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Variable data driven bandwidth choice in nonparametric

quantile regression

Klaus Abberger, University of Konstanz, Germany

Abstract:

The choice of a smoothing parameter or bandwidth is crucial when applying non-

parametric regression estimators. In nonparametric mean regression various meth-

ods for bandwidth selection exists. But in nonparametric quantile regression band-

width choice is still an unsolved problem. In this paper a selection procedure for

local varying bandwidths based on the asymptotic mean squared error (MSE) of the

local linear quantile estimator is discussed. To estimate the unknown quantities of

the MSE local linear quantile regression based on cross-validation and local likeli-

hood estimation is used.

Key Words: quantile regression, nonparametric regression, conditional quantile

estimation, local linear estimation, local bandwidth selection, local likelihood, gen-

eralized logistic distribution

1 Introduction

It is an interesting problem in a study of the interdependence between a random

variable Y and a covariate X is how estimate the quantiles of Y for a given value

of X. For �xed � 2 (0; 1), the quantile regression function gives the � th quantile

q�(x) in the conditional distribution of Y given X = x. Quantile regression can be
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used to measure the e�ect of covariates not only in the center of the distribution,

but also in its lower and upper tails.

Various nonparametric estimation methods for quantile regression have been

discussed. These methods include spline smoothing, kernel estimation, nearest-

neighbour estimation and local weighted polynomial regression. Yu and Jones (1998)

propose two kinds of local linear quantile regression.

In this paper the local weighted linear quantile regression estimator is used. the

estimator is de�ned by setting q̂�(x) = â, where â and b̂ minimize

nX
i=1

��(Yi � a� b(Xi � x))K

�
x�Xi

h

�
; (1)

with kernel function K(�), bandwidth h and loss function

�� = �1fu�0g(u) � u+ (�� 1)1fq<0g(u) � u (2)

introduced by Koenker and Basset (1978) in connection with parametric quantile

regression. For a discussion of this nonparametric estimator see Heiler (2000), or Yu

and Jones (1998), who also derives the mean squared error (MSE) of this estimator.

The considerations in Sec. 2 of this paper are based on this MSE.

The practical performance of q̂�(x) depends strongly on the bandwidth h. Yu

and Jones (1998) develop a rule-of-thumb bandwidth choice procedure based on the

plug-in idea. Starting point is the asymptotically optimal bandwidth minimizing the

MSE. Since this bandwidth depends on unknown quantities the authors introduce

some simplifying assumptions. These assumptions result in the bandwidth selection

strategy

h� = hmeanf�(1� �)=�(��1(�))2g1=5: (3)

 and 	 are standard normal density and distribution function and hmean is a band-

width choice for regression mean estimation with one of various existing methods.
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As it can be seen this procedure leads to identical bandwidths for the � and (1��)

quantiles.

Abberger (1998) adapts the cross-validation idea to kernel quantile regression

and presents some simulation examples.

In contrast to the above two bandwidth selection strategies where one global

bandwidth is chosen, in this paper a method for locally varying bandwidth choice is

developed. An algorithm based on the MSE optimal bandwidth is discussed in Sec.

2 and some simulation examples are presented in Sec. 3.

2 Variable bandwidth choice

For local linear quantile regression, the asymptotic form of the mean squared error

is

MSE(q̂�(x)) �
1

4
h4�2(K)2q�00(x)

2 +
R(K)�(1� �)

nhg(x)f(q�(x)jx)2
; (4)

where �2(K) =
R
u2K(u)du, R(K) =

R
K2(u)du, and g is the �design density�, the

marginal density of X. f denotes the conditional density f(yjx) of Y given X = x

and q�00(x) the second derivative of the conditional �-quantile (see Yu and Jones

(1998)).

From (4) follows the asymptotically optimal bandwidth

h5�(x) =
R(K)�(1� �)

n�2(K)2q�00(x)2g(x)f(q�(x)jx)2
: (5)

This bandwidth depends on the unknown quantities g(x), q�(x) and f(yjx). Plug-

in estimates for h�(x) use formula (5), replacing the unknown quantities by some

estimates. Before calculating the local bandwidths it is necessary to estimate:

(i) the design density g(x)
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(ii) the conditional quantile and its second derivative

(iii) the conditional density f(yjx) at y = q�(x).

An algorithm is needed which gives estimates for these quantities. In this paper the

following procedure is chosen:

(i) g(x) is easiest to estimate. Various nonparametric density estimators can be

applied. Bandwidth choice procedures also exist. In equidistant designs g(x)

is uniform.

(ii) A prior estimate of q�(x) and its second derivative is estimated by local

quadratic quantile regression

min
a;b;c

(
nX
i=1

��(Yi � a� b(Xi � x)� c(Xi � x)2)K

�
x�Xi

h

�)
; (6)

with q̂�(x) = a and q̂�00(x) = c (see Fan and Gijbels (1996) for local polynomial

estimation in general). These estimates are based on a global bandwidth

chosen by cross-validation. That is the bandwidth minimizing

min
h

(
nX
i=1

��(Yi � q̂(�i)� (Xi))

)
; (7)

with q̂
(�i)
� (Xi), the so called leave-one-out estimator. That means that the

estimator of the conditional quantile at Xi is calculated without using the

observation (Yi; Xi) (see Abberger (1998) for details).

(iii) The most crucial point is the estimation of the conditional density f(�jx) at

q�(x). To estimate this density we use local likelihood estimation similar

to Staniswalis (1989). With presumed density ~f!, parameter vector ! and

parameter space 
 the parameters are estimated locally as maximizers of the

weighted likelihood criterion

!̂(x) = max
!2


nX
i=1

K

�
x�Xi

h

�
log f(Yi; !): (8)
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Having estimated the parameters they are plugged into the assumed density

~f!̂ and the value of ~f!̂(q̂�(x)jx) is calculated. Doing this a primer bandwidth

and a density ~f! has to be chosen. As discussed by Staniswalis (1989) a global

bandwidth selection procedure is cross-validation similar to step (ii) of the

present algorithm. It remains the presumption of a family of densities. There-

fore, the location-scale-shape model of the generalized logistic distribution is

used. The generalized logistic distribution with location (�), scale (�) and

shape (b) parameters has the density

f(x) =
b
�
e�

(x��)
�

(1 + e�
(x��)
� )b+1

; b > 0; � > 0; � 2 R; x 2 R: (9)

This distribution and the maximum likelihood estimation of its parameters is

discussed in detail by Abberger and Heiler (2000). For b = 1 the distribution

is symmetric, for b < 1 the distribution is skewed to the left and for b > 1 it

is skewed to the right.

The logistic distribution and its various generalizations are discussed in John-

son, Kotz and Balakrishnan (1995). The logistic distribution is one of the

most important statistical distributions because of its simplicity and also its

historical importance as growth curve. The generalized logistic distributions

are very useful classes of densities as they possess a wide range of indices of

skewness and kurtosis. Therefore, an important application of these distribu-

tions is their use in studying robustness of estimators. In bandwidth choice

the �exibility of the generalized logistic distribution is used to approximate a

wide range of possibly underlying distributions. Obviously other distributions

might be used and for any special problem at hand there may be natural other

choices. But the generalized logistic seems to be a suitable choice in general.

After estimation of the parameters the value of f(q�(x)jx) can be estimated
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and thus we have estimators for all unknown quantities in the formula of the

asymptotically optimal bandwidth.

The above three steps build a framework of the bandwidth choice selector which

clearly could be varied at several stages. So for global bandwidth choice in steps

(ii) and (iii) other procedures might be used. In step(iii) the local likelihood might

be based on an di�erent distribution family. If there is further information about

the underlying data generating process available, e.g. symmetry of the conditional

distribution or heavy tails, this can be considered in the selection of the distribu-

tion family. The above used settings are very general. Let us demonstrate their

applicability in some simulation examples in the next section.

3 Simulation examples

In this section some simulation results are presented. Two di�erent densities are

chosen. In one example the true underlying distribution is exponential with density

f(y) = se�sy�11fy>�1=ag(y); s > 0: (10)

This distribution is asymmetric and has expectation Zero for all a > 0. With

x = 1; 2; :::; 600 we chose

s = 1:5 + sin(
x

100
�) (11)

Thus for g(x) an equidistant design is used. The second distribution under study is

the lognormal distribution also with scale parameter s as de�ned in (11). The gen-

eralized logistic distribution is intentionally not used as data generating distribution

so that the �exibility of the above algorithm is demonstrated.

The two data setting are quite extreme as Figure 1 shows. This �gure presents

two data sets generated by the two distributions. The exponential data are very

smooth and not really exciting. In contrast to the lognormal data where strong
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Figure 1: Two simulated data sets with scale function as de�ned in equation (11)

swings can be observed.

In both settings our aim is to estimate the conditional 0:75�quantiles. The true

quantile functions are presented in Figure 2 and 3. They both look identical but

mind the di�erent scales on the ordinates.

To evaluate the resulting quantile estimates for each setting 100 repetitions are

calculated. Local linear quantile estimation with locally chosen bandwidths is used

and compared with the local linear quantile estimation based on a global bandwidth

chosen by cross-validation. The resulting local MSE are shown in Figure 4 and 5.
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Figure 2: True 0:75�quantiles for the lognormal distribution

Figure 4 contains the �brave� case of exponential data. It can bee seen that re-

lating to the MSE, estimation based on local bandwidth choice and estimation with

a global bandwidth selected by cross-validation perform almost identical. Although,

there are changes in the components of the MSE. Compared to the global procedure

local bandwidth choice using the above algorithm leads to an increase in the bias

but to an decrease in the variance part. But local bandwidth choice seems to be not

really necessary in this case. On the other hand there is also no disadvantage using it.

A di�erent situation presents Figure 5. In this more extreme data situation lo-

cal bandwidth choice clearly beats the global method. In the peaks of the quantile

function local bandwidth choice leads to a considerable reduction of the MSE.
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Figure 3: True 0:75�quantiles for the exponential distribution

Finally the ability of the local likelihood approach based on the generalized

logistic distribution to approximate the behaviour of the underlying lognormal is

demonstrated . Figure 6 shows for one example the di�erence between the local

likelihood based density estimation in step (iii) and the values using the true under-

lying lognormal distribution. The conditional quantiles are estimated as described

in step (ii) of the algorithm. The �gure shows that the local likelihood estimate is

quite reasonable.

To sum up the two examples it can be stated that the presented algorithm works

well. Local bandwidth choice is not needed in general. But there are data situations
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Figure 4: Simulated MSE for local and cross-validation bandwidth choice with ex-

ponential data

as demonstrated in the lognormal example, where local bandwidth choice leads to

remarkable improvements about the global choice.
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Figure 5: Simulated MSE for local and cross-validation bandwidth choice with log-

normal data
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Figure 6: Example of the calculated conditional density at q̂0:75(x) (�rst using the

true underlying lognormal density and second using approximation with estimated

generalized logistic density
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