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LOCAL POLYNOMIAL FITTING WITH

LONG-MEMORY, SHORT-MEMORY AND ANTIPERSISTENT ERRORS

Jan Beran and Yuanhua Feng

University of Konstanz

Abstract

Nonparametric regression with long-range, short-range and antipersistent errors is

considered. Local polynomial smoothing is investigated for the estimation of the

trend function and its derivatives. It is well known that in the presence of long

memory (with a fractional di�erencing parameter 0 < d < 1=2), nonparametric

regression estimators converge at a slower rate than in the case of uncorrelated

or short-range dependent errors (d = 0). Here, we show that in the case of anti-

persistence (�1=2 < d < 0), the convergence rate of a nonparametric regression

estimator is faster than for uncorrelated or short-range dependent errors. More-

over, it is shown that uni�ed asymptotic formulas for the optimal bandwidth and

the MSE hold for the whole range �1=2 < d < 1=2: Also, results on estimation at

the boundary are included.

Key words and phrases: Anti-persistence, estimation of derivatives, local polyno-

mial �tting, long-range dependence, nonparametric regression.

1 Introduction

Nonparametric regression with short- or long-range dependent errors has gained in-

creasing attention in the literature. Kernel estimators for observations with short-range

dependent errors are considered e.g. by Altman (1990), Hall and Hart (1990), Her-

rmann, Gasser and Kneip (1992) and Beran (1999). Kernel estimation for observations

with long-range dependence is considered e.g. by Hall and Hart (1990), Cs�org�o and

Mielniczuk (1995a) and Beran (1999). Wang (1996) proposed nonparametric regression

for data with long-range dependent errors via wavelet shrinkage. The e�ect of long-range

dependent errors in random design nonparametric regression was investigated e.g. by

Cs�org�o and Mielniczuk (1995b). Data-driven procedures for nonparametric regression
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with short- or long memory errors have also been proposed (see Chiu 1989, Herrmann,

Gasser and Kneip 1992 and Ray and Tsay, 1997).

Hall and Hart (1990) show that kernel estimators of the mean function g converge to

the true, unknown mean function at the same rate as in the case of uncorrelated errors, if

the error process has short memory. On the other hand, they show that, if the error pro-

cess has long memory, then a nonparametric regression estimator converges at a slower

rate than in the case of uncorrelated or short-range dependent errors. Here, a stationary

process Yi with autocovariances 
(k) = cov (Yi; Yi+k) is said to have long-range depen-

dence (or long memory), if the spectral density f(�) = (2�)�1
P
1

k=�1 exp(ik�)
(k) has

a pole at the origin of the form

f(�) � cf j�j��(as �! 0) (1.1)

for constant cf > 0 and � 2 (0; 1), where \�" means that the ratio of the left and the

right hand sides converges to one (see e.g. Mandelbrot 1983, Cox 1984, K�unsch 1986,

Hampel 1987 and Beran 1994 and references therein). In particular, this implies that,

as k ! 1, the autocovariances 
(k) are proportional to k
��1 and hence their sum is

in�nite.

In this paper, the use of local polynomial �tting in nonparametric regression will be

investigated for data with short- or long-range dependence as well as anti-persistence.

Local polynomial �tting (see Stone 1977 and Cleveland 1979) is known to be an auto-

matic kernel method (see M�uller 1987 and Hastie and Loader 1993), which has many

exciting statistical properties (see e.g. Ruppert and Wand 1994 and Fan and Gijbels

1996). Local polynomial �tting is adapted to the autoregressive context for modeling

nonlinear time series under some mixing conditions e.g. by Masry (1996), Masry and

Fan (1997) and Feng and Heiler (1998).

The contributions of our paper are:

1. Asymptotic formulas for local polynomial estimators for the trend function and its

derivatives are obtained under short memory, long memory and antipersistence.

To our knowledge, local polynomial �tting and nonparametric estimation of deriva-

tives has not been investigated in the literature for the cases of long memory and

antipersistence. Note that antipersistence implies that the autocorrelations sum
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up to zero so that another technique has to be used in the proof than in the case

of long-range dependence. We show, in particular, that uni�ed formulas can be

obtained that are valid for all three cases (short memory, long memory and an-

tipersistence). Note that these three cases correspond to three very di�erent types

of dependence structures.

2. In contrast to previous literature on nonparametric regression with long mem-

ory, results are obtained not only for interior points but also for boundary points.

The results hold for kernel estimators (with boundary correction) as well as local

polynomial �ts.

The paper is organized as follows. The model and the local polynomial estimators

for the mean function as well as its derivatives are introduced in section 2. The main

results are given in section 3. Section 4 contains some �nal remarks. Proofs of theorems

are listed in the appendix.

2 The model and the estimators

Consider the equidistant design nonparametric regression model

Yi = g(ti) +Xi; (2.1)

where ti = (i � 0:5)=n, g : [0; 1] ! IR is a smooth function, � 2 (�0:5; 0:5), B denotes

the backshift operator such that BYi = Yi�1 and Xi is a stationary process having the

form

(1� B)�Xi = Ui; (2.2)

where Ui is a stationary process with short memory so that
P
1

k=�1 cov (Ui; Ui+k) = C

with 0 < C <1. The parameter � is called the fractional di�erencing parameter. The

fractional di�erence (1 � B)�, introduced by Granger and Joyeux (1980) and Hosking

(1981), is de�ned by

(1� B)� =
1X
k=0

bk(�)B
k (2.3)
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with

bk(�) = (�1)k
�(� + 1)

�(k + 1)�(� � k + 1)
: (2.4)

The spectral density ofXi in (2.1) is proportional to j�j�2� at the origin. In particular,Xi

has long memory if � > 0. In this case, the autocovariances 
(k) of Xi are proportional

to k
2��1 and hence are non-summable. If � = 0, Xi = Ui has short memory and the

spectral density f(�) converges to a positive constant cf = (2�)�1C at the origin. If

� < 0, the spectral density f of Xi converges to zero at the origin. This is sometimes

called \anti-persistence". In this case we have
P
1

k=�1 
(k) = 0. The model (2.1) is

a special case of SEMIFAR (semiparametric fractional autoregressive models) models

introduced by Beran (1999) (see also Beran and Ocker 1999). In what follows we will

consider local polynomial estimation of g(�), the �th derivative of g. Since (2.1) also

includes the case of anti-persistence, the theorems in the next section extend previous

results on nonparametric regression to this case, and give formulas for local polynomial

estimators that are valid for the whole range � 2 (�0:5; 0:5).

In the following we will estimate the �th derivative g
(�) by a local polynomial �t

proposed by Stone (1977) and Cleveland (1979). For recent developments in this context

we refer the readers to Ruppert and Wand (1994), Wand and Jones (1995), and Fan

and Gijbels (1995, 1996) and references therein. Assume that g is at least (p+1)-times

di�erentiable at a point t0. Then g(t) can be approximated locally by a polynomial of

order p:

g(t) = g(t0) + g
0(t0)(t� t0) + :::+ g

(p)(t0)(t� t0)
p
=p! +Rp (2.5)

for t in a neighbourhood of t0, where Rp is a remainder term. Let K be a symmetric

density (a kernel of order two without boundary correction) having compact support

[�1; 1]. Giving n observations Y1, ..., Yn, we can obtain an estimator of g(�) (� � p) by

solving the locally weighted least squares problem

Q =
nX

i=1

8<
:Yi �

pX
j=0

�j(ti � t0)
j

9=
;

2

K

�
ti � t0

h

�
) min; (2.6)
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where h is the bandwidth and K is called the weight function. Let �̂ = (�̂0; �̂1; :::; �̂p)
T,

then it is clear from (2.5) that �!�̂� estimates g(�)(t0), � = 0; 1; :::; p. Let

X =

2
66664
1 t1 � t0 � � � (t1 � t0)

p

...
...

. . .
...

1 tn � t0 � � � (tn � t0)
p

3
77775 :

and let ej, j = 1; :::; p+ 1, denote the jth (p+1)�1 unit vector. Also, let K denote the

diagonal matrix with

ki = K

�
ti � t0

h

�

as its ith diagonal entry. Finally, let y = (Y1; :::; Yn)
T. Then ĝ

(�)(t0) can be written as

ĝ
(�)(t0) = �!eT�+1(X

TKX)�1XTKy

=: fw�(t0)gTy; (2.7)

where fw�(t0)gT = �!eT�+1(X
TKX)�1XTK is called the weighting system. We see that

ĝ
(�)(t0) is a linear smoother with the weighting system w�(t0) = (w�

1 ; :::; w
�
n)

T, where

w
�
i 6= 0 only if jti � t0j � h. The weighting system does not depend on the dependence

structure of the errors. For any interior point t0 2 [h; 1� h] the non-zero part of w�(t0)

is the same, i.e. ĝ
(�) works as a moving average in the interior. Furthermore, w�(t0)

satis�es:

nX
i=1

w
�
i (ti � t0)

� = �! and
nX

i=1

w
�
i (ti � t0)

j = 0 for j = 0; :::; p; j 6= �: (2.8)

It is the property (2.8) that makes ĝ(�) exactly unbiased if g is a polynomial of order

not larger than p. The property (2.8) also shows the main di�erence between a local

polynomial estimator and a kernel estimator, since for a kernel estimator property (2.8)

only holds approximately.
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3 Main results

3.1 Assumptions

In this section we discuss the asymptotic properties of the estimators proposed in the

last section. Pointwise asymptotic bias and variance will be given for interior points and

for boundary points, i.e. t 2 [0; h) [ (1� h; 1], separately.

It is well known that a local polynomial estimator is asymptotically equivalent to a

certain kernel estimator, called an (asymptotically) equivalent kernel estimator of the

local polynomial estimator. Hence, the asymptotic properties of a local polynomial

estimator are the same as those of the equivalent kernel estimator. Although it is shown

in Ruppert and Wand (1994) that one can analyze local polynomial �tting directly as

a weighted least squares estimator rather than as an approximate kernel estimator, the

asymptotic results given in this section will be proved by means of the asymptotically

equivalent kernel function. For the asymptotic results given below we need the following

assumptions:

A1. g is an at least k0 times continuously di�erentiable function on [0; 1] with k0 � �+2

and k0 � � even.

A2. The weight function K(u) is a symmetric density (i.e. a kernel of order two) with

compact support [�1; 1] having the polynomial form

K(u) =
rX

l=0

�lu
2l1I[�1;1](u)

(see e.g. Gasser and M�uller 1979).

A3. The bandwidth satis�es: h! 0, (nh)1�2�h2� !1 as n!1.

A4. A local polynomial �t of order p with � � p < k0 is used. Let k = p + 1, if p� �

is odd and k = p+ 2, if p� � is even.

Under the assumptions A1 and A4, we have k � k0. It will be shown that ĝ
(�)

converges to g
(�) at the same rate in the interior as well as at the boundary, if p � �

is odd. However, the convergence rate of ĝ(�) at the boundary is slower than in the
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interior, if p � � is even. Hence, a local polynomial �t with p� � odd is preferable. If

p� � is odd, using p� 1 for t 2 [h; 1� h] and p for t 2 [0; h) [ (1� h; 1] also results in

the same overall convergence rate, because now the local polynomial �ts in the interior

with p and p� 1 are equivalent.

3.2 Results for interior points

First, the pointwise asymptotic behaviour of ĝ(�) at an interior point t will be discussed.

For a weight function K (i.e. a symmetric density with support [�1; 1]), the asymptot-

ically equivalent kernel function, K(�;p), can be de�ned as follows. Let

Np =

2
66666664

1 �1 � � � �p

�1 �2 � � � �p+1

...
...

. . .
...

�p �p+1 � � � �2p

3
77777775
; (3.1)

where �j =
R
u
j
K(u)du is the jth moment of K. For i; j = 1; :::; p+ 1, let (�ij) = N�1

p

and de�ne

K(�;p)(u) = �!Q(�;p)(u)K(u); (3.2)

where

Q(�;p)(u) =
p+1X
j=1

��+1;ju
(j�1)

:

It is easily established that the function K(�;p) de�ned in (3.2) satis�es

Z
u
j
K(�;p)(u)du =

8>>>><
>>>>:

0; j = 0; :::; � � 1; � + 1; :::; k � 1;

�!; j = �;

�(�;p); j = k;

(3.3)

where �(�;p) is a non-zero constant. Therefore, K(�;p) is a kernel of order k for estimation

of the �th derivative, which we will call an \equivalent kernel". It is the same as de�ned

by Gasser, M�uller and Mammitzsch (1985) up to a (�1)� sign. It is clear that K(u) and

the equivalent kernel K(�;p)(u) are both polynomial Lipschitz-continuous kernels.
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Let ~w�(t) = ( ~w�
1 ; :::; ~w

�
n)

T denote the weighting system of a kernel estimator with

K(�;p). Then we obtain a kernel estimator of g(�):

~g(�)(t) =
nX

i=1

~w�
i Yi; (3.4)

where

~w�
i =

1

nh�+1
K(�;p)

�
ti � t

h

�
: (3.5)

See e.g. M�uller (1987) and Ruppert and Wand (1994). In the case of equidistant design

the de�nition (3.4) is asymptotically equivalent to that given by Gasser and M�uller

(1984). Following M�uller (1987) we have:

Lemma 1. Under the assumptions A1 to A4 the pth order local polynomial estimator

ĝ
(�) at an interior point t is asymptotically equivalent to the kth order kernel estimator

~g(�) de�ned in (3.4) in the sense that

lim
n!1

sup
1�i�n

j
w

�
i

~w�
i

� 1j = 0; de�ning
0

0
= 1: (3.6)

In the following we denote xi = (ti � t)=h, yj = (tj � t)=h. Let n0 = [nt + 0:5],

b = [nh], where [�] denotes the integer part. The notation

Vn(h) = (nh)�1�2�
n0+bX

i;j=n0�b

K(�;p)(xi)K(�;p)(yi)
(i� j) (3.7)

will be used for convenience. The following result is obtained under the assumptions A1

to A4.

Theorem 1. Let the assumptions A1 to A4 hold, and let t be an interior point. Then

for � 2 (�0:5; 0:5), we have

i) Bias:

E[ĝ(�) � g
(�)] = h

(k��)g
(k)(t)�(�;p)

k!
+ o(h(k��)); (3.8)

ii):

lim
n!1

Vn(h) = V; (3.9)
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where 0 < V <1 is a constant;

iii) Variance:

(nh)1�2�h2�var (ĝ(�)(t)) = V + o(1): (3.10)

Note that the order of the bias in (3.8) is determined by k and not by p.

3.3 Results for boundary points

Similar results as given in Lemma 1 and Theorem 1 can be obtained for boundary

points in the interval [0; h) [ (1� h; 1]. The discussion will only be carried out for the

left boundary region [0; h), since it is symmetric for the right boundary. Note, however,

that any �xed point t 2 (0; 1) will asymptotically not be a boundary point, since h! 0

as n!1. A standard de�nition of a left boundary point is t = ch with 0 � c < 1. We

de�ne the truncated kernel Kc(u) with 0 � c < 1 as

Kc(u) =

�Z 1

�c
K(x)dx

��1
K(u)1I[�c;1](u) : (3.11)

A special case of truncated kernel is the one used for the estimation at the left end

point with c = 0, where K0(u) = 2K(u)1I[0;1]. Let �jc =
R 1
�c u

j
Kc(u)du be the jth

moment of Kc. And let Npc be the same as Np but with each �j replaced by �jc. An

important di�erence between Npc and Np is that �j = 0 for j odd, but in general,

any �jc is non-zero, if c 6= 1. A (p+1)th order boundary kernel K(�;p;c) can be de�ned

similarly as K(�;p) given in (3.2). Let (�ijc) = N�1
pc . Then

K(�;p;c)(u) =

0
@p+1X

j=1

��+1;j;cu
(j�1)

1
AKc(u) (3.12)

is a (p+1)th order boundary kernel, which satis�es

Z 1

�c
u
j
K(�;p;c)(u)du =

8>>>><
>>>>:

0; j = 0; :::; � � 1; � + 1; :::; p;

�!; j = �;

�(�;p;c); j = p+ 1;

(3.13)
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where �(�;p;c) is a non-zero constant. An asymptotically equivalent kernel estimator at

t = ch is then de�ned by ~g(�)(t) =
Pn

i=1 ~w
�
ciYi, where ~w�

ci = (nh�+1)�1K(�;p;c)(xi). Under

this de�nition, Lemma 1 also holds at a boundary point.

Again, let n0 = [nt + 0:5], b = [nh], bc = [nch]. Using the notation

Vn(c; h) = (nh)�1�2�
n0+bX

i;j=n0�bc

K(�;p;c)(xi)K(�;p;c)(yi)
(i� j) ; (3.14)

we obtain

Theorem 2. Let the assumptions A1 to A4 hold, and let t = ch with 0 � c < 1 be a

left boundary point. Then for � 2 (�0:5; 0:5), we have

i) Bias:

E[ĝ(�) � g
(�)] = h

(p+1��)g
(p+1)(t)�(�;p;c)

(p+ 1)!
+ o(h(p+1��)) ; (3.15)

ii):

lim
n!1

Vn(h; c) = V (c); (3.16)

where 0 < V (c) <1 is a constant;

iii) Variance:

(nh)1�2�h2�var (ĝ(�)(t)) = V (c) + o(1) : (3.17)

We see that, the order of the kernel K(�;p;c) (for c < 1), and hence the order of the

bias at a boundary point, is determined by p and not by k. If p � � is even, the bias

term is of a lower order at a boundary point than at an interior point. In particular,

a zero order local polynomial estimator for g is just a kernel estimator. In this case,

it was shown by Gasser and M�uller (1979), that the integrated squared bias over the

interior is of the order O(h4), and the squared bias integrated over [0, 1] is of the order

O(h3). That is, the bias in the boundary region dominates the bias in the interior and

it will cause a slower convergence rate of the MISE (mean integrated squared error).

This is the so-called boundary e�ect of nonparametric regression estimators. It can be
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shown that, for a general local polynomial estimator ĝ(�) the following holds: 1. For

p� � even, the integrated squared bias over the interior is of the order O(h2(k��)), but

that over [0, 1] is of the order O(h2(k��)�1); 2. For p � � odd, the integrated squared

bias over the interior and over [0, 1] is of the same order O(h2(k��)). In the second case

we have MISE([0; 1]) = MISE([h; 1 � h])(1 + O(h)). Hence, in local polynomial �tting

p� � is often taken to be odd in order that the MISE can be calculated over the whole

support [0; 1] of g. Similar to the terminology in Gasser and M�uller (1984), we call a

(� + 1)-th local polynomial estimator ĝ(�) with k = � + 2 a standard local polynomial

estimator. So, standard local polynomial estimators are those with lowest polynomial

order such that p � � is odd. The �rst three standard local polynomial estimators are

the local linear estimate for ĝ, the local quadratic estimate for ĝ0 and the local cubic

estimate for ĝ00.

3.4 The MISE

Let p� � be odd, and let

I(g(p+1)) =

Z 1

0
[g(p+1)(t)]2dt : (3.18)

The following result holds:

Theorem 3. Under the assumptions A1 to A4 and for � 2 (�0:5; 0:5), we have

i) The mean integrated squared error (MISE) of ĝ(�) is given by

Z 1

0
Ef[ĝ(�)(t)� g

(�)(t)]2gdt

= MISEasympt(n; h) + o(max(h2(p+1��)
; [(nh)2��1h�2� ]))

= h
2(p+1��)

I(g(p+1))�2
(�;p)

(p+ 1)!
+ (nh)2��1h�2�V

+o(max(h2(p+1��)
; [(nh)2��1h�2� ])) ; (3.19)

ii) The optimal bandwidth that minimizes the asymptotic MISE is given by

hopt = Coptn
(2��1)=(2p+3�2�)

; (3.20)
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where

Copt =

2
4 2� + 1� 2�

2(p+ 1� �)

[(p+ 1)!]2V

I(g(p+1))�2
(�;p)

3
5
1=(2p+3�2�)

; (3.21)

where it is assumed that I(g(p+1)) > 0.

Note that by inserting hopt in (3.19), Theorem 3 implies that for p�� odd the optimal

MISE is of the order

Z 1

0
Ef[ĝ(�)(t)� g

(�)(t)]2gdt = O(n2(2��1)(k��)=(2k+1�2�)): (3.22)

The following remarks clarify the results given above.

Remark 1. For bandwidth selection with the plug-in method one has to calculate the

value of V . Simple explicit formulas for V can be given as follows:

V = 2�cf

Z 1

�1

K
2
(�;p)(x)dx (3.23)

for � = 0 and

V = 2cf�(1� 2�) sin��

Z 1

�1

Z 1

�1
K(�;p)(x)K(�;p)(y)jx� yj(2��1)dxdy (3.24)

for � > 0 (Hall and Hart 1990), where cf = (2�)�1C. The explicit form of V for � < 0 is

more complex, since the integral
R 1
�1K(�;p)(y)jx�yj2��1dy does not exist. However, at any

point x the kernel K(�;p)(y) may be written as K(�;p)(y) =
Pr

l=0 �l(x)(x� y)l =: K0(x)+

K1(x � y), where r is an integer, K0(x) = �0(x) and K1(x � y) =
Pr

l=1 �l(x)(x � y)l.

Note that, in the case of anti-persistence it holds
P
1

k=�1 
(k) = 0. We have, for � < 0,

V = 2cf�(1� 2�) sin(��)

Z 1

�1
K(�;p)(x)�(Z 1

�1
K1(x� y)jx� yj2��1dy �K0(x)

Z
jyj>1

jx� yj2��1dy
)
dx: (3.25)

If g is estimated by a �rst order local polynomial with the uniform kernel as the weight

function, then we have, in the interior, K(0;1)(x) = K(x) = 1Ifjxj�1g=2. In this case we
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have K0(x) = 1Ifjxj�1g=2 and K1 � 0. The formulas (3.23), (3.24) and (3.25) give the

same result

V =
22�cf�(1� 2�) sin(��)

�(2� + 1)
(3.26)

with V (0) = lim�!0 V (�) = �cf (see corollary 1 in Beran, 1999).

Remark 2. Theorems 1 to 3 extend previous results (see Altman 1990, Hall and

Hart 1990, Herrmann, Gasser and Kneip 1992, Cs�org�o and Mielniczuk 1995a and Beran

1999) in several ways by including � < 0, estimation of derivatives, estimation with

higher order kernels and the pointwise asymptotic behaviour in the boundary region.

Remark 3. Theorem 1 also holds for kernel estimators ~g(�). Theorems 2 and 3 hold for

kernel estimators with boundary correction. For kernel estimators without boundary

correction Theorem 3 holds with the whole interval [0; 1] replaced by [�; 1��].

Remark 4. The estimation of g00 is essential for selecting the optimal bandwidth with

the plug-in method. If g00 is estimated by a standard local polynomial estimator, i.e.

with p = 3, the optimal bandwidth for ĝ00 is of the order O(n(2��1)=(9�2�)).

4 Final remarks

It is clear that the bias of a nonparametric regression estimator for observations with

dependent errors is the same as that for uncorrelated errors if the estimator is a linear

smoother and the error process is stationary. However, the variance of a linear smoother

depends on how the errors are correlated. If the errors have short memory with � = 0,

then only the constant V is in
uenced. In particular, V is larger than 
(0)
R
K

2
(�;p)(u)du,

when the dependence structure is dominated by positive correlations. In this case, the

optimal bandwidth is larger than in the case of independent errors (see Herrmann,

Gasser and Kneip 1992). If the error process has long memory, i.e. � > 0, then not only

the constant V but also the order of the variance is changed. The variance converges at a

slower rate to zero than in the case of short memory. On the other hand, if � < 0, the data

are mostly negatively correlated and
P
1

k=�1 
(k) = 0. In this case, the variance of ĝ(�)

converges to zero at a higher rate than under independence or short-range dependence.

13



In order to use the estimator ĝ(�) e�ectively, one also needs a suitable data-driven

bandwidth selection procedure for nonparametric regression with short- or long memory.

This will be discussed elsewhere. Bandwidth selection procedures for data with short

memory may be found in e.g. Chiu (1989) and Herrmann, Gasser and Kneip (1992). The

iterative plug-in method proposed by Herrmann, Gasser and Kneip (1992) is adapted

to bandwidth selection for data with long-range dependent errors in Ray and Tsay

(1997). This procedure was used in the data-driven algorithm for estimating so-called

SEMIFAR models in Beran (1999). Similar data-driven procedures can be developed

for ĝ(�) proposed in this paper.
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Appendix: Proofs of the theorems

Proof of Lemma 1. See M�uller (1987). The weighting systems do not depend on the

dependence structure and noting that the nonparametric regression model considered

here follows an equidistant design. Hence, theorem 1 in M�uller (1987) applies to ĝ(�) for

t 2 [h; 1� h].

Proof of Theorem 1.

(i): The proof of the pointwise bias is standard.

(iii): (iii) holds if (ii) holds, since

(nh)1�2�h2�var (ĝ(�)(t))

= (nh)1�2�h2�
n0+bX

i;j=n0�b

w
�
i w

�
j 
(i� j)

= (nh)1�2�h2�
n0+bX

i;j=n0�b

~w�
i ~w

�
j 
(i� j)[1 + o(1)]

= (nh)�1�2�
n0+bX

i;j=n0�b

K(�;p)(xi)K(�;p)(yj)
(i� j)[1 + o(1)]

= Vn(h)[1 + o(1)]

(ii): The results will be proved separately for � = 0, 0 < � < 0:5 and �0:5 < � < 0.

The formulas (3.23), 3.24) and (3.25) will be obtained immediately.

a) � = 0. Observing that, for � = 0,
P
1

k=�1 
(k) = C and

Vn(h) = (nh)�1
n0+bX

i=n0�b

K(�;p)(xi)
n0+bX

j=n0�b

K(�;p)(yj)
(i� j):

Let b0 be an integer such that b0 = o(b), b0 ! 1 as n ! 1 (e.g. b0 = [
p
b]). For

n0 � b + b
0
< i < n0 + b� b

0 we have

n0+bX
j=n0�b

K(�;p)(yj)
(i� j) =
X

ji�jj<b0

K(�;p)(yj)
(i� j) +
X

ji�jj�b0

K(�;p)(yj)
(i� j):

For ji�jj < b
0 we have jxi�yjj = o(1) and hence K(yj) = K(xi)[1+o(1)], because

b
0 = o(b) and K(�;p) is Lipschitz-continuous. Then we obtain

X
ji�jj<b0

K(�;p)(yj)
(i� j) = CK(�;p)(xi)[1 + o(1)];
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because
P
ji�jj<b0 
(i� j) = C + o(1). Furthermore,

X
ji�jj�b0

K(�;p)(yj)
(i� j) = o(1);

because K(�;p) is bounded and
P
ji�jj�b0 
(i� j) = o(1).

For i = n0 � b or i = n0 + b we have, analogously,

X
K(�;p)(yj)
(i� j) = [(C + 
(0))=2]K(�;p)(xi)(1 + o(1))

= O(K(�;p)(xi)):

It is clear that
P
K(�;p)(yj)
(i�j) = O(K(�;p)(xi)) holds for all i such that n0�b <

i � n0 � b + b
0 or n0 + b� b

0
< i � n0 + b. Since b0 = o(b), we have

Vn(h) = (nh)�1
n0+bX

i=n0�b

K
2
(�;p)(xi)[C + o(1)]

= C

Z 1

�1

K
2
(�;p)(x)dx + o(1): (A.1)

b) � > 0. In this case we have 
(k) � c
 jkj2��1 with c
 = 2cf�(1� 2�) sin�� > 0

(see Beran 1994, pp. 61-63).

Vn(h) = (nh)�1�2�
n0+bX

i;j=n0�b

K(�;p)(xi)K(�;p)(yj)
(i� j)

:
= c
(nh)

�1�2�
n0+bX

i;j=n0�b

i6=j

K(�;p)(xi)K(�;p)(yj)ji� jj2��1

= c
(nh)
�2

n0+bX
i;j=n0�b

i6=j

K(�;p)(xi)K(�;p)(yj)jxi � yjj2��1

:
= c


Z 1

�1

Z 1

�1
K(�;p)(x)K(�;p)(y)jx� yj2��1dxdy (A.2)

c). The proof for � < 0 is based on the decomposition of the equivalent kernel

and the property
P
1

k=�1 
(k) = 0, where 
(k) � c
jkj2��1 for large k with c
 =

2cf�(1 � 2�) sin(��) < 0 in the case of anti-persistence (see Beran, 1994). Put

xi = (ti� t)=b, yj = (tj � t)=b. De�ne n0 = [nt] and n1 = [nb] as before. We have,

for given i,
Pn0+n1

j=n0�n1

(i � j) = �P

jj�n0j>n1 
(i � j). Recall that the equivalent

kernel has the form K(�;p)(x) =
Pr

l=0 �lx
l1Ifjxj�1g. At a point xi, K(�;p)(y) can
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be rewritten as K(�;p)(y) =
Pr

l=0 �l(xi)(xi � y)l =: K0(xi) + K1(xi � y), where

K0(xi) = �0(xi), K1(xi � y) =
Pr

l=1 �l(xi)(xi � y)l.

Observing that t is an interior point we have

Vn = (nb)�1�2�
n0+n1X

i=n0�n1

K(�;p)(xi)
n0+n1X

j=n0�n1

K(�;p)(yj)
(i� j):

n0+n1X
j=n0�n1

K(�;p)(yj)
(i� j)

=
n0+n1X

j=n0�n1

K1(xi � yj)
(i� j)�K0(xi)
X

jj�n0j>n1


(i� j)

:
= c


8><
>:

n0+n1X
j=n0�n1

j 6=i

K1(xi � yj)ji� jj2��1 �K0(xi)
X

jj�n0j>n1

ji� jj2��1
9>=
>;

= c
(nb)
2��1

8><
>:

n0+n1X
j=n0�n1

j 6=i

K1(xi � yj)jxi � yjj2��1 �K0(xi)
X

jj�n0j>n1

jxi � yjj2��1
9>=
>;

:
= c
(nb)

2�

(Z 1

�1
K1(xi � y)jxi � yj2��1dy �K0(xi)

Z
jyj>1

jxi � yj2��1dy
)

Finally, we obtain

Vn
:
= c
(nb)

�1
n0+n1X

i=n0�n1

K(�;p)(xi)

�Z 1

�1

K1(xi � y)jxi � yj2��1dy

�K0(xi)

Z
jyj>1

jxi � yj2��1dy
)

:
= c


Z 1

�1

K(�;p)(x)

�Z 1

�1

K1(x� y)jx� yj2��1dy

�K0(x)

Z
jyj>1

jx� yj2��1dy
)
dx:

This concludes the proof. 2

Proof of Theorem 2. The proof of Theorem 2 is similar to that of Theorem 1 and is

hence omitted. Especially, note that the proof in \(ii): c)" can also be carried out for

t = 0 or t = 1. 2

Proof of Theorem 3. Theorem 3 follows from Theorem 1 and Theorem 2, since in the

case that p� � is odd the MISE on the boundary area is asymptotically negligible. 2
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