de�nition allows for Rh(~�i)
or rh(~�i) to be a component of ~�i. The interest rate is then part of

the market state and the market dynamic explicitly depends on the
interest rate.
A contingent claim Y T

h
with maturity

�
T

h

�
h is de�ned as a ~M[Th ]

-

measurable random variable on ~
. All contingent claims can be priced

using the equivalent martingale measure P�h

x
:

Proposition 2.1 (Contingent claim pricing formula). For 0 � S �
T < 1 the price V[Sh ]h

(Y T

h
) of the contingent claim Y T

h
at time

�
S

h

�
h

is given by the expectation of the discounted payo� at maturity:

V[Sh ]h
(Y T

h
) = E

P�h
x

2
64
[Th ]�1Y
j=[Sh ]

1

1 +Rh(~�j)
Y T

h

��� ~M[Sh ]

3
75(2.1)

= E
P�h
x

2
64exp

0
B@�

[Th ]�1X
j=[Sh ]

hrh(~�j)

1
CAY T

h

��� ~M[Sh ]

3
75 :(2.2)

For a path-independent contingent claim ~Y T

h
with measurable payo�

~Yh

�
~�[Th ]

�
we have

V[Sh ]h
( ~Y T

h
) = E

P
�h

~�

[Sh ]

2
64exp

0
B@�

[Th ]�[
S
h ]�1X

j=0

hrh(~�j)

1
CA ~Yh

�
~�[Th ]�[

S
h ]

�375 :
(2.3)

Proof. See [10].

De�ne a map V h

Y
T
h

: ~
! ~
 by

V h

Y
T
h
(~!) :=

�
s 7! V(s^[Th ])h

�
Y T

h

�
(~!)
�
:(2.4)

By (2.3) we have for s 2 N

~�s

�
V h

~Y T
h

�
= V(s^[Th ])h

( ~Y T

h
)

= E
P
�h

~�
s^[Th ]

2
64exp

0
B@�

[Th ]�s�1X
j=0

hrh(~�j)

1
CA ~Yh

�
~�
([Th ]�s)

+

�375 :
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V h

Y
T
h

is the discrete time price process of the contingent claim Y T

h
up to

its maturity time
�
T

h

�
h.

2.1. Convergence of Prices of Contingent Claims. Set P h

x
:=

Ph

x
(�h) and for simplicity consider contingent claims ~Y T

h
= ~Yh

�
~�[Th ]

�
for some measurable ~Yh : Rd ! R, i.e. we consider contingent claims
depending only on the terminal state and not on the whole path of the
state process up to time T . We obtain by Lemma 1.1 and Proposition

2.1 for 0 � S � T <1:

V[Sh ]h
( ~Y T

h
) = EPh

x

2
64exp

0
B@�

[Th ]�1X
j=[Sh ]

hrh(�jh)

1
CA ~Yh

�
�[Th ]h

�375 :(2.5)

Assume that

lim
h&0

sup
jxj�R

jrh(x)� r(x)j = 0;(2.6)

for R > 0 and a continuous function r bounded from below by �L for
some L 2 R and

lim
h&0

sup
jxj�R

j ~Yh(x)� ~Y (x)j = 0;(2.7)

for R > 0 and a continuous bounded function ~Y . We also assume
j ~Yhj � ~L for all h > 0. By Proposition 1.13 we immediately �nd:

Proposition 2.2. If P h

x
converges weakly to Px, then the prices

V[Sh ]h
( ~Y T

h
) of the contingent claims ~Y T

h
at time

�
S

h

�
h in the approxi-

mating discrete time markets converge to a value V ~Y T (S) given by:

V ~Y T (S) := lim
h&0

V[Sh ]h
( ~Y T

h
) = EPx

h
e�

R T
S
r(�t)dt ~Y (�T )

i
; 8 0 � S � T:

(2.8)

By Proposition 2.2 and Proposition 1.14 we �nd:

Theorem 2.3. If P h

x
converges weakly to Px then the discrete time

price processes V h

~Y T
h

of the contingent claims ~Y T

h
in the approximating

discrete time markets converge weakly to the continuous time process

V ~Y T (� ^ T ):

V ~Y T (s ^ T ) = EPx

h
e�

R T
s^T

r(�t)dt ~Y (�T )
���Ms

i
; 8 0 � s <1:(2.9)
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Remark 2.4. Theorem 2.3 is easily extended to more general bounded

contingent claims Z of the form

Z =

~Z

 
f�Ti ; i � n1g ;

(
sup

Sj�t� ~Sj

gj(�t); j � n2

)
;

(
~RkR
Rk

hk(�t)dt; k � n3

)!

where for 1 � i � n1 < 1, 1 � j � n2 < 1 and 1 � k � n3 < 1,

Ti; Sj; ~Sj; Rk; ~Rk � T and ~Z : Rn1+n2+n3 ! R is bounded and contin-
uous, and gj; hk are continuous. This allows to price path dependent
contingent claims like Barrier Options or Asian Options, see [15].

By the Markov property of weak solutions of SDEs we have

Corollary 2.5. Under the assumptions of Theorem 2.3 there exists a

function F ~Y : R+ � R
d ! R such that for all 0 � s <1

V ~Y T (s) = EP�s^T

�
e�

R (T�s)+
0

r(�t)dt ~Y
�
�(T�s)+

��
= F ~Y ((T � s)+; �s^T );

(2.10)

and F ~Y (0; x) =
~Y (x) for all x 2 R

d
.

Under di�erentiability, boundedness and growth conditions on �, �,

r, ~Y the function F ~Y is C1;2 and solves the following PDE for t � 0:

 
� @

@t
+

dX
i=0

�i(x)
@

@xi
+

dX
i;j=0

ai;j(x)
@2

@xi@xj
� r(x)

!
F (t; x) = 0;

(2.11)

with boundary condition F (0; x) = ~Y (x), see [7].
In the next section we are going to look at the relation between the

limit processes under the martingale probabilities respectively under

the objective probabilities.

3. Markov Chains driven by a Random Walk

For m > 0 set Zm := f�1; 1gm and denote the power set of Zm by
P(Zm). For h > 0 let �h be a stochastic kernel on (Rd ;P(Zm)). Given
measurable functions �h : Rd ! R

d and �h : Rd ! R
d�m , de�ne a

function �h = �
�h;�h;�h

h
on Rd � Bd by

�h (x;B) :=
X
z2Zm

1B

�
x + �h(x)h +

p
h�h(x)z

�
�h (x; fzg)(3.1)

Lemma 3.1. �h is a stochastic kernel on (Rd ;Bd).



16

Proof. It is easy to see that �h(x; �) is a probability measure on (Rd ;Bd).
Since 1B is measurable for B 2 Bd and �h(�; fzg) is a measurable
function for z 2 Z by de�nition of a stochastic kernel, �h(�; B) is
measurable as a sum of products of measurable functions.

�h de�nes a Markov chain (~�i; ~
; P
�h
x

) such that the states reachable
from any state y 2 R

d in the next step are a subset of fy + �h(y)h +p
h�h(y)zjz 2 Zmg. If �h(y) is invertible, then P�h

x

�
~�i+1 = y+�h(y)h+p

h�h(y)zj~�i = y
�
= �h (y; fzg) for all z 2 Zm. The stochastic kernel

�
0;I;�̂h
h

, where �̂h(y; fzg) = 2�m; 8 z 2 Zm; 8 y 2 R
d , describes an

m-dimensional independent random walk in some sense 'driving' the

Markov chain (~�t; ~
; P
�h
x

).
In order to get a better understanding of �h we �rst take a look at the

possible measures �h. The results will allow us to establish conditions

on �h su�cient for the weak convergence of Ph

x
(�h).

3.1. Probability Measures on f�1; 1gm. We want to characterize
the set M(Zm) of probability measures on (Zm;P(Zm)) for m � 1.

There is an one-to-one correspondence between M(Zm) and the set
M+

m
:= ff 2 R

Zm jf � 0;
P

z2Zm f(z) = 1g. We will construct a basis

B = fb1; � � � b2mg for the linear space RZm , such that the coe�cients of
P 2 M(Zm) �=M+

m
with respect to B have a nice probability theoretical

interpretation.
R
Zm is an euclidean linear space with the scalar product < �; � >:

R
Zm �R

Zm ! R; (f; g) 7!P
z2Zm f(z)g(z). Let Nm := f1; � � �; mg and

for a subset U � Nm denote the elements of U by ui; i = 1; � � �; jU j. For
z = (z1; � � �; zm) 2 Zm de�ne zU :=

QjU j
i=1 zui, with

Q0

i=1 := 1. Set B =

f(z 7! zU) 2 R
Zm jU � Nmg. Note that jBj = 2m = dim(RZm ). For

z 2 Zm and U; V � Nm we have zUzV = zU[V nU\V and
P

z2Zm z
W = 0

for all non-empty W � Nm, hence B is an orthogonal basis of RZm .

Lemma 3.2. A function f 2 R
Zm admits the unique representation

f(z) =
X
U�Nm

2�m~�Uz
U ;(3.2)

with ~�U = ~�
f

U
given by

~�U =< f(�); (z 7! zU ) > :(3.3)

Proof. Observe < (z 7! zU ); (z 7! zU ) > =
P

z2Zm z
; = 2m.

Consider the identity Im = (Im;1; � � �; Im;m) on Zm as a R
d -valued

random variable on (Zm;P(Zm)). Given a measure P 2 M(Zm), we
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apply this representation to the function p : Zm ! [0; 1]; z 7! P (fzg) =
P (Im = z).

Proposition 3.3. p admits the unique representation

p(z) =

mY
i=1

1 + �izi

2
+

X
1�i<j�m

zizj�i;j

2m
+

X
U�Nm;jU j>2

�Uz
U

2m
;(3.4)

with

1.

�i = �P
i
:= ~�P

i
= EP [Im;i] 2 [�1; 1]; 1 � i � m;(3.5)

2.

�i;j = �P
i;j
:= ~�Pfi;jg � ~�Pfig

~�Pfjg = CovP [Im;i; Im;j]; 1 � i < j � m;

(3.6)

3.

�U = �P
U
:= ~�P

U
�

jU jY
i=1

~�P
ui
; U � Nm; jU j > 2:(3.7)

Furthermore we have P (Im;i = �1) = 1��i
2

for 1 � i � m and for the

positive semi-de�nite covariance matrix of Im

� = �P := CovP [Im] = (�i;j)1�i;j�m;(3.8)

holds with �j;i := �i;j for 1 � i < j � m and �i;i := 1 � �2
i
for

1 � i � m.

Proof. By expanding the product in (3.4) and comparing with the
unique representation given in Lemma 3.2 the �rst part of the Propo-
sition is clear. Furthermore for 1 � i � m we have

P (Im;i = 1) =
X

z2Zm; zi=1

p(z) =
X

z2Zm; zi=1

mY
j=1

1 + �jzj

2
=

1 + �i

2
;

and

VP [I
2
m;i

] = 1� �2
i
:

De�nition 3.4. The elements of the tuple (�P ;�P ) are called the �rst
and second order data of P .

It is now interesting to ask, if we can �nd a probability measure P for
any tuple (�;�) such that (�;�) = (�P ;�P ) , as long as the necessary

conditions j�ij � 1, � non-negative de�nite and �i;i = 1 � �2
i
are

satis�ed. As it will become clear in the next section, the answer to this
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question is related to the problem of determining the coe�cients of the

SDE satis�ed by the continuous time Markov process described by the
weak limit of the measures Ph

x
(�h). Denote the set of m�m-matrices

with all diagonal elements in the interval [0; 1] by Dm and consider the
map Covm : M(Zm) ! Sm \ Dm; P 7! CovP (Im). It is easy to see

that Covm is onto for m = 1; 2. However, we have

Proposition 3.5. For m > 2; Covm is not onto.

Proof. (Sketch of a proof by contradiction)
M(Zm) is a compact convex subset of the set of all functions from Zm

to R with a �nite set of extremal points. The same is true for the Image

of Covm. By considering appropriate projections and intersections with
linear subspaces the problem can be reduced to the case m = 3, where
one �nds that S3 \ D3 has an in�nite set of extremal points, which
contradicts the assumption Covm being surjective.

We are especially interested in the image of Covm restricted to the set
of measures P with �rst order data �P = 0, i.e. Covm(P ) is a non-
negative de�nite matrix with all diagonal entries equal to 1. In this

case we give an explicit correlation matrix which is not in the image of
Covm. In the case m = 3, given a probability measure P with �rst and
second order data (0;�P ), we can de�ne a new probability measure P+

by P+(fzg) := P (fzg)+P (f�zg). Since (�z)N3 = (�z1)(�z2)(�z3) =
�zN3 and (�z)U = zU for U � N3 with jU j = 2, we �nd (�P+;�P+) =

(0;�P ) and �
P+

N3
= 0, hence

P+(fzg) := 1

23
+

X
1�i<j�3

zizj�
P

i;j

23
:(3.9)

De�ne

A(�) :=

0
@ 1 �

p
2=2

� 1
p
2=2p

2=2
p
2=2 1

1
A(3.10)

A(�) is non-negative de�nite for � 2 [0; 1]. It is now easy to check,

that the function

p(z) :=
1

23
+

X
1�i<j�3

zizjA(�)i;j

23
;(3.11)

is non-negative i� � 2 [
p
2 � 1; 1] and for general m it is easy to see,

that a correlation matrix having A(�); � 2 [0;
p
2� 1) as sub-matrix is

not in the image of Covm.
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3.2. Weak Convergence of Markov Chains driven by a Ran-

dom Walk. The representation of measures on f�1; 1gm developed
in the last section allows us to calculate the drift- and the di�usion-
coe�cients for the Markov chain given by the stochastic kernel �h :=
�
�h;�h;�h

h
de�ned by (3.1). De�ne

~��h

h
(x) :=

�
1

h

Z
(yi � xi)�h(x; dy)

�
1�i�d

;(3.12)

and

~a�h

h
(x) :=

�
1

h

Z
(yi � xi)(yj � xj)�h(x; dy)

�
1�i;j�d

:(3.13)

For x; y 2 R
m de�ne the matrix x 
 y 2 R

m�m by x 
 y :=
(xiyj)1�i;j�m. Given A;B 2 R

d�m ; A = (ai;j); B = (bi;j); B
� = (b�

i;j
) we

have

(Ax)
 (By) =
� mX
k=1

ai;kxk

mX
l=1

bj;lyl
�
1�i;j�d

=
� mX
k;l=1

ai;kxk ylb
�
l;j

�
1�i;j�d = A(x
 y)B�:

Now (3.6) reads as

� =
�
E[zizj]

�
1�i;j�m

� �
 �:(3.14)

Proposition 3.6. Let (�h(x);�h(x)) be the �rst and second order data

of the measure �h(x; �) 2M(Zm). Then

~��h

h
(x) = �h(x) + �h(x)

�h(x)p
h
;(3.15)

and

~a�h

h
(x) = h�h(x)
 �h(x) +

p
h
�
�h(x)


�
�h(x)�h(x)

�
(3.16)

+
�
�h(x)�h(x)

�
 �h(x)
�
+ �h(x)

�
�h(x) + �h(x)
 �h(x)

�
��
h
(x):

Proof. By the discrete nature of �h we have

1

h

Z
(y � x)�h(x; dy) =

1

h

X
z2Zm

�
�h(x)h+

p
h�h(x)z

�
�h(x; fzg) =

�h(x) +
1p
h
�h(x)

X
z2Zm

z�h(x; fzg) = �h(x) +
1p
h
�h(x)�h(x);
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and

1

h

Z
(y � x)
 (y � x)�h(x; dy) =

X
z2Zm

�
�h(x)

p
h + �h(x)z

�


�
�h(x)

p
h+ �h(x)z

�
�h(x; fzg) =

�h(x)
 �h(x)h + �h(x)

�p

h�h(x)�h(x)
�
+

�p
h�h(x)�h(x)

�
 �h(x) +
X
z2Zm

�
�h(x)z

�
 ��h(x)z��h(x; fzg):
Since X

z2Zm

�
�h(x)z

�
 ��h(x)z� �h(x; fzg)
= �h(x)

 X
z2Zm

z 
 z �h(x; fzg)
!
��
h
(x)

= �h(x)
�
�h(x) + �h(x)
 �h(x)

�
��
h
(x)

the assertion follows.

In the last section the market model was given with respect to the
equivalent martingale measure. Now the market model is given with
respect to the objective probabilities, i.e. the market state process is

given as a time homogeneous Markov chain (~�t; ~
; P
�̂h
x

) for a stochastic

kernel �̂h := �
�h;�h;�̂h

h
on R

d � Bd, with �̂h(y; fzg) = 2�m; 8 z 2
Zm; 8 y 2 R

d . The market state process is driven by m independent
random walks. First and second order data of the measure �̂h(y; �)
are (0; I) for all y 2 R

d and h > 0. We assume that the following
conditions hold: There exist continuous functions � : Rd ! R

d and

� : Rd ! R
d�m such that for all R > 0:

lim
h&0

sup
jxj�R

j�h(x)� �(x)j = 0;(3.17)

and

lim
h&0

sup
jxj�R

k�h(x)� �(x)k = 0:(3.18)

Since � and � are continuous, they are locally bounded and the same is
true for �h and �h if h is small enough. Therefore for arbitrary � > 0,

�̂h(x;B(x; �)) = 1 for all x 2 B(0; R) if h < ĥ, where ĥ depends on

R and �. This means that condition (1.14) holds and ~��̂h

h
= ��̂h

h
and
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~a�̂h

h
= a�̂h

h
on B(0; R) for h < ĥ. By Proposition 3.6 conditions (1.12)

and (1.13) hold for � and a := ���. Denote the unique solution to the

martingale problem for (a; �) starting from (0; x) by P̂x if it exists and

set P̂ h

x
:= Ph

x
(�̂h). We can now apply Theorem 1.6.

Proposition 3.7. If � and � satisfy the growth and Lipschitz condi-

tions (1.22) and (1.23), then limh&0 P̂
h

x
= P̂x.

3.3. Convergence of Equivalent Measures. We will now apply
Theorem 1.6 to a second set of Markov chains given by stochastic

kernels on (Rd ;P(Zm)), de�ned as �h := �
�h;�h;�h

h
, with measurable

�h; �h and a stochastic kernel �h on (Rd ;P(Zm)) for h > 0. Set
P h

x
:= Ph

x
(�

�h;�h;�h

h
) and denote the �rst and second order data of

�h as (�h;�h).

De�nition 3.8. The family of stochastic kernels �h is called equivalent

to �̂h if �h(x; �) and �̂h(x; �) are equivalent measures, i.e. �h(x; fzg) >
0; 8 z 2 Zm, for all x 2 R

d . The family �h is called (�;�)-converging if
� : Rd ! R

m and � : Rd ! R
m�m \ Sm are continuous functions such

that the following conditions hold

1.

lim
h&0

sup
jxj�R

�����h(x)p
h
� �(x)

���� = 0;(3.19)

2.

lim
h&0

sup
jxj�R

k�h(x)� �(x)k = 0:(3.20)

Remark 3.9. Observe that �(x) 2 �
(di;j) 2 R

m�m jdi;i = 1; di;j 2
[�2; 2]	; 8 x 2 R

d .

If �h and �̂h are equivalent, then P h

x
and P̂ h

x
are equivalent on

Mih; 8 i 2 N, since any path of �nite length has positive probabil-

ity with respect to both measures. If �h is (�;�)-converging, then by
Proposition 3.6 we �nd that condition (1.12) and (1.13) hold with �
replaced by �+�� and a := ����. It is well known that a non-negative
de�nite matrix has a unique non-negative de�nite square root. If we de-

note this unique square root of � by
p
�, we can again apply Theorem

1.6.

Proposition 3.10. If �+�� and �
p
� satisfy the growth and Lipschitz

conditions (1.22) and (1.23), then limh&0 P
h

x
= Px.

Remark 3.11. By Theorem 1.2 in [8], Chapter 6, p. 129, we have that

�
p
� is Lipschitz continuous on compact sets if � is Lipschitz continu-

ous on compact sets and � is C2(Rm).
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Remark 3.12. The results of Section 3.1 show that the possible limit

functions � are only a proper subset of the set of all correlation ma-
trices. This has its reason in the discrete nature of �. If �̂ and � are
gaussian measures this restriction does not apply.

Remark 3.13. By considering time-space processes these results can be
extended to the time-inhomogeneous case.

We now turn to the �rst main result of this paper. We assume

the necessary conditions on �; �; �;�; r guaranteeing F ~Y to solve (2.11)

with � replaced by ~�i := �i+(��)i and ai;j replaced by ~ai;j := (�
p
�)i;j,

for all ~Y 2 C2
0(R

d), see [7], Appendix E. In addition we assume �; �;�

and � to be bounded. Consider a weak solution (X;W ); ( ~E;G; P ); fGtg
of the SDE (1.18), (1.19). We have proved that the discrete time price

processes V h

~Y T
h

weakly converge to the continuous processes F ~Y

�
(T �

s)+; Xs^T
�
(Corollary 2.5). We seek a measure Q equivalent to P such

that the discounted processes

A~�;~a;r :=
n
e�

R
�^T

0
r(Xt)dtF ~Y

�
(T � �)+; X�^T

����T 2 R
+ ; ~Y 2 C2

0 (R
d)
o
;

(3.21)

become martingales with respect to Q.

Proposition 3.14. If Q � P and all processes Z 2 A~�;~a;r are local

martingales with respect to Q then ��� = ����.

Proof. Under a measure Q equivalent to P , X remains a continuous
semimartingale with respect to Q. There exists a decomposition X =

L+A, where L is a continuous local martingale and A is a continuous
process with �nite variation, see [16], Lemma 4.24, p. 44. For 0 � t � T
we apply Itô's formula to Z 2 A~�;~a;r and make use of (2.11):

Zt = e�
R t
0
r(Xs)dsF ~Y

�
T � t; Xt

�
= F ~Y

�
T;X0

�
+

Z
t

0

e�
R s
0
r(Xu)du

�
�r(Xs)F ~Y

�
T � s;Xs

�� @F ~Y

@T

�
T � s;Xs

��
ds

+

dX
i=0

Z
t

0

e�
R s
0
r(Xu)du

@F ~Y

@xi

�
T � s;Xs

�
dX i

s

+
1

2

dX
i;j=0

Z
t

0

e�
R s
0
r(Xu)du

@2F ~Y

@xi@xj

�
T � s;Xs

�
d[X i; Xj]s;
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hence we have

Zt =

dX
i=0

Z
t

0

e�
R s
0
r(Xu)du

@F ~Y

@xi

�
T � s;Xs

�
(dAi

s
� ~�i(Xs)ds)

+
1

2

dX
i;j=0

Z
t

0

e�
R s
0
r(Xu)du

@2F ~Y

�
T � s;Xs

�
@xi@xj

(d[X i; Xj]s � ~ai;j(Xs)ds)

+

dX
i=0

Z
t

0

e�
R s
0
r(Xu)du

@F ~Y

@xi

�
T � s;Xs

�
dLi

s
:

The �nite variation part of Z must vanish Q-almost surely by assump-
tion. Since d[X i; Xj]s = ai;j(Xs)ds holds with respect to Q, we have
Q-almost surelyZ

t

0

e�
R s
0
r(Xu)du ~LF ~Y

�
T � s;Xs

�
ds(3.22)

=
R
t

0
e�

R s
0
r(Xu)du

P
d

i=0

@F~Y

�
T�s;Xs

�
@xi

dAi

s
;

where ~L :=
P

d

i=0 ~�i
@

@xi
+ 1

2

P
d

i;j=0(~ai;j � ai;j)
@
2

@xi@xj
. Di�erentiating the

left side of (3.22) at t = T from the left, we obtain

lim
�&0

1

�

Z
T

T��
e�

R s
0
r(Xu)du ~LF ~Y

�
T � s;Xs

�
ds =

e�
R T
0
r(Xu)du ~LF ~Y

�
0; XT

�
= e�

R T
0
r(Xu)du ~L ~Y (XT ):

Di�erentiating the right side of (3.22) at t = T from the left, we obtain

lim
�&0

1

�

Z
T

T��
e�

R s
0
r(Xu)du

dX
i=0

@F ~Y

�
T � s;Xs

�
@xi

dAi

s
=

e�
R T
0
r(Xu)du lim�&0

1
�

R
T

T�� e
R T
s
r(Xu)du

P
d

i=0

@F~Y

�
T�s;XT

�
@xi

dAi

s
:

Multiplying both sides with e
R T
0
r(Xu)du we have

~L ~Y (XT ) = lim
�&0

1

�

Z
T

T��
e
R T
s
r(Xu)du

dX
i=0

@F ~Y

�
T � s;XT

�
@xi

dAi

s

= lim
�&0

1

�

Z
T

T��
e
R T
s
r(Xu)du

dX
i=0

@ ~Y
�
XT

�
@xi

dAi

s
+

lim
�&0

1

�

Z
T

T��
e
R T
s
r(Xu)du

dX
i=0

@(F ~Y

�
T � s;XT

�� ~Y
�
XT

�
)

@xi
dAi

s
;
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hence we get

~L ~Y (XT ) = lim
�&0

1

�

Z
T

T��

dX
i=0

@ ~Y
�
XT

�
@xi

dAi

s
= lim

�&0

dX
i=0

@ ~Y
�
XT

�
@xi

1

�

TZ
T��

dAi

s

= lim
�&0

dX
i=0

@ ~Y
�
XT

�
@xi

Ai

T
� Ai

T��
�

;

for all ~Y 2 C2
0(R

d) and therefore, choosing ~Yi such that @

@xi

~Yi(y) 6= 0

and @

@xj

~Yi(y) = 0 for i 6= j and @
2

@xk@xl

~Yi(y) = 0; 8 1 � k; l � d, for all

jyj < R, we �nd
dA

i
t

dt
= ~�i(Xt); 81 � i � d, Q-almost sure for all 0 � t <

1. Choosing ~Yi;j such that @
2

@xi@xj

~Yi;j(y) 6= 0 and @
2

@xk@xl

~Yi;j(y) = 0 for

all fk; lg 6= fi; jg, for all jyj < R, we �nd and ai;j = ~ai;j; 8 1 � i; j � d.

Remark 3.15. Even if �h and �̂h are equivalent and �h is assumed to

be (�;�)-converging, we can not conclude in general that Px and P̂x
are equivalent as well. If � and � satisfy the growth and Lipschitz con-
ditions (1.22), (1.23) and if ���� = ��� and the Girsanov-functional
1
2
exp(� R t

0
�(Xu)

2du+
R
t

0
�(Xu)dWu) is uniformly integrable up to time

T � 1, then Px and P̂x are equivalent on MT . � is usually called the
market price of risk. If ���� 6= ��� then there does not exist a locally

equivalent martingale measure for the continuous time limit market.
By a result of [6] this is in the case of a �nite number of stocks equiv-
alent to the existence of a free lunch with vanishing risk (FLVR). This
case is considered in Subsection 3.4.
In the current literature on continuous �nance only measures equiv-

alent to P̂x are considered. If we see the continuous time market as
an approximation for a discrete market working with a high frequency
then we have to take a wider class of measures, induced by the weak

solutions of SDEs with drift- and di�usion-coe�cients �+�� and �
p
�,

into account.

3.4. An Example. In this subsection we consider the market de-

scribed by �h := �
�h;�h;�h

h
and �̂h := �

�h;�h;�̂h

h
under the additional

condition that the underlying d-dimensional state process ~�i; i 2 N,

describes the prices of d stocks or contingent claims. As a consequence
the discounted price processes

Si := ~�i

i�1Y
j=0

1

1 +Rh(~�j)



25

must be martingales under P�h
x

. Calculating for i � 1

E
P
�h
x

h
Si
�� ~Mi�1

i

= E
P
�h
x

h
~�i
�� ~Mi�1

i i�1Y
j=0

1

1 +Rh(~�j)

=
�
~�i�1 + ~��h

h
(~�i�1)h

� i�1Y
j=0

1

1 +Rh(~�j)

= ~�i�1

i�2Y
j=0

1

1 +Rh(~�j)
+

 
~�i�1 + ~��h

h
(~�i�1)h

1 +Rh(~�i�1)
� ~�i�1

!
i�2Y
j=0

1

1 +Rh(~�j)

= Si�1 +
�
~��h

h
(~�i�1)h� ~�i�1Rh(~�i�1)

� i�1Y
j=0

1

1 +Rh(~�j)
;

we �nd by Proposition 3.6 and Proposition 3.10:

Proposition 3.16. The discounted price processes Si are martingales

with respect to P�h
x

if and only if

�hh+ �h�h
p
h = IdRh;(3.23)

on
�
y 2 R

d jP �̂h
x

(f9i : ~�i = yg) > 0
	
, the range of the process ~�i; i 2 N.

(Id(y) := y; 8 y 2 R
d
). Assume (2.6), (3.18) and that �h is (�;�)-

converging (see De�nition 3.8). For �h := Id
Rh

h
� �h

�hp
h
then (3.17)

holds with � := Id r � ��. Furthermore assume that � and � as well

as Idr and �
p
� satisfy the growth and Lipschitz conditions (1.22) and

(1.23), then the weak limit of the price processes with respect to the

martingale measure P�h
x

is a solution to the SDE

dSt = r(St)Stdt+ �(St)
p
�(St)dWt:(3.24)

Remark 3.17. Observe that a market modeled as above with invertible
�h is only complete for d = 1 and m = 1, i.e. one Stock and the risk-
free bond are traded and there is only one source of uncertainty. All

�h > 0 with �rst order data ��h such that �h + �h�
�h

p
h = IdRh lead

to a martingale measure P�h
x

, being locally equivalent, i.e. equivalent

on ~Mi; 8 i 2 N, which is markovian in the sense that the price process

is a time-homogeneous Markov chain with respect to it and any such
martingale measure is of that form.

3.5. The Market Price for Risk and State Prices. In this sub-

section we want to reach a better understanding of the market price for
risk. We want to clarify the relation between the equivalent martingale
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measure, market price for risk and the Arrow-Debreu state prices, see

[7].

We are still considering the Markov chain (~�i; ~
; P
�̂h
x

) modeling the
discrete time approximation of the market with respect to the objective
probabilities together with an locally equivalent martingale measure

P�h
x

given by �h = �
�h;�h;�h

h
. Observe that Zy = Zy(�h) = fy +

�h(y)h+
p
h�h(y)zjz 2 Zmg and jZyj � 2m. For w 2 ~M�

i
; i > 0 de�ne

~zj(w) := fz 2 Zmjw(j) = w(j�1)+�h(w(j�1))h+
p
h�h(w(j�1))zg 2

P(Zm) for 0 < j � i. We denote the only element of ~M�
i
by x and

set for z 2 Zm and w 2 ~M�
i
; i � 0, [w; z] := [w;w(i) + �h(w(i))h +p

h�h(w(i))z].

For w 2 ~M�
i
; i > 0 let Y (w) be the contingent claim that pays 1 unit

at time ih if the process is in state w at time i and becomes worthless

otherwise. By the contingent claim pricing formula we have

V0 (Y (w)) = E
P
�h
x

"
1wQ

i�1
j=0 1 +Rh(~�j)

#
=

i�1Y
j=0

�h(w(j); ~zj+1(w))

1 +Rh(w(j))
:

(3.25)

Remark 3.18. V0(Y ([x; z])) is the 1�period Arrow-Debreu state-price

for the state [x; x + �h(x)h +
p
h�h(x)z]. Furthermore we introduce

contingent claims Yi(zjw) traded at time ih; i 2 N if the process is in

state w 2 ~M�
i
at time i, which pay 1 unit at time (i+1)h if the process

moves from state w to state [w; z] and become worthless otherwise.

Yi(zjw) can be interpreted as a bet on the development of the Markov
chain in the next period and Y ([x; z]) = Y0(zjx). We �nd for the price
of Yi(zjw) at time ih if the process is in state w at time i

Vih (Yi(zjw)) = E
P
�h
x

�
1[w;z]

1 +Rh(w(i))

��� ~Mi

�
(w) =

�h(w(i); ~zi+1([w; z]))

1 +Rh(w(i))
:

(3.26)

For w 2 ~M�
i
we have by (3.25)

V0 (Y (w)) =

i�1Y
j=0

Vjh

�
Yj(zj+1jw�(i�j)

)
�
;

where zj 2 ~zj(w) for 1 � j � i. We �nd immediately a hedging strat-
egy for the contingent claim Y (w):

Buy
Q

i�1
j=1 Vjh

�
Yj(zj+1jw�(i�j)

)
�
units of Y0(z1jx) at time 0. After

one period this portfolio either becomes worthless, in which case it
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equals the value of Y (w) at time h, or it pays o�

i�1Y
j=1

Vjh

�
Yj(zj+1jw�(i�j)

)
�

units of money which can be reinvested, buying

i�1Y
j=2

Vjh

�
Yj(zj+1jw�(i�j)

)
�

units of Y1(z2jw�(i�1)

). Iterating this we replicate the payo� of Y (w).
This procedure also reveals the dynamics of the state prices.

The contingent claim pricing formula now reads as

Proposition 3.19. The price V0(Y ) at time 0 of a contingent claim

Y maturing at time Nh is given by

V0(Y ) =
X

w2 ~M�

N

Y (w)V0 (Y (w))(3.27)

Proof.

V0(Y ) = E
P�h
x

"
N�1Y
j=0

1

1 +Rh(~�j)
Y

#

= E
P�h
x

2
4 X
w2 ~M�

N

1w

N�1Y
j=0

1

1 +Rh(~�j)
Y

3
5

=
X

w2 ~M�

N

E
P�h
x

"
1wY

N�1Y
j=0

1

1 +Rh(w(j))

#

=
X

w2 ~M�

N

Y (w)E
P�h
x

"
1w

N�1Y
j=0

1

1 +Rh(w(j))

#

=
X

w2 ~M�

N

Y (w)V0 (Y (w)) ;

since Y is constant on w for all w 2 ~M�
N
.

Hence the market becomes dynamically complete by introducing the

contingent claims Yi(zjw); z 2 Zm; w 2 ~M�
i
; i 2 N . This means that

a system of 1�period Arrow-Debreu state-prices for each state of the
market constant in time leads to a complete market.
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Proposition 3.19 allows to price future streams of cash ows. Con-

sider a contract C entitling to future payments generated by a portfolio
of contingent claims Ci with maturity ih; i 2 N . Then the value V0(C)
of C at time 0 is

P1
i=0 V0(Ci). If we assume a dividend paying stock

S in this market where the dividend depends on the state of the mar-

ket only, then we can price the stream of dividend payments generated
by the stock S. The close relation between capital markets and stock
markets becomes clear.

Remark 3.20. The economical reason why we consider locally equiva-
lent martingale measures of the form P�h

x
is that in a market model

being time-homogeneous with respect to the objective probabilities
we expect prices of contingent claims to depend on the state of the
market and the remaining time to maturity only. Assuming com-

pleteness of the market there is a one-to-one correspondence between
time-homogeneous system of positive prices for the claims Yi(zjw); z 2
Zm; w 2 ~M�

i
and the stochastic kernels �

�h;�h;�h

h
� �

�h;�h;�̂h

h
which

uniquely determine the measures �h(w(j); �) restricted to the �-algebra

generated by the sets ([w; �](j + 1))�1 for w 2 ~Mj�; j 2 N. For invert-
ible �h, �h is uniquely determined. Asymptotically only the �rst and

second order data (��h;��h) of �h matter as we have seen in Section
3.3.

The close relation between state-prices and the �rst and second order

data (��h;��h) of �h is explained by Proposition 3.3. For invertible �h,

w 2 ~M�
i
; i � 0, and 1 � j � m we obtain for the contingent claims

Y
j

�(w) :=
P

z2Zm
zj=�1

Yi(zjw)

Vih
�
Y
j

�(w)
�
=

P
z2Zm
zj=�1

�h(w(i); fzg)
1 +Rh(w(i))

=

1���hj (w(i))

2

1 +Rh(w(i))
;(3.28)

and for 1 � j; k � m we obtain for the Y
j;k

��(w) :=
P

z2Zm
zj=�1;zk=�1

Yi(zjw)

Vih

�
Y
j;k

��(w))
�

=

P
z2Zm

zj=�1;zk=�1

�h(w(i); fzg)

1 +Rh(w(i))
(3.29)

=

(1��
�h
j (w(i)))(1��

�h
k

(w(i)))�(��
�h
j;k

(w(i)))

4

1 +Rh(w(i))
:

Remark 3.21. In the situation of Subsection 3.4, where we have d

stocks and if �h is invertible, �h := ��
�1
hp
h
(�hh � IdRh) 2 (�1; 1) is
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a necessary and su�cient condition for the existence of a locally equiv-

alent martingale measure, namely any �h with �rst order data �h leads

to a locally equivalent martingale measure P
�
�h;�h;�h
h

x . Assuming (3.17),
(3.18), (2.6) and (3.19) for �h; �h; rh and �h the objective probabilities

converge weakly but there is no guarantee that the martingale measures
will converge too. If we choose �h, such that (�h;�h) are the �rst and
second order data of some stochastic kernel �h and assume �h to be
(�;�)-converging for some continuous �, then we �x asymptotically

the prices of portfolios of the form Y
j;k

��(w); 1 � j; k � m;w 2 ~M�
i
.

The discrete time markets do in general not become complete if we
choose �h, since the higher order data of �h are not unique. As-
suming (3.20), we get weak convergence of the martingale measures.

From the theory of Backward Stochastic Di�erential Equations, see e.g.
[22], the limit market is known to be arbitrage-free and complete un-
der weak conditions on �; �; r; �, � = I and allowing continuous-time
square-integrable hedging. The continuous-time market together with

an equivalent martingale measure can only be approximated by dis-
crete time markets if we assume the introduction of asymptotic prices

for the contingent claims Y
j;k

��(w) in such a way that �h converges lo-
cally uniform to I. Introducing these asymptotic prices does not cause
the discrete time markets to be complete, but there exist now asymp-

totically enough traded contingent claims to make the limit market
complete. This explains the surprising fact that continuous time mar-
kets are complete under such weak technical conditions. In a more
realistic situation we can not assume � = I.

3.6. Markov Chains driven by a normally distributed random

variable. We consider again a discrete time market described by sto-

chastic kernels �h := �
�h;�h;�h

h
and �̂h := �

�h;�h;�̂h

h
de�ned similar to

(3.1) with the di�erence that we now allow �h and �̂h to be stochastic

kernels on (Rd ;Bm):

�h (x;B) :=

Z
Rm

1B

�
x+ �h(x)h+

p
h�h(x)z

�
d�h (x; z)(3.30)

For simplicity we set �̂h(x) := N (0; I) and assume �h(x) to be of
the form �h(x) = N (�h(x);�h(x)) for some continuous functions �h :
R
d ! R

m and �h : Rd ! Sm � R
m�m . It is easy to see that the

resulting measures P�h
x

and P �̂h
x

describing the state process with re-
spect to objective probabilities respectively the risk-free probabilities

are equivalent on ~Mi; 8 i 2 N since �h(x) � �̂h(x); 8 x 2 R
d . Call-

ing (�h(x);�h(x)) the �rst and second order data of N (�h(x);�h(x)),
Proposition 3.6 holds word by word in this new context. Assume that
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conditions (1.12) and (1.13) hold. If �h(x) is normally distributed, then

condition (1.14) holds for �h. Therefore Proposition 3.7 and Proposi-
tion 3.10 hold in the present situation too if we assume (3.19) and (3.20)
to hold. The main di�erence to the situation considered so far is that
Remark 3.12 and Remark 3.9 does not apply anymore. The set of mea-

sures now possibly appearing as a weak limit of discrete time equivalent
martingale measures Ph

x
(�

�h;�h;�h

h
) is enormous. In general such a limit

measure is not equivalent to the limit of the measures Ph

x
(�

�h;�h;�̂h

h
)

describing the objective probabilities. If the continuous time market is

only seen as an approximation for a discrete time market working at a
high frequency this is not a problem since from non-equivalentness of
the objective measure and the martingale measure there follows only
the existence of an FLVR which is a weaker property than the existence

of an arbitrage and an FLVR involving in�nitely fast trading might not
be realizable in a real market.
We restrict the form of �h further by assuming �h to be normally dis-

tributed: �h(x; �) = N (�h(x); ~�h(x)I), where ~�h : Rd ! (0;1) is a
continuous function. (If the state process represents d stocks, �h(x)
can be modi�ed such that P�h

x
(~�i < 0) = 0; 8 i 2 N.)

In the case d = 1, r(x) � r0 > 0; 8 x 2 R, �(x) = �0x > 0; 8 x 2 R

the price ET

K
(t; x) of an European option with exercise price K and

maturity T can be calculated explicitly by the famous Black-Scholes
formula. Allowing continuous hedging, it is well known that ET

K
is a

solution to the Cauchy problem

�@f
@t

(t; x) + r0f(t; x) =
1

2
�20x

2@
2f

@x2
(t; x) + r0x

@f

@x
(t; x);(3.31)

on [0; T )� (0;1) with the boundary condition f(T; x) = (x�K)+ for
x � 0. Observing the interest rate r0, the price x of the underlying
stock and the price of the option ET

K
(t; x) it is possible to calculate the

implied relative volatility �0. Since it is di�cult to estimate �0 from
observing the stock price directly practitioners proceed in this way, see

[15]. Assuming limh&0
~�h(x) � ~� > 0 uniformly on (0;1) our results

show that the implied relative volatility turns out to be ~��0. E
T

K
now

solves (3.31) with �0 replaced by ~��0:

�@f
@t

(t; x) + r0f(t; x) =
1

2
(~��0)

2x2
@2f

@x2
(t; x) + r0x

@f

@x
(t; x):(3.32)

The factor ~� can be interpreted as a demanded compensation for risk

due to discrete hedging which can not be derived from the model but

has to be estimated from historical data. This model does not explain
the smile-shaped graph of the implied relative volatility for di�erent
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strike prices, see [15], Figure 19.3, p. 503, since ~� is independent of K,
but one might argue that the compensation demanded for risk due to
discrete hedging is di�erent for options right at-the-money and options
deep-out-of-the-money or deep-in-the-money. Using �-hedging, the

sensitivity � := @�
@x

of � :=
@E

T
K

@x
with respect to changes in the price

of the underlying stock is high at-the-money and low out-of-the-money
resp. in-the-money, see [15], Figure 14.10, p. 326. Since � is the

amount of stock in the hedging portfolio replicating the option, this
means that the portfolio has to be rebalanced with higher frequency
at-the-money than out-of-the-money resp. in-the-money. Assuming
the writer of the option to demand a compensation for this, option

prices at-the-money should be increased relatively to prices out-of-the-
money resp. in-the-money. This can be achieved by using an increased

volatility at-the-money, since the vega :=
@E

T
K

@�0
, see [15], Figure 14.11,

p. 329, is always positive. This leads to a reverted smile for the graph

of the implied relative volatilities, an e�ect which is also observed in
the real markets for some options.

4. Zero Bonds

A zero bond at time 0 with maturity Nh is a contingent claim BNh

x

that pays 1 unit at time Nh. We consider only default free zero bonds.
This class of contingent claims is especially suited for studying the
properties of the market model, �rst for their simplicity and second
for the fact that there is a in�nite number of zero bonds, one for each

time of maturity. Furthermore, zero bonds are traded in real markets,
allowing to analyze data with statistical methods. They reect the
markets attitude towards the uncertainty of the future in a very pure
way since their payo� is deterministic.
By the contingent claim pricing formula we �nd

V0
�
BNh

x

�
= E

P
�h
x

"
N�1Y
j=0

1

1 +Rh(~�j)

#
= E

P�h
x

"
exp

 
�

N�1X
j=0

hrh(~�j)

!#
:

(4.1)

For �h = �
�h;�h;�h

h
set B�h

h
(N) := V0(B

Nh

x
). Assume now that the

objective probability measure P �̂h
x

describes a real market where we

observe a term structure of interest rates, i.e there is a function ~Bh :

N ! R
+ such that ~Bh(N) equals the observed price of the zero bond

BNh

x
at time 0 in the market. We can try to �t our model to the given

initial data ~Bh by choosing a �h equivalent to �̂h such that the resulting

function B�h

h
�ts ~Bh best with respect to some optimality criterion.
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De�ne ~RF

h
: N ! (�1;1) by 1

1+ ~RF
h
(i)

:=
~Bh(i+1)
~Bh(i)

and the correspond-

ing rate ~rF
h
(t) :=

ln(1+ ~RF
h
(i))

h
for t 2 [i; i+ 1). Since

~Bh(i) =

i�1Y
j=0

1

1 + ~RF

h
(j)

= exp

�
�
Z

i

0

~rF
h
(t)dt

�
;

~RF

h
(i) can be interpreted as the forward interest for time i implied by

the initial term structure. ~rF
h
(i) is the implied forward interest rate for

the time interval [i; i + 1). Similarly de�ne RF

�h
by 1

1+RF�h
(i)

:=
B
�h
h

(i+1)

B
�h
h

(i)

and the corresponding rate rF
�h
(t) :=

ln(1+RF�h
(i))

h
for t 2 [i; i+1). In case

that there does not exist a measure �h equivalent to �̂h such that ~rF
h
=

rF
�h

we can try to �nd a measure �h such that limi!1
��~rF
h
(i)� rF

�h
(i)
��

exists and is minimal, preferably zero.

Since V0
�
BNh

x

�
= exp

�
�PN�1

j=0 hrF
�h
(j)
�
, it is always possible to �t

the model to an initial term structure by changing the time independent
function rh to the time dependent function ~rh(i; �) := rh+~rF

h
(i)�rF

�h
(i).

For such a model it is desirable to have limi!1 ~rF
h
(i)�rF

�h
(i) = 0, since

in that case the model is at least asymptotically time homogeneous.
Using this condition we can try to estimate �h from historical data.
An alternative approach which leads to term structure models are

forward rate models, see Ho-Lee [14], Heath, Jarrow, Morton [13] and

[3]. These models take the whole term structure curve rF
h
as the state

of the market and model the stochastic dynamics of this curve in such
a way that the resulting market is arbitrage-free. Naturally any initial
term structure can just be taken as the initial state of an in�nite di-

mensional SDE, see [2]. This high exibility makes it easy to �t the
model to an observed initial term structure, but very di�cult to �nd
the equivalent martingale measure. It is easy to translate our model
into the Ho-Lee model in the discrete case and into the Heath, Jarrow,
Morton model in the continuous time case. But it then becomes di�-

cult to identify initial term structures which lead to time homogeneous
models and it is not clear how to �nd the market price for risk.

Concluding remarks

We have approximated a continuous time market model by a se-
quence of discrete models. In a real market the situation is rather the
other way round. Such a market is discrete if trading and updating of

information about the market state takes place in discrete time steps,
but if the frequency of transactions is high, then the continuous time
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model, where prices can be calculated by solving partial di�erential

equations with boundary conditions, can serve as an approximation to
the discrete time market model. We have seen that the limit of the
equivalent martingale measures is in general not equivalent to the limit
of the objective probability measures (Remark 3.15).

Weak limit theorems using the existence of a unique solution to a
martingale problem hold in much greater generality for semimartin-
gales. In the case that the continuous time market and its discrete time
approximations are described by a converging sequence of semimartin-
gales (with respect to the objective probabilities) it becomes di�cult to

identify reasonable equivalent martingale measures for the approximat-
ing sequence of discrete time markets, the set of all possible equivalent
martingale measures is just too big. In this paper we have therefore
con�ned ourselves to a very special type of approximating semimartin-

gales. Working on the Skorokhod space instead of (
;M) our results
can be generalized to a market described by a jump-di�usion, see [16],
Theorem 4.8, p. 515 and Theorem 2.32, p. 145. Now the set of pos-
sible equivalent martingale measures is quite big since we can choose

in addition the intensities of the jumps with respect to the equivalent
martingale measures quite arbitrarily. A reasonable choice would be to
multiply all intensities by a constant factor.
Given the objective probabilities for the market, prices of contingent

claims are determined by the equivalent martingale measure. This

measure allows to derive simple pricing formulas for contingent claims
(Proposition 2.1). However, the complexity of the market, investors
preferences, risk aversion and other constraints that led to an equilib-
rium described by the model are hidden behind the equivalent martin-

gale measure. The martingale transition probabilities can be calculated
from the state prices which are closely related to the market price of risk
(Remark 3.18). We have argued why a time-homogeneous price of risk
is reasonable. This allows to describe the equivalent martingale mea-

sures by generating kernels �h. Assuming �h to be (�;�)-converging,
in the limit, the appropriate measure for pricing contingent claims can
be speci�ed by calculating the limit (�;�) of the �rst and second order

data
�
�
�h
hp
h
;��h

h

�
of the kernels �h. Fixing the limit limh&0�h = � leads

to an asymptotically complete market, explaining the completeness of
continuous time markets (Remark 3.21). Now the complexity of the
market is just hidden behind the two functions (�;�) which we can try
to estimate from historical zero bond prices (Section 4).

If for example there is a strong interest to minimize a weighted aver-
age Z of zero bond or option prices and their volatilities and if investors
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today expect investors in the future to have the same preferences and

risk aversions like today, then this can be achieved by choosing the
probability measure �h such that �

�h;�h;�h

h
minimizes Z. This is a

kind of self-ful�lling expectation or prophecy, consistent with arbitrage-
free pricing, which leads to a complete market if the minimizing �h is

unique. In some sense we can not expect more from a theory depend-
ing on future, non-rational and psychological factors like investors risk
aversion, preferences and expectations.
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