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Simultaneously Modelling Conditional
Heteroskedasticity and Scale Change

Yuanhua Feng

University of Konstanz

Abstract

This paper proposes a semiparametric approach by introducing a smooth scale func-

tion into the standard GARCH model so that conditional heteroskedasticity and

scale change in a �nancial time series can be modelled simultaneously. An esti-

mation procedure combining kernel estimation of the scale function and maximum

likelihood estimation of the GARCH parameters is proposed. Asymptotic proper-

ties of the kernel estimator are investigated in detail. An iterative plug-in algorithm

is developed for selecting the bandwidth. Practical performance of the proposal

is illustrated by simulation. The proposal is applied to the daily S&P 500 and

DAX 100 returns. It is shown that there are simultaneously signi�cant conditional

heteroskedasticity and scale change in these series.

JEL classi�cation: C22, C14

Keywords: Semiparametric GARCH, conditional heteroskedasticity, scale change,

nonparametric regression with dependence, bandwidth selection.

1 Introduction

This paper considers modelling of heteroskedasticity in an equidistant �nancial time series,

which is one of the most important and interesting themes of �nancial econometrics. There

are at least two components, which result in heteroskedasticity, namely the well known

conditional heteroskedasticity (CH) and a slowly changing unconditional variance (called

scale change). The latter can be modelled by a slowly changing scale (or volatility)

function. Two important di�erences between CH and scale change are: 1. the CH is

determined by the past information, whereas the scale function depends only on the time

t; 2. a process with CH is under common conditions stationary but a process with scale

change is no more covariance stationary but (at most) locally stationary.

Well known approaches for modelling CH are the ARCH (autoregressive conditional

heteroskedastic, Engle, 1982) and GARCH (generalized ARCH, Bollerslev, 1986) models
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together with numerous extensions. To our knowledge, scale change in a discrete �nancial

time series is not yet investigated in detail. Beran and Ocker (2001) �tted SEMIFAR

(semiparametric fractional autoregressive) models (Beran, 1999) to some volatility series

de�ned by Ding et al. (1993) and found that sometimes there is a signi�cantly deter-

ministic trend in these series implying that the scale function of these series is no more

constant. By checking some �nancial returns series we found that CH and scale change

often appear simultaneously. This motivates us to propose a semiparametric GARCH

(SEMIGARCH) model by introducing a smooth scale function �(t) into the standard

GARCH model (Bollerslev, 1986), which provides us a tool for simultaneously modelling

CH and scale change.

It is proposed to estimate �(t) by an approximate kernel smoother of the squared

residuals. The parameters of the GARCH model are then estimated using (approximate)

maximum likelihood approach. Asymptotic properties of the kernel estimator of �(t) are

investigated. The iterative plug-in idea introduced by Gasser et al. (1991) with some

improvements proposed by Beran and Feng (2002a, b) is adapted to select the bandwidth

in the current context. Practical performance of the proposal is at �rst illustrated by a

simulation study and by detailed analysis of two simulated data sets. The proposal is

then applied to the daily S&P 500 and DAX 100 returns. It is shown that, both the CH

and the scale change in these time series are signi�cant. By a �tted GARCH(1, 1) model

one often obtains �̂1 + �̂1 � 1. We found that an uneliminated nonconstant �(t), i.e. the

covariance nonstationarity is an important reason for this phenomenon.

The paper is organized as follows. Section 2 introduces the model. The semiparametric

estimation procedure is described in Section 3. Asymptotic properties of the kernel esti-

mator �̂(t) are discussed in Section 4. Section 5 proposes the iterative plug-in algorithm.

Results of the simulation study are reported in Section 6. The proposal is applied to the

log-returns of the daily S&P 500 and DAX 100 indices in Section 7. Section 8 contains

some �nal remarks. Proofs of results are put in the appendix.

2 The model

Consider the equidistant time series model

Yi = �+ �(ti)�i; (1)
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where � is an unknown constant, ti = t=n, �(t) > 0 is a smooth, bounded scale (or

volatility) function and f�ig is assumed to be a GARCH(r, s) process de�ned by

�i = �ih
1

2

i ; hi = �0 +

rX
j=1

�j�
2
i�j +

sX
k=1

�khi�k (2)

(Bollerslev, 1986). The �i are independent and identically distributed (i.i.d.) N(0; 1)

random variables, �0 > 0, �1; :::; �r � 0 and �1; :::; �s � 0. Let v(t) = �2(t) denote

the local variance of Y . Let � = (�1; :::; �r)
0, � = (�1; :::; �s)

0 and � = (�0; �
0; � 0)0 =

(�0; �1; :::; �r; �1; :::; �s)
0 be the unknown parameter vectors. It is assumed that there is a

strictly stationary solution of (2) such that E(�8i ) <1. This condition is required for the

practical implementation of a nonparametric estimator of v(t). Necessary and suÆcient

conditions which guarantee the existence of high order moments of a GARCH process

may be found in Ling and Li (1997), Ling (1999) and Ling and McAleer (2002). Note

that E(�8i ) < 1 implies in particular that
Pr

i=1 �i +
Ps

j=1 �j < 1. Furthermore, it is

convenient to assume that var (�i) = E(�2i ) = 1 implying �0 = 1�
Pr

i=1 �i �
Ps

j=1 �j.

Model (1) and (2) de�nes a semiparametric, locally stationary GARCH model by in-

troducing the scale function �(t) into the standard GARCH model, where h
1=2
i stand for

the conditional standard deviations of the standardized process �i. The total standard

deviation at ti is hence given by �(ti)h
1=2
i . Our purpose is to estimate v(t) and hi sepa-

rately. For �(t) � �0, model (1) and (2) reduces to the standard GARCH model. If the

scale function �(t) in (1) changes over time, then the assumption of a standard GARCH

model is a misspeci�cation. In this case the estimation of the GARCH model will be

inconsistent. It can be shown trough simulation that, if a non-constant scale function is

not eliminated, one will obtain �̂1 + �̂1 ! 1 by a �tted GARCH(1, 1) model as n!1,

even when �i are i.i.d. innovations. Furthermore, in the presence of scale change the

estimation of v(t) is also necessary for the prediction. On the other hand, if Yi follows a

pure GARCH model but model (1) and (2) is used, then the estimation is still consistent

but with some loss in eÆciency due to the estimation of �(t).

The assumptions of model (1) and (2) are made for simplicity, which can be weakened

in di�erent ways. For instance, if the constant mean � in (1) is replaced by a smooth

mean function g, then we obtain the following nonparametric regression with scale change

and dependence

Yi = g(ti) + �(ti)�i; (3)

where f�ig is a zero mean stationary process. Estimation of the mean functions g in

model (3) with i.i.d. �i was discussed e.g. in Ruppert and Wand (1994), Fan and Gijbels
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(1995) and Efromovich (1999). Discussion on the estimation of the scale function in

heteroskedastic nonparametric regression may be found e.g. in Efromovich (1999). The

focus of this paper is to investigate the estimation of �(t) under model (1) and (2) in

detail. And, we will see that the model we need to estimate �(t) (or v(t)) is a special case

of model (3).

3 A semiparametric estimation procedure

Model (1) and (2) can be estimated by a semiparametric procedure combining nonpara-

metric estimation of v(t) and parametric estimation of �. A linear smoother of the squared

residuals will estimate v(t). Let Zi = (Yi � �), model (1) can be rewritten as follows

Xi = v(ti) + v(ti)�i; (4)

where Xi = Z2
i and �i = �2i � 1 � �1 are zero mean stationary time series errors. Model

(4) transfers the estimation of the scale function to a general nonparametric regression

problem (see Section 4.3 of Efromovich, 1999 for related idea). On the one hand, model

(4) is a special case of (3) with g(t) and �(t) both being replaced by v(t). On the other

hand, model (4) also applies to (3) by de�ning Zi = Yi � g(ti). Hence, the extension of

our results to model (3) is expected.

In the following a kernel estimator of conditional variance proposed by Feng and Heiler

(1998) will be adapted to estimate v(t). Let y1; :::; yn, denote the observations. Let �̂ = �y,

ẑi = yi � �y and x̂i = ẑ2i . Let K(u) denote a second order kernel with compact support

[�1; 1]. An approximate Nadaraya-Watson estimator of v at t is de�ned by

v̂(t) =

Pn
i=1K( ti�t

b
)x̂iPn

i=1K( ti�t
b
)

=:

nX
i=1

wix̂i; (5)

where wi = K( ti�t
b
)(
Pn

i=1K( ti�t
b
))�1 and b is the bandwidth. And we de�ne �̂(t) =

p
v̂.

The de�nition given in (5) does not depend on the dependence structure of the errors,

because v̂ is a linear smoother. It is clear that v̂ > 0 as far as all observations such that

jti � tj � b are not identically. The bias of v̂ at a boundary point is of a larger order

than that in the interior due to the asymmetry in the observations. This is the so-called

boundary e�ect of the kernel estimator, which can be overcome by using a local linear

estimator (see e.g. H�ardle et al., 1998). However, as mentioned in Feng and Heiler (1998),
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a local linear estimator of v may sometimes be non-positive. Hence, the kernel estimator

is more preferable in the current context.

Furthermore, note that

�i = zi=�(ti): (6)

The parameter vector � may be estimated by standard maximum likelihood method

(Bollerslev, 1986) with �i being replaced by the standardized residuals

�̂i = ẑi=�̂(ti) = (yi � �y)=�̂(ti): (7)

�̂ obtained in this way is also an approximate maximum likelihood estimator. Any stan-

dard GARCH software can be built in this semiparametric estimation procedure. In this

paper the S+GARCH (Martin et al., 1996) will be used. For a given bandwidth, the

proposed procedure can already be carried out, e.g. in S-Plus, as follows:

1. Calculate �̂ = �y;

2. Estimate v using the S-plus function ksmooth with input variables t = (1=n; :::; 1)0,

x = ((y1� �y)2; :::; (yn� �y)2)0, a bandwidth b and a selected built-in kernel function;

3. Obtain ĥi by �tting a GARCH model to the series ((y1��y)=�̂(t1); :::; (yn��y)=�̂(tn));

4. Carry out further predictions with v̂(ti) and ĥi.

Similar to the results on the approximate maximum likelihood estimators in the SEMI-

FAR model (see Beran, 1999 and Beran and Feng, 2002c), it is expected that �̂ proposed

here is still
p
n-consistent as in the parametric case. The simulation results in Section 6

con�rm this. However, this will not be investigated here. In the following we will focus

on discussing the asymptotic properties of v̂ and developing a data-driven algorithm for

the practical implementation of the proposed procedure.

4 Asymptotic properties of v̂

For the derivation of the asymptotic results the following assumptions are required.

A1. Model (1) and (2) holds with i.i.d. N(0; 1) �i and strictly stationary �i such that

E(�8i ) <1.
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A2. The function v(t) is strictly positive on [0; 1] and is at least twice continuously

di�erentiable.

A3. The kernel K(u) is a symmetric density function de�ned on [�1; 1].

A4. The bandwidth b satis�es b! 0 and nb!1 as n!1.

Equation (4) is a nonparametric regression model with a local stationary error process.

Results in nonparametric regression with dependence may be found e.g. in Altman (1990)

and Hart (1991) for short-range dependent errors and Hall and Hart (1990), Beran (1999)

and Beran and Feng (2002c) for long-range dependent errors. The pointwise results

obtained in these works may be adapted to the current case without any diÆculty. Let


�(k) denote the autocovariance function of �i. It is well known that var (v̂) depends on

cf = f(0), where f(�) = (2�)�1
P

1

k=�1 exp(ik�)
�(k) is the spectral density of �i. Let

r0 = max(r; s). Following equations (6) and (7) in Bollerslev (1986) and observing that

�0 = 1�
Pr

i=1 �i �
Ps

j=1 �j, we have the ARMA(r0, s) representation of �i:

�i =

r0X
j=1

�0j�i�j �
sX

k=1

�kui�k + ui; (8)

where �0j = �j + �j for j � min(r; s), �0j = �j for j; r > s and �0j = �j for j; s > r and

ui = �2i � hi = (�2i � 1)hi (9)

is a sequence of zero mean, uncorrelated random variables with independent �i � N(0; 1).

Equations (8) and (9) allow us to calculate cf .

De�ne R(K) =
R
K2(u)du and I(K) =

R
u2K(u)du. At an interior point 0 < t < 1 the

following results hold.

Theorem 1. Under assumptions A1 to A4 we have

i) The bias of v̂(t) is given by

E[v̂(t)� v(t)] =
I(K)v00(t)

2
b2 + o(b2): (10)

ii) The variance of v̂(t) is given by

var [v̂(t)] = 2�cfR(K)
v2(t)

nb
+ o(

1

nb
): (11)
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iii) Assume that nb5 ! d2 as n!1, for some d > 0, then

(nb)1=2(v̂(t)� v(t))
D! N(dD; V (t)); (12)

where D = I(K)v00(t)=2 and V (t) = 2�cfR(K)v2(t) .

The proof of Theorem 1 is given in the appendix. The asymptotic bias of v̂ is the same

as in nonparametric regression with i.i.d. errors. The asymptotic variance of it is similar

to that in nonparametric regression with short-range dependent errors, which depends

however on the unknown underlying function v itself. The asymptotic normality of v̂(t)

allows us to test, if there is signi�cant scale change in a time series.

Let �(z) = 1�
Pr0

i=1 �
0

iz
i and  (z) = 1�

Ps
j=1 �jz

j . Assume further that

A5. The polynomials �(z) and  (z) have no common roots.

Assumption A5 implies in particular that � 6= 0. For a GARCH(1, 1) model A5 is

equivalent to the condition �1 > 0. Under assumptions A1 and A5 we have

cf =
E(�4i )

3�

j (1)j2
j�(1)j2 =

E(�4i )

3�

(1�
Ps

j=1 �j)
2

(1�
Pr

i=1 �i �
Ps

j=1 �j)
2
: (13)

If �i follows a GARCH(1, 1) model, then we have

cf =
1

�

�2
0(1 + �1 + �1)(1� �1)

2

(1� �1 � �1)3(1� 3�2
1 � 2�1�1 � �2

1)

=
1

�

(1 + �1 + �1)(1� �1)
2

�0(1� 3�2
1 � 2�1�1 � �2

1)
: (14)

The last equation in (14) is due to the standardization of �i. The proof of (13) and (14)

is given in the appendix.

The mean integrated squared error (MISE) de�ned on [�; 1 � �] will be used as a

goodness of �t criterion, where � > 0 is used to avoid the boundary e�ect of v̂. De�ne

I((v00)2) =
R 1��

�
(v00(t))2dt and I(v2) =

R 1��

�
v2(t)dt. The following theorem holds.

Theorem 2. Under the assumptions of Theorem 1 we have

i) The MISE of v̂(t) is

MISE =

Z 1��

�

E[v̂(t)� v(t)]2dt

=
I2(K)I((v00)2)

4
b4 + 2�cfR(K)

I(v2)

nb
+ o[max(b4;

1

nb
)]: (15)
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ii) Assume that I((v00)2) 6= 0. The asymptotically optimal bandwidth for estimating v,

which minimizes the dominant part of the MISE is given by

bA = CAn
�1=5 (16)

with

CA =

�
2�cf

R(K)

I2(K)

I(v2)

I((v00)2)

�1=5

: (17)

The proof of Theorem 2 is straightforward and is omitted. If a bandwidth b = O(bA) =

O(n�1=5) is used, we have v̂(t) = v(t)[1 +Op(n
�2=5)] and MISE = O(n�4=5).

5 The proposed data-driven algorithm

A plug-in bandwidth selector may be developed by replacing the unknowns cf , I(v
2) and

I((v00)2) in (17) with some suitable estimators. At �rst, it is proposed to estimate cf by

ĉf =
Ê(�4i )

3�

(1�
Ps

j=1 �̂j)
2

(1�
Pr

i=1 �̂i �
Ps

j=1 �̂j)
2
; (18)

where Ê(�4i ) =
Pn

i=1 �̂
4
i =n is a nonparametric estimator of E(�4i ). Although explicit formu-

lae of E(�4i ) are known (see He and Ter�asvirta, 1999a and Karanasos, 1999 for common

results and Bollerslev, 1986 and He and Ter�asvirta, 1999b for results in some special

cases), we prefer to use ĉf de�ned in (18), since the formulae of E(�4i ) are in general too

complex. For a GARCH(1, 1) model, another simple estimator, ~cf say, may be de�ned

based on (14) by replacing �0, �1 and �1 with their estimates. Now ĉf and ~cf perform

quite similarly. Assume that a bandwidth b� is used for estimating E(�4i ), which satis�es

A4 but is not necessarily the same as b, then the following holds

Proposition 1. Under the assumptions of Theorem 1 we have

E[Ê(�4i )� E(�4i )]
:
= O(b2�) +O(nb�)

�1 (19)

and

var (Ê(�4i ))
:
= 2�c�fn

�1[1 + o(1)]; (20)

where c�f denotes the value of the spectral density of the process �4i at the origin.
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The proof of Proposition 1 is given in the appendix.

Remark 1. Equations (19) and (20) show that Ê(�4i ) is
p
n-consistent, if O(n�1=2) �

b� � O(n�1=4). The optimal bandwidth in a second order sense, which balances the two

terms on the right hand side of (19) is of order O(n�1=3). In this paper, we propose to

use a bandwidth b� = O(n�1=4) for estimating E(�4i ) so that the estimator is more stable.

Note that Ê(�4i ) is no more
p
n-consistent, if a bandwidth b� = O(bA) = O(n�1=5) is used.

However, it can be shown that, b̂ is not so sensitive to the bandwidth for estimating E(�4i ).

The integral I(v2) can be estimated by

Î(v2) =
1

n

n2X
i=n1

v̂(ti)
2; (21)

where n1 and n2 denote the integer parts of n� and n(1��), respectively, v̂ is the same

as de�ned in (5) but obtained with another bandwidth bv, say, which satis�es A4. The

following results hold for Î(v2).

Proposition 2. Under the assumptions of Theorem 1 we have

E[Î(v2)� I(v2)]
:
= O(b2v) +O(nbv)

�1 (22)

and

var (Î(v2))
:
= O(n�1) +O(n�2h�1): (23)

The proof of Proposition 2 is given in the appendix.

Remark 2. Note that the dominated orders of the bias and variances of Ê(�4i ) and Î(v
2)

are the same. Hence similar statements given in Remark 1 apply for results given in (22)

and (23). This is not surprising, since both v2(ti) and �
4
i are related to the fourth moment

of the errors.

A well known estimator of I((v00)2) is given by

Î((v00)2) =
1

n

n2X
i=n1

v̂00(ti)
2 (24)

(see e.g. Ruppert et al., 1995), where v̂00 is a kernel estimator of v00 using a fourth order

kernel for estimating the second derivative (see e.g. Gasser and M�uller, 1984 and M�uller,

1988) and again another bandwidth bd. Corresponding results as given in Proposition 2

hold for Î((v00)2), for which the following adapted assumptions are required.
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A20. The function v(t) is strictly positive on [0; 1] and is at least four times continuously

di�erentiable.

A30. v00 is estimated with a symmetric fourth order kernel for estimating the second

derivative with compacted support [�1; 1].

A40. The bandwidth bd satis�es bd ! 0 and nb5d !1 as n!1.

Proposition 3. Under assumptions A1 and A2
0
to A4

0
we have

E[Î((v00)2)� I((v00)2)]
:
= O(b2d) +O(n�1b�5d ) (25)

and

var (Î((v00)2))
:
= O(n�1) +O(n�2b�5): (26)

The proof of Proposition 3 is omitted, since it is well known in nonparametric regression

(see e.g. Herrmann and Gasser, 1994 and Ruppert et al., 1995 for results with i.i.d. errors

and Beran and Feng, 2002a, b for results with dependent errors).

Remark 3. The MSE (mean squared error) of Î((v00)2) is dominated by the squared

bias. The optimal bandwidth for estimating I((v00)2), which balances the two terms on

the right hand side of (25), is of order O(n�1=7). With a bandwidth bd = O(n�1=7) we

have Î((v00)2)� I((v00)2)
:
= Op(n

�2=7).

We see, for selecting the bandwidth b we have to choose at �rst three pilot bandwidths

b�, bv and bd. This problem will be solved using the iterative plug-in idea (Gasser et al.,

1991) with a so-called exponential in
ation method (see Beran and Feng, 2002a, b). Let

bj�1 denote the bandwidth for estimating v in the (j-1)-th iteration. Then in the j-th

iteration, the bandwidths b�;j = bv;j = b
5=4
j�1 and bd;j = b

5=7
j�1 will be used for estimating

E(�4), I(v2) and I((v00)2), respectively. These in
ation methods are chosen so that b�;j as

well as bv;j are both of order Op(n
�1=4) and bd;j is of the optimal order Op(n

�1=7), when

bj�1 is of the optimal order Op(n
�1=5). The unknown constants in the pilot bandwidths are

all omitted. By an iterative plug-in algorithm we also need to choose a starting bandwidth

b0. In the current context, b0 should satisfy A4, because we have to estimate � in the �rst

iteration. Theoretically, a bandwidth b0 = O(n�1=5) is more preferable. Our experience

shows that b0 = 0:5n�1=5 is a good choice. Detailed discusses on this may be found in the

next two sections, especially in Section 6.3.
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The proposed data-driven algorithm processes as follows:

1. Starting with the bandwidth b0 = c0n
�1=5 with e.g. c0 = 0:5.

2. In the j-th iteration

a) Calculate v̂ and �̂ using the bandwidth bj�1.

b) Calculate Ê(�4) and Î(v2) with v̂ obtained using the bandwidth b�;j = bv;j =

b
5=4
j�1.

c) Calculate ĉf from �̂ and Ê(�4).

d) Calculate Î((v00)2) with v̂00 obtained using the bandwidth bd;j = b
5=7
j�1.

e) Improve bj�1 by

bj =

 
2�ĉf

R(K)

I2(K)

Î(v2)

Î((v00)2)

!1=5

n�1=5: (27)

3. Increase j by one and repeatedly carry out Step 2 until convergence is reached or

until a given maximal number of iterations has been done. Put b̂ = bj.

The condition jbj � bj�1j < 1=n is used as a criterion for the convergence of b̂, since such

a di�erence is negligible. The maximal number of iterations is put to be twenty. The

asymptotic performance of b̂ is quanti�ed by

Theorem 3. Assume that A1, A3, A5, A2
0
and A3

0
hold and that I((v00)2) 6= 0 we have

(b̂� bA)=bA
:
= Op(n

�2=7) +Op(n
�1=2): (28)

The proof of Theorem 3 is given in the appendix. Note that A4 and A40 are automatically

satis�ed. The Op(n
�1=2) term in (28) is due to the estimation of cf and I(v

2), where it is

assumed the �̂1 and �̂1 are
p
n-consistent.

The proposed algorithm is coded in an S-Plus function called SEMIGARCH. A practical

restriction 1=n � b � 0:5�1=n is used in the program for simplicity. Four commonly used

kernels, namely the Uniform, the Epanechnikov, the Bisquare and the Triweihgt kernels

(see e.g. M�uller, 1988) are built in the program. As a standard version we propose the

use of the Epanechnikov kernel with � = 0:05 and c0 = 0:5, which will be used in the

following two sections.
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Remark 4. Note that bA is not well de�ned, if I((v00)2) = 0 implying v00(t) � 0. However,

the proposed algorithm also applies to this case. In particular, the SEMIGARCH model

does work, even if the underlying model is a standard GARCH model. It can be shown

that v̂ in this case is still
p
n-consistent but with some loss in the eÆciency compared to

a parametric estimator.

6 The simulation study

6.1 Design of the simulation

To show the practical performance of our proposal, a simulation study was carried out. In

the simulation study, �i were generated using the simulate.garch function in S+GARCH

following one of the two GARCH(1, 1) models:

Model 1 (M1). �i = �ih
1

2

i ; hi = 0:6 + 0:2�2i�1 + 0:2hi�1 and

Model 2 (M2). �i = �ih
1

2

i ; hi = 0:15 + 0:1�2i�1 + 0:75hi�1.

yi are generated following model (1) with � � 0 and one of the tree scale functions:

v
1=2
1 (t) = �1(t) = 3:75 + t + (3 cos(2:75(t� 0:5)�) + 22:5 + 2 tanh(2:75(t� 0:5)�))=5,

v
1=2
2 (t) = �2(t) = �1(t)� 1:2 and

v
1=2
3 (t) = �3(t) = 3 + cos(4(t� 0:25)�).

v1(t) and v2(t) are quite similar, which are designed following the estimated scale function

in the daily DAX 100 returns (see Figure 5(b) in the next section). The scale change with

v2 is stronger than that with v1. It is most strong with v3. To this end see the bandwidths

required for estimating them given in Table 5. The two scale functions �2(t) and �3(t)

may be found in Figures 2(b) and 3(b) in Section 6.3. To con�rm the statements in

Remark 4, a constant scale function v0(t) = �20(t) � 16 is also used. The simulation was

carried out for three sample sizes n = 1000; 2000; 4000. For each case 400 replications

were done. For each replication, three GARCH (1, 1) models were �tted to �i, yi and the

data-driven �̂i. The estimators of �1 and �1 are denoted by �̂�
1, �̂

�
1, �̂

y
1, �̂

y
1 , �̂

�̂
1 and �̂ �̂

1,

respectively. Here, �̂�
1, �̂

�
1 are used as a benchmark.

12



6.2 Results of the simulation study

The sample means, standard deviations and square roots of the MSE's of these estimators

in 400 replications are listed in Tables 1 to 3. Note that yi � 4�i for v0. In this case we

have �̂�
1 = �̂

y
1 and �̂�

1 = �̂
y
1 for any replication. Hence, results for �̂

y
1 and �̂

y
1 with v0 are

omitted.

Consider at �rst the results on �̂�̂
1 or �̂

�̂
1. From Tables 1 to 3 we see that the variances

of these estimators converge very fast in all cases. In some cases with small bias, the bias

happens to be slightly larger for a larger n than for a smaller. We think this is due to the

randomness. The MSE's of these two estimators seem to be dominated by their variances

and converge hence also very fast. For given n, the MSE's of �̂�̂
1 and �̂ �̂

1 under M2 are

much smaller than those under M1. The di�erence among the MSE's for the four scale

functions in a given case is not clear. By comparing the MSE's for di�erent n we can

�nd that these estimators seem to be all
p
n-consistent. Furthermore, for a given case the

MSE of �̂�̂
1 is clearly smaller than that of �̂ �̂

1, this means that � in a SEMIGARCH model

is easier to estimate than �.

Results on �̂
y
1 and �̂

y
1 show how the estimated parameters perform, if a nonconstant

scale function is not eliminated. We see, although the variances of �̂
y
1 and �̂

y
1 converge

very fast, the MSE's of them do not due to the biases. The MSE's of �̂
y
1 for di�erent n are

about the same. In general, the MSE's of �̂
y
1 increases as n increases, since, as expected,

the bias of �̂
y
1 increases as n increases. Observe in particular that �̂

y
1 + �̂

y
1 � 1, even for

M1 with �1 + �1 = 0:4. For example for n = 4000, the smallest value of the mean of

�̂
y
1 + �̂

y
1 is 0.883 and the largest 0.997 for M1 with v1 and v2, respectively.

To give a summary of the performance of �̂�̂
1 and �̂

�̂
1 and to compare them with �̂

y
1 and

�̂
y
1 , the empirical eÆciency (EFF) of an estimator w.r.t. the corresponding one estimated

from �i is calculated. For instance,

EFF(�̂ �̂
1) :=

MSE(�̂�
1)

MSE(�̂ �̂
1)
� 100%:

These results are listed in Table 4. The di�erence between two related EFF's, e.g.

EFF(�̂ �̂
1) � EFF(�̂

y
1 ), in a given case may be thought of as the gain by using the SEMI-

GARCH model. Table 4 shows that the EFF's of �̂�̂
1 and �̂

�̂
1 seem to tend to 100%, whereas

those of �̂
y
1 and �̂

y
1 seem to tend to zero, as n ! 1. Hence, the gains seem to tend to

100%, as n ! 1. However, for n = 1000, the EFF's of �̂ �̂
1 in the two cases of M2 with

13



v1 and v3 are even smaller than those of �̂
y
1 , i.e. the gain in these two cases are slightly

negative. This shows that n = 1000 is sometimes not large enough for estimating the

scale function. Furthermore, observe that the EFF's of �̂ �̂
1 under M2 are relatively low.

Recall that the MSE's of �̂ �̂
1 under M2 are smaller than those under M1. This means that

the a�ect due to the estimation of v is more clear in case when the parameter is easy to

estimate.

Now let us consider the quality of b̂. The sample means, standard deviations and square

roots of the MSE's of b̂ together with the true asymptotic optimal bandwidths bA are given

in Table 5. Note that bA and the MSE in cases with v0 are not de�ned. Kernel density

estimates of (b̂ � bA) for v1 to v3 are shown in Figure 1. We wee, the performance of b̂

is satisfactory. In all cases the variance of b̂ decreases as n increases. It is also true for

the bias in most of the cases. Both, the variance and the bias of b̂ depend on the scale

function and the model of the errors. For two related cases, the variance of b̂ under M1

is smaller than that under M2. Generally, the stronger the scale change is, the larger the

variance of b̂. The bias of b̂ by v1 is always negative and it is always positive by v3. The

bandwidth for v2 is most easily to choose. The choice of the bandwidth by v3 is in general

easier than that by v1, except for the case of M2 with n = 1000. In this case, the detailed

structure of v3 may sometimes be smoothed away due to the large variation caused by

the GARCH model. This shows again that n = 1000 is sometimes not large enough for

distinguishing the CH and the scale change.

6.3 Detailed analysis of two simulated examples

In the following two simulated data sets are selected to show some details. The �rst

example (called Sim 1) is a typical one of the replications under M2 with the scale function

�2(t) and n = 2000. The observations yi, i = 1; :::; 2000, are shown in Figure 2(a). For

Sim 1 we have b̂ = 0:160 by starting with any bandwidth 3=n � b0 � 0:5 � 1=n, i.e. b̂

does not depend on b0, if b0 is not too small. �2(t) (solid line) together with �̂2(t) (dashed

line) is shown in Figure 2(b). Figure 2(c) shows the standardized residuals �̂i, which look

stationary. The estimated GARCH(1, 1) models are

h
y
i = 0:0363 + 0:0540y2i�1 + 0:9432h

y
i�1 (29)

for yi and

h�̂i = 0:2052 + 0:0937�̂2i�1 + 0:6965h�̂i�1 (30)
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for �̂i. For model (29) we have �̂
y
1 + �̂

y
1 = 0:9972 � 1 so that the fourth moment of this

model does not exist. On the opposite model (30) has �nite eighth moment as for the

underlying GARCH model. The estimated SEMIGARCH conditional and total standard

deviations, i.e. (h�̂i)
1=2 and �̂2(ti)(h

�̂
i)
1=2, are shown in Figures 2(d) and (e). The true

conditional and total standard deviations of yi, i.e. (hi)
1=2 and �2(ti)(hi)

1=2, are shown in

Figures 2(f) and (g). Figure 2(h) shows the estimated GARCH conditional (in this case

also the total) standard deviations (h
y
i )

1=2. The analysis of Sim 1 shows:

1. If a standard GARCH model is used, the scale change will be wrongly estimated as

a part of the CH. Furthermore, the total variance tends to be overestimated, when

it is large and underestimated, when it is small (compare Figures 2(g) and (h)).

This is mainly due to the overestimation of �̂1.

2. Following the SEMIGARCH model, both, the conditional heteroskedasticity and

the scale change are well estimated. The estimated SEMIGARCH total variances

are quite close to the true values and are more stable and accurate than those

following the standard GARCH model (compare Figures 2(e) and (h)). The errors

in �̂2(ti)h
�̂
i are caused by the errors in these two estimates, both of them can be

clearly reduced, if more dense observations are available, for instance by analyzing

high-frequency �nancial data. The MSE of the estimated total variances are 0.687

for the SEMIGARCH and 4.979 for the standard GARCH models, the latter is

about seven times so large as the former.

Furthermore, (h
y
i )

1=2 shown in Figure 2(h) (see also Figures 4(f) and 5(f)) exhibit a clear

signal of covariance nonstationarity, a property not sheared by the true and the estimated

SEMIGARCH conditional standard deviations.

The second simulated data set (called Sim 2) is chosen to show that, sometimes, the

selected bandwidth will be wrong, if b0 is too small or too large. That is a moderate b0

should be used as proposed in the last section. The data set Sim 2 shown in Figure 3(a)

is one of the replications under M1 with v3 and n = 1000. For this data set we have,

b̂ = 0:012 or 0.12, if b0 < 0:020. On the other hand, we have b̂ = 0:499, the largest allowed

bandwidth in the program, if b0 > 0:262. For any starting bandwidth b0 2 [0:021; 0:262]

a bandwidth b̂
:
= 0:120 will be selected. Now, b̂ does not depend on b0. The function v

1=2
3

(solid line) together with estimations obtained using b0 = 1=n (dots), b0 = 0:126 (dashes)

and b0 = 0:499 (long dashes) are shown in Figure 3(b). Figure 3(c) shows the data-driven
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standardized residuals �̂i obtained using the default b0. The relationship between b̂ and

b0 is shown in Figure 3(d).

Note that the proposed default starting bandwidth b0 = 0:5n�1=5 = 0:126 lies in the

middle part of the interval [0:021; 0:262]. In case when it is doubtful, if the selected

bandwidth with b0 = 0:5n�1=5 is the optimal one, we recommend the user to try with

some di�erent b0's and choose the most reasonable b̂ from all possible selected bandwidths

by means of further analysis (see Feng, 2002).

7 Applications

In this section the proposal will be applied to the log-returns of the daily S&P 500 and

DAX 100 �nancial indices from January 03, 1994 to August 23, 2000. For the S&P 500

returns shown in Figure 4(a) we have b̂ = 0:183 (for any b0 � 0:075). The �tted GARCH

models are

h
y
i = 5:684 � 10�7 + 0:0674y2i�1 + 0:9302h

y
i�1 (31)

for yi and

h�̂i = 0:0649 + 0:0686�̂2i�1 + 0:8676h�̂i�1 (32)

for �̂i. As before, for model (31) we have �̂
y
1+ �̂

y
1 = 0:9976 � 1 so that the fourth moment

of this model does not exist. However, model (32) has �nite eighth moment. Figure 4(b)

shows �̂(t) together with an about 95% con�dence interval for a constant scale function.

We see that there is signi�cant scale change. Furthermore, both �̂1 and �̂1 in model (32)

are strongly signi�cant. That is this series has simultaneously signi�cant scale change

and CH. Figures 4(c) to (f) show �̂i, the SEMIGARCH conditional standard deviations

(h�̂i)
1=2, the SEMIGARCH total standard deviations �̂(t)(h�̂i)

1=2 as well as the GARCH

conditional standard deviations (h
y
i )

1=2. We see again that the estimated total variances

following the SEMIGARCH model are more stable.

For the DAX 100 returns we have b̂ = 0:181 (for any b0 � 0:075). The �tted GARCH

models are

h
y
i = 2:202 � 10�6 + 0:0892y2i�1 + 0:8957h

y
i�1 (33)

for yi and

h�̂i = 0:0651 + 0:0873�̂2i�1 + 0:8481h�̂i�1 (34)
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for �̂i. The condition for the existence of the fourth moment of model (33) is slightly

satis�ed but the eighth moment of this model does not exist. However, model (34) has

�nite eighth moment. Same results as given in Figure 4 are shown in Figure 5 for this

data set. We see that the S&P 500 and DAX 100 returns series perform quite similarly

and the conclusions on the former given above apply to the latter.

8 Final remarks

In this paper a SEMIGARCH model is introduced for simultaneously modelling condi-

tional heteroskedasticity and scale change. A data-driven algorithm for the practical

implementation of the proposal is developed. Simulation and data examples show that

the proposal performs well in practice. There are still many open questions on this topic,

e.g. the model selection, the detailed discussion on the properties of �̂ and the combina-

tion of the SEMIGARCH model with other variants of the GARCH model or with the

SEMIFAR model. For the model selection the AIC or BIC criteria can be used. The

other questions will be discussed elsewhere.
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Appendix: Proofs of results

In the following ẑi and x̂i will be replaced by zi and xi, respectively, since the error in

�y is negligible.

Proof of Theorem 1.

i) The bias. Note that v̂ is a linear smoother

v̂(t) =

nX
i=1

wixi; (A.1)

where wi are the weights de�ned by (5). The bias of v̂ is E(v̂(t))� v(t) =
Pn

i=1wiv(ti)�
v(t), which is just the same as in nonparametric regression with i.i.d. errors. That is,

the bias depends neither on the dependence structure nor on the heteroskedasticity of the

errors. This leads to the result given in (10).

ii) The variance. Let �i = v(ti)�i denote the errors in (4). Note that wi = 0 for

jti � tj > b we have

var (v̂) =
X

jti�tj�b

X
jtj�tj�b

wiwjcov (�i; �j): (A.2)

For jti � tj � b and jtj � tj � b we have �i = [v(t) +O(b)]�i and �j = [v(t) +O(b)]�j. This

leads to

cov (�i; �j) = cov ([v(t) +O(b)]�i; [v(t) +O(b)]�j)

= v2(t)
�(i� j)[1 + o(1)]: (A.3)

Insert this into (A.2) we have

var (v̂) = v2(t)

8<
:
X

jti�tj�b

X
jtj�tj�b

wiwj
�(i� j)

9=
; [1 + o(1)]: (A.4)

Results in (11) follow from known results on
PP

wiwj
�(i� j) in nonparametric regres-

sion with dependent errors (see e.g. Beran, 1999 and Beran and Feng, 2002a).

iii) Asymptotic normality. Consider the estimation problem under the model with-

out DV

~Xi = v(ti) + v(t)�i = v(ti)� v(t) + v(t)�2i : (A.5)

De�ne

~v(t) =

nX
i=1

wi~xi; (A.6)
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where ~xi are observations obtained following model (A.5). Following the results in i) and

ii) we see (nb)1=2[v̂(t) � ~v(t)] = op(1). Hence v̂(t) is asymptotically normal, if and only

if ~v(t) is. The asymptotic normality of ~v(t) can be shown using a central limit theorem

on nonparametric regression with dependent errors developed by Beran and Feng (2001).

Note at �rst that the error process v(t)�2i in (A.5) is a squared GARCH process. Under the

assumptions of Theorem 1, (v(t)�2i )
2 = v2(t)�4i is also second order and strict stationary,

whose autocovariances converge to zero as the lag tends to in�nite. Furthermore, there

exists an extremal index 
 2 (0; 1] for the process v(t)�2i (see Davis et al., 1999). Hence

the error process in (A.5) satis�es the condition as given in Theorem 1, Case 2 of Beran

and Feng (2001). And it is not diÆcult to check that the weights wi ful�ll the conditions

of Theorem 4 in Beran and Feng (2001). The asymptotic normality of ~v(t) follows from

Theorem 4 of Beran and Feng (2001). Theorem 1 is proved. 3

Proof of (13) and (14). Note that �i has the ARMA representation

�(B)�i =  (B)ui; (A.7)

where �(z) and  (z) are as de�ned before. Under A5 �(z) and  (z) have no common

roots. Under A1 all roots of �(z) and  (z) lie outside the unit circle. Then the spectral

density of � is given by

f(�) =
var (ui)

2�

j (e�i�)j2
j�(e�i�)j2 and f(0) =

var (ui)

2�

( (1))2

(�(1))2
: (A.8)

Note that E(�4i ) = 3E(h2i ) (Bollerslev, 1986) and var (ui) = E(u2i ) = 2E(h2i ). The last

equation follows from (9). That is var (ui) =
2
3
E(�4i ). Result in (13) is proved by inserting

this formula,  (1) and �(1) into (A.8). Result in (14) is obtained by further inserting

explicit formula of E(�4i ) for a GARCH(1, 1) model (Bollerslev, 1986) into (13). 3

A sketched proof of Proposition 1. Taylor expansion on �̂2i leads to

�̂4i =
�
z2i =v̂(ti)

�2
:
=

�
z2i

v(ti)
+Op(v̂(ti)� v(ti)) +Op(v̂(ti)� v(ti))

2

�2

:
= �4i +Op(v̂(ti)� v(ti)) +Op(v̂(ti)� v(ti))

2: (A.9)

We have

E[Ê(�4i )� E(�4i )] = O

 
1

n

nX
i=1

E(v̂(ti)� v(ti))

!
+O

 
1

n

nX
i=1

E(v̂(ti)� v(ti))
2

!

=: T1 + T2: (A.10)
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Observe that the bias E(v̂(ti)� v(ti)) is of order O(b
2
�) in the interior and of order O(b�)

at the boundary. We obtain T1 = O(b2�), since the length of the boundary area is 2b�.

Furthermore, T2 = MISE[0;1][1 + o(1)] = O(nb�)
�1 + o(T1). Results given in (19) are

proved.

Observe that �̂4i = �4i [1 + op(1)]. We have

var (Ê(�4i )) = var

 
1

n

nX
i=1

�4i

!
[1 + o(1)]:

Note that �4i follow a squared ARMA process, which is again a second order stationary

process with absolute summable autocovariances under the assumption E(�8i ) <1. Hence

the spectral density of �4i exists and

nvar (
1

n

nX
i=1

�4i )! 2�c�f ; (A.11)

where c�f is the value of the spectral density of �4i at the origin (see e.g. Brockwell and

Davis, 1991, pp. 218�). Proposition 1 is proved. 3

A sketched proof of Proposition 2. Estimation of functionals of the form
R
fv(�)(t)g2dt,

where v(�) is the �-th derivative of v, was investigated in detail by Ruppert et al. (1995)

in nonparametric regression with independent errors and Beran and Feng (2002a) in non-

parametric regression with dependent errors. Note that I(v2) =
R
fv2(t)g2dt is a special

case of such functionals with � = 0. Furthermore, the results in Ruppert et al. (1995)

and Beran and Feng (2002a) together show that, the magnitude orders in these results

stay unchanged, if short-range dependence and/or a bounded, smooth scale function are

introduced into the error process. We obtain the results of Proposition 2 by setting k = 0,

l = 2 and Æ = 0 in the results in Beran and Feng (2002a), where k and l correspond to

� = 0 and the kernel order used here and Æ is the long-memory parameter, which is zero

in the current context. 3

A sketched proof of Theorem 3. Note that b̂ = ĈAn
�1=5, where CA is as de�ned in

(17). Hence we have

(b̂� bA)=bA = C�1
A (ĈA � CA): (A.12)

Taylor expansion shows that

ĈA � CA
:
= Op(ĉf � cf) +Op(Î(v

2)� I(v2)) +Op(Î((v
00)2)� I((v00)2)): (A.13)

20



Observe that

ĉf � cf
:
= Op(Î(v

2)� I(v2)
:
= Op(n

�1=2)) (A.14)

and

Î((v00)2)� I((v00)2)
:
= Op(n

�2=7): (A.15)

We obtain the results given in Theorem 3. 3
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Table 1: Statistics on the estimated parameters for all cases with n = 1000

Para- Sta- Model 1 Model 2

meter tistic v1 v2 v3 v0 v1 v2 v3 v0

Mean 0.198 0.197 0.195 0.196 0.103 0.102 0.104 0.102

�̂
�
1 SD 0.048 0.049 0.050 0.052 0.032 0.031 0.030 0.031

MSE1=2 0.048 0.049 0.051 0.052 0.032 0.031 0.030 0.031

Mean 0.180 0.191 0.178 0.196 0.715 0.723 0.719 0.724

�̂
�
1 SD 0.174 0.176 0.189 0.192 0.114 0.103 0.109 0.099

MSE1=2 0.175 0.176 0.190 0.191 0.119 0.106 0.113 0.102

Mean 0.141 0.076 0.117 | 0.090 0.080 0.099 |

�̂
y
1 SD 0.091 0.053 0.072 | 0.036 0.029 0.027 |

MSE1=2 0.109 0.135 0.110 | 0.037 0.035 0.027 |

Mean 0.710 0.909 0.821 | 0.870 0.911 0.877 |

�̂
y
1 SD 0.249 0.090 0.159 | 0.070 0.036 0.039 |

MSE1=2 0.568 0.715 0.641 | 0.139 0.165 0.133 |

Mean 0.191 0.191 0.187 0.188 0.100 0.099 0.101 0.098

�̂
�̂
1 SD 0.049 0.049 0.051 0.051 0.032 0.031 0.030 0.032

MSE1=2 0.049 0.050 0.053 0.052 0.032 0.031 0.030 0.032

Mean 0.159 0.168 0.176 0.166 0.677 0.695 0.701 0.686

�̂
�
1 SD 0.177 0.178 0.201 0.185 0.138 0.120 0.135 0.115

MSE1=2 0.181 0.181 0.202 0.188 0.156 0.132 0.143 0.132
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Table 2: Statistics on the estimated parameters for all cases with n = 2000

Para- Sta- Model 1 Model 2

meter tistic v1 v2 v3 v0 v1 v2 v3 v0

Mean 0.197 0.196 0.194 0.197 0.102 0.099 0.100 0.099

�̂
�
1 SD 0.035 0.035 0.034 0.035 0.021 0.022 0.023 0.022

MSE1=2 0.036 0.035 0.035 0.035 0.022 0.022 0.023 0.022

Mean 0.190 0.190 0.200 0.207 0.732 0.745 0.736 0.737

�̂
�
1 SD 0.123 0.116 0.121 0.114 0.065 0.064 0.074 0.076

MSE1=2 0.124 0.116 0.121 0.114 0.068 0.064 0.076 0.077

Mean 0.132 0.051 0.087 | 0.086 0.074 0.084 |

�̂
y
1 SD 0.084 0.037 0.055 | 0.029 0.026 0.025 |

MSE1=2 0.108 0.153 0.125 | 0.032 0.037 0.030 |

Mean 0.734 0.943 0.879 | 0.881 0.919 0.899 |

�̂
y
1 SD 0.225 0.048 0.109 | 0.050 0.031 0.035 |

MSE1=2 0.579 0.745 0.687 | 0.140 0.172 0.153 |

Mean 0.193 0.193 0.190 0.192 0.100 0.098 0.098 0.097

�̂
�̂
1 SD 0.035 0.035 0.035 0.035 0.021 0.023 0.022 0.022

MSE1=2 0.036 0.036 0.036 0.036 0.021 0.023 0.022 0.022

Mean 0.176 0.182 0.199 0.192 0.716 0.735 0.729 0.714

�̂
�̂
1 SD 0.122 0.120 0.127 0.114 0.070 0.066 0.079 0.084

MSE1=2 0.124 0.121 0.127 0.114 0.078 0.067 0.082 0.091
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Table 3: Statistics on the estimated parameters for all cases with n = 4000

Para- Sta- Model 1 Model 2

meter tistic v1 v2 v3 v0 v1 v2 v3 v0

Mean 0.197 0.197 0.196 0.195 0.100 0.100 0.099 0.101

�̂
�
1 SD 0.024 0.025 0.024 0.024 0.014 0.016 0.015 0.015

MSE1=2 0.024 0.025 0.024 0.024 0.014 0.016 0.015 0.015

Mean 0.195 0.201 0.202 0.194 0.746 0.745 0.748 0.743

�̂
�
1 SD 0.078 0.081 0.081 0.083 0.045 0.051 0.041 0.047

MSE1=2 0.078 0.081 0.081 0.083 0.046 0.051 0.041 0.047

Mean 0.125 0.038 0.066 | 0.085 0.069 0.078 |

�̂
y
1 SD 0.073 0.026 0.043 | 0.021 0.018 0.019 |

MSE1=2 0.105 0.164 0.141 | 0.026 0.036 0.029 |

Mean 0.758 0.959 0.917 | 0.885 0.925 0.907 |

�̂
y
1 SD 0.187 0.031 0.068 | 0.035 0.022 0.026 |

MSE1=2 0.589 0.760 0.720 | 0.139 0.176 0.159 |

Mean 0.195 0.195 0.194 0.192 0.100 0.099 0.099 0.100

�̂
�̂
1 SD 0.024 0.025 0.024 0.024 0.014 0.016 0.015 0.016

MSE1=2 0.025 0.025 0.025 0.025 0.014 0.016 0.015 0.016

Mean 0.189 0.199 0.202 0.185 0.738 0.740 0.745 0.730

�̂
�̂
1 SD 0.078 0.081 0.081 0.084 0.048 0.053 0.044 0.050

MSE1=2 0.079 0.081 0.081 0.086 0.049 0.054 0.044 0.054
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Table 4: Empirical eÆciencies (%) of the estimated parameters

Para- n Model 1 Model 2

meter v1 v2 v3 v0 v1 v2 v3 v0

1000 19.8 13.4 21.3 | 73.0 77.9 124.9 |

�̂
y
1 2000 10.9 5.1 7.8 | 45.3 36.6 58.2 |

4000 5.4 2.3 3.0 | 30.2 18.8 26.5 |

1000 9.5 6.0 8.8 | 73.1 41.4 73.0 |

�̂
y
1 2000 4.6 2.4 3.1 | 23.4 13.8 24.4 |

4000 1.8 1.1 1.3 | 10.7 8.5 6.8 |

1000 96.2 97.8 91.3 98.0 96.8 99.8 101.1 95.1

�̂
�̂
1 2000 99.0 94.0 92.5 97.2 100.7 96.5 102.2 99.8

4000 96.3 97.7 94.0 91.4 97.7 97.8 97.5 97.7

1000 93.3 94.2 88.2 103.3 58.5 64.3 62.7 59.9

�̂
�̂
1 2000 99.2 92.7 91.2 99.8 75.2 89.8 85.4 71.7

4000 97.5 99.8 99.2 94.7 86.5 90.7 86.1 77.6

Table 5: Statistics on the selected bandwidth

Sta- Model 1 Model 2

n tistic v1 v2 v3 v0 v1 v2 v3 v0

1000 bA 0.187 0.166 0.107 | 0.204 0.181 0.116 |

Mean 0.174 0.167 0.119 0.173 0.184 0.175 0.131 0.191

SD 0.015 0.011 0.008 0.028 0.024 0.017 0.031 0.037

MSE1=2 0.019 0.011 0.015 | 0.031 0.018 0.034 |

2000 bA 0.163 0.144 0.093 | 0.177 0.151 0.101 |

Mean 0.153 0.148 0.105 0.141 0.163 0.158 0.113 0.155

SD 0.011 0.007 0.005 0.018 0.015 0.011 0.008 0.026

MSE1=2 0.015 0.008 0.013 | 0.020 0.014 0.014 |

4000 bA 0.142 0.126 0.081 | 0.154 0.137 0.088 |

Mean 0.131 0.130 0.091 0.111 0.144 0.140 0.099 0.126

SD 0.009 0.006 0.003 0.010 0.012 0.008 0.005 0.016

MSE1=2 0.014 0.007 0.010 | 0.015 0.008 0.012 |
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Figure 1: Kernel density estimates of b̂ � bA (short dashes for n = 1000, long dashes for

n = 2000 and solid line for n = 4000).
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Figure 2: Estimation results for the �rst simulated data set.
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Figure 3: The second simulated data set and some detailed estimation results. Figure

(b) shows the scale function �3(t) (solid line), the estimation with b0 = n�1 (dots),

b0 = 0:5n�1=5 (short dashes) and b0 = 0:5� n�1 (long dashes).
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(e) The GARCH conditional standard deviations
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Figure 4: The estimation results for the S&P 500 returns.
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Figure 5: The estimation results for the DAX 100 returns.
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