Beran, Jan; Gosh, Sucharita; Sibbertsen, Philipp

Working Paper
Nonparametric M-Estimation with Long-Memory Errors

CoFE Discussion Paper, No. 00/19

Provided in Cooperation with:
Center of Finance and Econometrics (CoFE), University of Konstanz

Suggested Citation: Beran, Jan; Gosh, Sucharita; Sibbertsen, Philipp (2000) : Nonparametric M-Estimation with Long-Memory Errors, CoFE Discussion Paper, No. 00/19, http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-5199

This Version is available at:
http://hdl.handle.net/10419/85219

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Nonparametric M-estimation with long-memory errors

Jan Beran
Department of Mathematics and Statistics,
University of Konstanz, Germany

Sucharita Ghosh
Landscape Department,
WSL, Switzerland

Philipp Sibbertsen
Department of Statistics,
University of Dortmund, Germany

June 28, 2000


Abstract

We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example.

1 Introduction

Consider the regression model

\[ y_i = g(t_i) + G(Z_i), \quad i = 1, 2, ..., n, \quad t_i = \frac{i}{n} \]  \hspace{1cm} (1)

where \( g(t) \) is an unknown regression function in \( C^3[0,1] \) and the error process \( \epsilon_i = G(Z_i) \) is generated by a transformation of a zero mean stationary Gaussian process \( Z_i, i \in N \), with long-memory. Here \( G: R \to R \) is a measurable function and if \( Z \) denotes a standard normal variable, \( E[G(Z)] = 0 \). This paper deals with the nonparametric M-estimation of the regression function \( g(t) \) in this model.

This work was motivated by the recent occurrences of storm events that had disastrous environmental damages in Switzerland and in the neighboring countries. This resulted in increased need for developing suitable models for storms, in particular for wind speed. As part of this research, one basic problem is to estimate time-dependent location parameters of the marginal wind-speed distributions. The estimator should not be affected by outliers, or in this case, unusually large observations (extremely strong wind speed or storms) which in spite of having short duration tend to affects the usual (mean) location estimators. This in turn implies the development of M-estimation procedures for time series, in particular time series which may have long-memory. Figure 1 shows a wind speed series (in 0.1 m/s) measured at a climate station near Zürich (source: SMA). This series consists of hourly maxima during the years 1998-1999. The higher wind speeds during the winters can be seen as well as the storm Lothar that occurred in the December of 1999. For the purposes of illustration, the time dependent mean and approximate median functions were estimated by kernel smoothing of the log transformed data. For this, we took a kernel that is proportional to
wind speed in Zurich (98-99) in 0.1 m/s

Figure 1: Hourly wind speed maxima in Zurich in 1999, estimated mean (broken line) and median (solid line) curves fitted to the logarithm of the original data, and the periodograms (in log-log-coordinates) of the residuals.
the normal density function (truncated on \([-1,1]\)) for an arbitrary bandwidth equal to 0.05. The estimated mean and the median functions are shown along with the periodograms for the corresponding residual estimates in the log-log coordinates. The presence of long-memory in the residuals is evident as well as the fact that the median estimate is less affected by the fast wind speed due to Lothar. The changes in the probability distribution function over time can be seen in particular by noticing the shifts in the positions of the median curve in relation to the mean. Also, the latter curve is seen to ‘explode’ towards the end of the series, which is the effect of Lothar, whereas the median curve is less affected by these sudden jumps in the observations.

A standard procedure for kernel estimators is to use the Naradaya-Watson estimator \( \hat{g}(t) \) of \( g(t) \) obtained by minimizing the function

\[
H(\theta) = \frac{1}{nb_n} \sum_{i=1}^{n} K\left( \frac{t_i - t}{b_n} \right) (y_i - \theta)^2,
\]

where \( b_n > 0 \) is a bandwidth and \( K(x) \) is a suitably defined kernel. In the presence of long-memory, Naradaya-Watson type estimators were considered among others by Beran (1999), Csörgö & Mielniczuk (1995) and Hall & Hart (1990). Ghosh (2000) considers kernel estimation for replicated time series data including long-memory models. Due to the fact that Naradaya-Watson estimators can be considered as local least squares estimators and the least squares estimators are not robust, the Naradaya-Watson type estimators are also not robust.

In this paper we consider the so-called \( M \)-smoothers \( \hat{g} \) defined as the solution of the equation:

\[
\frac{1}{nb} \sum_{i=1}^{n} K\left( \frac{t_i - t}{b} \right) \psi(y_i - \theta) = 0 \tag{2}
\]

where \( \psi : R \to R \) is a measurable function which can be chosen in various ways such as the classical Huber-\( \psi \)-function \( \psi(x) = \min(c, \max(x, -c)) \).


2 Asymptotic results

Define

\[ I(g) = \int_{\Delta}^{1} \left[ g(t) \right]^2 dt; \quad 0 < \Delta < \frac{1}{2} \]

\[ I(K) = \int_{-1}^{1} x^2 K(x) dx; \]

\[ V_{\psi}(d) = \frac{1}{(E\psi')^2} \int_{0}^{1} \int_{0}^{1} K(x) K(y) |x - y|^{2d-1} dx dy. \]

Assumptions:

- \( \gamma_Z(k) = \text{cov}(Z_i, Z_{i+k}) \sim C_Z |k|^{2d-1} \) for \( d \in (0, 1/2) \) and \( k \to \infty \).
- \( K \) is a positive symmetric kernel on \([-1, 1]\) with \( \int_{-1}^{1} K(x) dx = 1 \);
- \( b_n > 0 \) is a sequence of bandwidths such that \( b_n \to 0 \) and \( nb_n \to \infty \) as \( n \to \infty \);
- \( \psi \) is differentiable almost everywhere with respect to the Lebesgue measure;
- \( E(\psi(e_i)) = 0, E(\psi^2(e_i)) < \infty \);
- \( E(\psi'(e_i)) \neq 0 \);
- there exists a measurable function \( M_2 \) such that \( \left| \frac{d^2}{dt^2} \psi(t) \right| < M_2(t), E[M_2(t)] < k_2 < \infty \);
- there exists a measurable function \( M_3 \) such that \( \left| \frac{d^3}{dt^3} \psi(t) \right| < M_3(t), E[M_3(t)] < k_3 < \infty \);
- \( h_\delta(y) = \sup_{x \leq \delta} |\psi(y+x) - \psi(y)| \leq c \) almost everywhere for some \( \delta > 0 \) and \( 0 < c < \infty \);
- for \( \delta \) tending to zero, \( h_\delta(y) \) tends to zero almost everywhere;
- \( \psi(G(Z)) \) has Hermite rank \( m (m \geq 1) \) and \( c_m \) denotes the \( m \)th Hermite coefficient.
**Theorem 1** Under the above assumptions and if \( d \in (0,0.5) \), we have

1. **Uniform consistency:** There exists a sequence of solutions \( \hat{g}_n \) such that
   \[
   \sup_{t \in [\Delta,1-\Delta]} |\hat{g}_n(t) - g(t)| \rightarrow 0 \text{ as } n \rightarrow \infty \text{ in probability;}
   \]

2. **Bias:**
   \[
   E[\hat{g}(t) - g(t)] = \frac{1}{2} b_n^4 \hat{g}''(t) I(K) + o(b_n^2) \text{ uniformly in } \Delta < t < 1-\Delta;
   \]

3. **Variance:**
   \[
   (nb_n)^{1-2d} \text{var}(\hat{g}(t)) = c_m^2 C_Z^{-m/2} V_\psi(d) \text{ uniformly in } \Delta < t < 1 - \Delta \text{ if } \frac{1}{2}(1 - 1/m) < d < \frac{1}{2};
   \]

4. **IMSE:**
   If \( \frac{1}{2}(1 - 1/m) < d < \frac{1}{2} \), the integrated mean square error in
   \( \Delta, 1-\Delta \) is given by
   \[
   \int_{\Delta}^{1-\Delta} E[|\hat{g}(t) - g(t)|^2] dt = b_n^4 \frac{I(g''(t)) I(K)^2}{4} + (nb_n)^{2d-1} V_\psi(d) + o(\max(b_n^4, (nb_n)^{2d-1}));
   \]

5. **Optimal bandwidth:**
   If \( \frac{1}{2}(1 - 1/m) < d < \frac{1}{2} \), the bandwidth that minimizes the asymptotic IMSE is given by:
   \[
   b_{opt} = C_{opt} n^{1/(2d-1)/(5-2d)},
   \]
   where \( C_{opt} = C_{opt}(\theta) = \frac{1}{I(g''(t)) I(K)^2} [1-1/(5-2d)]^{1/(5-2d)} \).

6. **Asymptotic distribution:**
   For every fixed \( t \), and \( \frac{1}{2}(1 - 1/m) < d < \frac{1}{2} \),
   \[
   (nb)^{1/2-d} c_m^{-1} C_Z^{-m/2} V_\psi^{-1/2} \text{var}(\hat{g}(t) - g(t))
   \]
   converges in distribution to \( Z_m \), where \( Z_m \) is a Hermite process (see Rosenblatt 1984 and Taqqu 1975) of order \( m \) at time \( 1 \).

If \( m = 1 \) and \( G(x) = x \), then \( c_m = E[\psi'(c)] \) and \( V_\psi(d) = \frac{1}{c_m} \int_0^1 \int_0^1 K(x) K(y) |x-y|^{2d-1} dx dy \) so that we have

**Corollary 1** If \( G(x) = x \), then for all \( \psi \) functions satisfying the conditions of Theorem 1 and such that \( \psi(G(Z)) \) has Hermite rank 1,

\[
(nb)^{1/2-d} C_m^{-1} C_Z^{-m/2} V_\psi^{-1/2} \text{var}(\hat{g}(t) - g(t))
\]

converges to a normal distribution with zero mean and variance equal to \( \int_0^1 \int_0^1 K(x) K(y) |x-y|^{2d-1} dx dy \).

Thus the above corollary implies that when \( m = 1 \) and the error process \( \xi \) is Gaussian, then the limiting distribution of \( (nb)^{1/2-d} C_m^{-1} C_Z^{-m/2} V_\psi^{-1/2} \text{var}(\hat{g}(t) - g(t)) \) is the same Gaussian distribution for all \( M \)-estimators.
3 Appendix

Proof of Theorem 1: We start with the estimating equation

$$
\frac{1}{n b_n} \sum \psi(y_i - \hat{g}(t)) K(t_i - t) b_n = 0.
$$

The uniform consistency follows, in a similar way as in Beran (1991), Hall & Hart (1991) and Huber (1967), by Taylor expansion of the estimating equation, the law of large numbers and properties of $g$ and $\psi$.

As for bias, using Taylor expansion and the assumptions stated above

$$
\hat{g}(t) - g(t) = \sum \psi(y_i - g(t)) K(t_i - t) \left( \sum \psi'(y_i - g(t)) K(t_i - t) b_n \right)^{-1} + R_n
$$

where $E(R_n) = o(t^2)$. The result now follows by noting that $y_i - g(t) = g(t_i) - g(t) + \epsilon_i$, where the expected value of $\epsilon_i$ is zero and

$$
g(t_i) - g(t) + \epsilon_i = g(t)(t_i - t) + g''(t) \left( \frac{(t_i - t)^2}{2} \right) + g'''(t^*) \left( \frac{(t_i - t)^3}{6} \right) + \epsilon_i(t), |t^* - t| \leq |t_i - t|,
$$

so that

$$
\psi(y_i - g(t)) = \psi(\epsilon_i) + \psi'(\epsilon_i) [g(t)(t_i - t) + g''(t) \left( \frac{(t_i - t)^2}{2} \right) + g'''(t^*) \left( \frac{(t_i - t)^3}{6} \right)] +
$$

$$
\frac{\psi''(\xi_i)}{2} [g'(t)(t_i - t) + g''(t) \left( \frac{(t_i - t)^2}{2} \right) + g'''(t^*) \left( \frac{(t_i - t)^3}{6} \right)]^2, |\xi_i - \epsilon_i| \leq |g(t_i) - g(t)|.
$$

The final result follows from the properties of $\psi$ and $K$.

The expression for the variance follows from Taylor expansion of the estimating equation around $g$ and by noting that the $\psi$ function can be expanded via a Hermite expansion of order $m$. Moreover, $cov(H_p(Z_i), H_q(Z_j)) = 0$ if $p \neq q$, and equal to $[cov(Z_i, Z_j)]^p$ otherwise. Recall that $[cov(Z_i, Z_j)]^p \sim C_Z |i - j|^{p - 1}$ when $|i - j| \to \infty$.

The IMSE and the formula for the optimal bandwidth follows from standard arguments whereas the limiting distribution of $\hat{g}(t)$ follows from Taqqu (1979) and the expansions above.

4 Acknowledgement

Felix Forster (Department of Natural Hazards, WSL, Switzerland) kindly prepared the wind speed data (source: SMA, Zürich) used in this paper. His help is gratefully acknowledged.
5 References


