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Iterative plug-in algorithms for SEMIFAR models -

de�nition, convergence and asymptotic properties

Jan Beran and Yuanhua Feng

University of Konstanz

Abstract

In this paper data-driven algorithms for �tting SEMIFAR models (Beran, 1999) are

proposed. The algorithms combine the data-driven estimation of the nonparamet-

ric trend and maximum likelihood estimation of the parameters. Convergence and

asymptotic properties of the proposed algorithms are investigated. A large simulation

study illustrates the practical performance of the methods.

Key Words: semiparametric models, long-range dependence, fractional ARIMA, an-

tipersistence, nonparametric regression, bandwidth selection.

1 Introduction

1.1 The SEMIFAR model

The so-called SEMIFAR (semiparametric fractional autoregressive) model, introduced by

Beran (1999), provides a uni�ed approach that allows for simultaneous modelling of de-

terministic trends, stochastic trends and stationary short-memory, long-memory and an-

tipersistent components. In this paper, several data-driven algorithms for estimating the

SEMIFAR model are proposed. Asymptotic properties of the methods are derived. The

practical performance is investigated in an extended simulation study.

A SEMIFAR model (Beran, 1999) is a Gaussian process Yi with an existing smallest

integer m 2 f0; 1g such that

�(B)(1�B)Æf(1�B)mYi � g(ti)g = �i; (1)

where ti = (i=n), Æ 2 (�0:5; 0:5), g is a smooth function on [0; 1], B is the backshift

operator, �(x) = 1 �Pp
j=1 �jx

j is a polynomial with roots outside the unit circle and �i

(i = :::;�1; 0; 1; 2; :::) are iid zero mean normal with var (�i) = �2� . Where, the fractional

di�erence (1�B)Æ introduced by Granger and Joyeux (1980) and Hosking (1981) is de�ned
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by (1�B)Æ =
P
1

k=0 �k(Æ)B
k with �k(Æ) = (�1)k�(Æ+1)=[�(k+1)�(Æ�k+1)]: Model (1)

includes stationary (m = 0) and di�erence-stationary (m = 1) processes with or without

deterministic trend, and covers the cases of short-range dependence (Æ = 0), long-range

dependence (Æ > 0) and antipersistence (Æ < 0). See Beran (1999) and Beran and Ocker

(1999, 2001) for detailed remarks on di�erent special cases of model (1). The spectral

density of Xi = (1�B)mYi � g(ti) has the form

f(�) � cf j�j�� (as �! 0) (2)

with � = 2Æ, where cf is the value of the spectral density of an AR(p) process Zi := (1�
B)ÆXi at the origin. Hence, Xi has long-memory if Æ > 0. In this case the autocovariances


(k) of Xi are proportional to k
2Æ�1 (as k !1) and hence are non-summable. If Æ = 0,

Xi has short-memory and spectral density f(�) converges to a positive constant cf at

the origin with cf = (2�)�1
P
1

k=�1 
(k). If Æ < 0, then the spectral density f(�) of

Xi converges to zero at the origin (so-called \antipersistence"). In this case we haveP
1

k=�1 
(k) = 0. For details on time series with long-memory see Beran (1994) and

references therein. All of the discussions in this paper are valid for the whole range

Æ 2 (�0:5; 0:5).

1.2 Estimation

The estimation of SEMIFAR models consists of two parts: nonparametric estimation of

the trend g and estimation of the parameters m, Æ, p and �1, ..., �p. Note, in particular,

that the integer di�erencing parameter m is also estimated from the data. In this paper

the trend g is estimated by a kernel method (Hall and Hart, 1990 and Beran, 1999) de�ned

by

ĝ(t;h) =
1

nh

nX
i=1

K(
t� ti

h
)(1 �B)m̂Yi (3)

where m̂ is an estimate ofm: Throughout the paper,K will be a symmetric positive second

order kernel with compact support. The parameter vector � = (�2� ; �) with �1 = Æ +m;

�j+1 = �j (j = 1; :::; p) are estimated by maximum likelihood, the order p being chosen

by minimizing the BIC. Since ĝ depends on m̂ and the bandwidth h and the optimal

bandwidth depends on the unknown value of �; an iterative procedure is needed that

alternates between kernel smoothing and estimation of the parameters.

The algorithms proposed in this paper rely on the following asymptotic expressions for

the mean integrated squared error (MISE) and the optimal bandwidth (see Beran 1999;
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for Æ � 0 also see Hall and Hart 1990): Let � > 0 be a small positive constant, which

is introduced to avoid the so-called boundary e�ect of the kernel estimator, and de�ne

I(g
00

) =
R 1��
� [g

00

(t)]2dt and I(K) =
R 1
�1 x

2K(x)dx: Then, as n!1; h! 0; nh!1;

MISE = E

(Z 1��

�
[ĝ(t)� g(t)]2dt

)
= h4

I(g
00

)I2(K)

4
+ (nh)2Æ�1V (1� 2�)

+ o(max(h4; (nh)2Æ�1)); (4)

where V is a constant depending on cf and the kernel function. Formulas for V (with

Æ 2 (�0:5; 0:5)) may be found in Beran and Feng (2001).

For selecting the bandwidth we also need to estimate g00. Let ĝ00(t;h2) be a kernel

estimator of g00 with a kernel K2 and another bandwidth h2, which is di�erent from the

bandwidth h for estimating g. Throughout this paper, K2 will be a symmetric fourth

order kernel for estimating the second derivative with compact support (see e.g. Gasser

and M�uller, 1984). Assume that g is at lest four times continuously di�erentiable and that

h2 ! 0; (nh2)
1�2Æh42 !1 as n!1. Then we have

MISE(ĝ00)
:
= O(h42) +O[(nh2)

2Æ�1h�4]: (5)

1.3 Aim of the paper

Data-driven bandwidth selection is a crucial problem in the practical use of nonparametric

regression. Recent proposals for bandwidth selection in nonparametric regression with

independent or short-range dependent data may be found e.g. in M�uller (1985), Gasser et

al. (1991), H�ardle et al. (1992), Herrmann et al. (1992), Fan and Gijbels (1995), Ruppert

et al. (1995) and Heiler and Feng (1998).

Data driven bandwidth selection in the presence of long memory or nonstationary

errors is even more diÆcult, since spurious stochastic trends may be confounded with

deterministic trends. A bandwidth selector for nonparametric regression with long-range

dependence based on the iterative plug-in idea (Gasser et al., 1991) is proposed by Ray

and Tsay (1997). The contributions of our paper are:

1. Two new iterative algorithms are proposed in the context of SEMIFAR models, thus

in particular including the possibility of stochastic trends (di�erence stationarity) ,

antipersistence and long memory;
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2. Convergence of the algorithms is proved;

3. Asymptotic properties of the estimated bandwidths are derived;

4. In contrast to Gasser et al. and Ray and Tsay, our algorithms use an exponential

in
ation step, which leads to a better relative rate of convergence of the estimated

bandwidth;

5. Finite sample behaviour is studied in a large simulation study.

2 Notation and general considerations

The optimal bandwidth, which minimizes the MISE, will be denoted by hM. The so-called

asymptotically optimal bandwidth, hA, that minimizes the asymptotic MISE, is given by

hA = C � n(2Æ�1)=(5�2Æ) (6)

with

C =

�
(1� 2Æ)V (1� 2�)

I(g00)I2(K)

�1=(5�2Æ)
: (7)

Here it is assumed that I(g00) > 0. When the uniform kernel is used, the constant C in

(6) has the explicit form

C =

�
9(1 � 2Æ)�(Æ)(1 � 2�)cf

I(g00)

�1=(5�2Æ)
(8)

with cf as de�ned before and

�(Æ) =
22Æ�(1� 2Æ) sin(�Æ)

Æ(2Æ + 1)
(9)

for all �0:5 < Æ < 0:5 (see Beran, 1999).

Plug-in estimators for hM use formula (6), replacing the unknown constants Æ, V as

well as I(g00) by some consistent estimators. Note that the estimation of V is equivalent

to that of cf . The quantities Æ and V may be estimated root-n�consistently by maximum

likelihood. Hence the key problem is to estimate I(g00). From here on denote I(g00) by I

and let it be estimated as follows

Î = n�1
n�[n�]X
i=[n�]

fĝ00(ti;h2)g2: (10)
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Properties of Î are investigated by Beran and Feng (2001). Under the assumptions of

equation (5) we have

E[Î � I]
:
= h22

I(K2)

12

Z 1��

�
g00(t)g(4)(t)dt+ (nh2)

2Æ�1h�42 V (11)

and

var [Î]
:
= o[(nh2)

(4Æ�2)h�82 ] +O(n2Æ�1): (12)

The mean squared error (MSE) of Î is dominated by the squared bias

MSEfÎg :
=

(
h22
I(K2)

12

Z 1��

�
g00(t)g(4)(t)dt+ (nh2)

2Æ�1h�42 V

)2

:

The optimal bandwidth for estimating I which minimizesMSEfÎg is hopt2 = O(n(2Æ�1)=(7�2Æ)).

Note that the bandwidth which minimizes MISE(ĝ00) is however h02 = O(n(2Æ�1)=(9�2Æ)).

Following the iterative plug-in idea of Gasser et al. (1991), in the jth iteration, I is

estimated with a bandwidth h2;j , which is obtained from the bandwidth for estimating g in

the j-1th iteration, hj�1 say, with a so-called in
ation method. This idea can be adapted

to data with di�erent dependence structures (see Herrmann et al., 1992, Ray and Tsay,

1997, Beran, 1999 and Beran and Ocker, 2001). An iterative plug-in bandwidth selector is

determined by a starting bandwidth h0 and the in
ation method with an in
ation factor

�. In general, the process should begin with a very small h0. Gasser et al. (1991) proposed

the use of h0 = n�1. For data with long-memory, h0 should ful�ll the condition h0 ! 0,

nh0 ! 1 as n ! 1, since we have already to estimate Æ and V from the residuals at

the �rst iteration. Hence Ray and Tsay (1997) used an h0, which is selected following

Herrmann et al. (1992) by assuming short-memory. In this paper we propose the use

of h0 = n�� with 1
3 � � < 1. Such an h0 satis�es the above condition and it is at the

same time small enough. In fact we have h0 = o(hA) for all Æ 2 (�0:5; 0:5). Here we used
h0 = n�5=7, which is of order o(h2A) for all Æ 2 (�0:5; 0:5).

3 The EIM-bandwidth selector - de�nition and asymptotic

properties

3.1 The MIM and the EIM approaches

There are di�erent ways to obtain h2;j from hj�1. In Gasser et al. (1991), Herrmann

et al. (1992) and Ray and Tsay (1997) the formula h2;j = c � hj�1n� is used. This is

5



called multiplicative in
ation method (MIM). Beran (1999) and Beran and Ocker (2001)

suggested to use the formula h2;j = c � (hj�1)�. We call this exponential in
ation method

(EIM). For each in
ationmethod one has also to choose the in
ation factor �. The iterative

plug-in algorithm is motivated by �xed point search. So � and c should be chosen in a

way that c � hAn� = h
opt
2 by the MIM, or c � (hA)� = h

opt
2 by the EIM, respectively. The

optimal choice for � is �opt = (2� 4Æ)=[(5� 2Æ)(7� 2Æ)] for the MIM (see Herrmann and

Gasser, 1994 for the case with Æ = 0) and

�opt = (5� 2Æ)=(7 � 2Æ)

for the EIM. The choice of c does not a�ect the rate of convergence of ĥ. We will simply

put c = 1.

There are two other reasonable choices of �, namely (for the EIM)

�0 = (5� 2Æ)=(9 � 2Æ) and �var =
1

2
:

The choice of �0 is motivated by the fact that (hA)
�0 = O(h02) which minimizes the

MISE(ĝ00) in (5). The choice of �var is motivated by balancing the terms that are due to

the variance. More speci�cally, using �var the square of the second term on the right hand

side of (11) is of the same order O(n2Æ�1) as the second term in (12).

Since �opt leads to a bandwidth h2 that minimizes the MSE(Î), the rate of convergence

of the resulting ĥ is optimal. Using �0, the rate of convergence of ĥ lies between the two

rates for �opt and �var. Note that the O(n
2Æ�1) term in (12) provides a lower bound for

the error in Î. Hence choosing � smaller than �var does not improve the order of the

variance of Î anymore, whereas it increases the order of the bias. Thus �var =
1
2 is the

smallest reasonable choice of � for EIM. In the procedure de�ned in section 3.2 we use

the EIM with � � 1
2
. In Ray and Tsay (1997) the MIM with an � = (1� 2Æ)=(10� 4Æ) is

used. Note that their choice of � is �var for MIM.

3.2 De�nition of the EIM bandwidth selector

Given m (or a consistent estimate of m), we propose the following bandwidth selector

(after taking the mth di�erence of the data):

i) Start with the bandwidth h0 = n�� with 1
3 � � < 1 and set j = 1.
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ii) Estimate g using hj�1 and let X̂i = Yi � ĝ(ti). Estimate Æ and V from X̂i by

maximum likelihood.

iii) Set h2;j = (hj�1)
� with 1

2 � � < 1 and improve hj�1 by

hj =

 
1� 2Æ̂

I2(K)

(1� 2�)V̂

Î(g00(t;h2;j))

!1=(5�2Æ̂)

� n(2Æ̂�1)=(5�2Æ̂): (13)

vi) Increase j by 1 and repeat steps ii) and iii) until convergence is reached or until a

given number of iterations has been done. And set ĥ = hj .

The required number of iterations for obtaining a satisfactory bandwidth selector depends

on Æ, h0, the in
ation method and �. See Herrmann and Gasser (1994), Ray and Tsay,

(1997) and Beran and Feng (2001) for the idea to calculate it. In particular, the MIM

requires considering more iterations than the EIM (see Beran and Feng, 2001).

3.3 Asymptotic properties

In this paper, V̂ and Æ̂ will be assumed to be both
p
n-consistent.

p
n-consistent estimates

of V̂ and Æ̂ may be obtained e.g. following the maximum likelihood approach proposed

by Beran (1999). The di�erence between the asymptotically optimal bandwidth hA and

the optimal bandwidth hM provides a natural lower bound for the rate of convergence of

a plug-in bandwidth selector. Results on hA�hM in the case of nonparametric regression

with short memory (i.e. Æ = 0) may be found e.g. in Gasser et al. (1991), Herrmann et

al. (1992), Herrmann and Gasser (1994). In the following, uni�ed results will be given for

all Æ 2 (�0:5; 0:5) under regularity conditions, which extends the results in Proposition 1

in Herrmann and Gasser (1994), where only the case of iid errors is considered.

Proposition 1 Assume that g is at least four times continuously di�erentiable and that

h! 0, nh!1 as n!1. Then we have, for all Æ 2 (�0:5; 0:5),

(hA � hM)=hM
:
= O(h2M): (14)

The proof of Proposition 1 is given in the appendix.

Observe that Î � I is at least of the order Opf(hopt2 )2g and hM = o(h
opt
2 ) so that

(hA�hM)=hM = op(Î�I) for all Æ 2 (�0:5; 0:5). This implies that the rate of convergence

of ĥ depends only on the error in Î (see the appendix). The following lemma gives the

rates of convergence of ĥ under di�erent choices of �.
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Lemma 1 Assume that g is at least four times continuously di�erentiable and that Æ̂ and

V̂ are both
p
n-consistent. Then we have

i) For � = �var =
1
2

ĥ = hM

n
1 +O(n(2Æ�1)=(5�2Æ)) +Op(n

(2Æ�1)=2) +Op(n
�1=2)

o
: (15)

ii) For � = �0 = (5� 2Æ)=(9 � 2Æ)

ĥ = hM

n
1 +O(n2(2Æ�1)=(9�2Æ)) +Op(n

4(2Æ�1)=(9�2Æ)) +Op(n
�1=2)

o
: (16)

iii) For � = �opt = (5� 2Æ)=(7 � 2Æ)

ĥ = hM

n
1 +O(n2(2Æ�1)=(7�2Æ)) +Op(n

2(2Æ�1)=(7�2Æ)) +Op(n
�1=2)

o
: (17)

The proof of Lemma 1 is given in the appendix. The following remarks clarify the results

of this Lemma.

Remark 1. The Op(n
�1=2) term in (15) to (17) is due to the error in V̂ and Æ̂.

Remark 2. The proposal in Ray and Tsay (1997) has the same asymptotic behaviour

as given in (15). The variance term O(n(2Æ�1)=2) is in comparison with theO(n(2Æ�1)=(5�2Æ))

term, which is due to the bias, asymptotically negligible.

Remark 3. Note that the order of the variance term in (15) reaches the lower bound

Op(n
Æ� 1

2 ), whereas the corresponding term in (16) and (17) are of a larger order. On the

other hand the bias term in (15) is of a larger order than in (16) and (17). The overall

rate of convergence is faster in (16) and (17) but (15) is more stable in the sense of having

the smallest variance. The best overall rate is achieved in (17).

Remark 4. For Æ = 0, the rate in (17) is n�2=7. This is the same as obtained by

Ruppert et al. (1995) for iid data. For positive Æ, the rate is slower than n�2=7 and for

negative Æ faster than n�2=7. Moreover, it tends to (but is always slower than) n�1=2 as

Æ ! �0:5. The Op(n
�1=2) term in (15) through (17) is asymptotically negligible.

Remark 5. Equations (16) and (17) give the rates of convergence for the bandwidth

selectors used in Algorithms A and B proposed in the next section respectively.
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4 Data-driven algorithms

This section deals with data-driven algorithms for estimating the SEMIFAR models. Con-

vergence and asymptotic properties of three algorithms are obtained. The �rst algorithm

(Algorithm A, or AlgA ) relies on a full search with respect to d; and was originally pro-

posed (in a slightly di�erent version) in Beran (1999) and Beran and Ocker (2001). No

theoretical results were derived there however. Algorithms B and C are two new algorithms

that run much faster than Algorithm A, since no full search is needed. In the following

the true unknown parameter vector will be denoted by �0 = (�2�;0; Æ
0 +m0; �01; :::; �

0
p0
).

4.1 Algorithm A

AlgA is an adaptation of the procedure Beran (1995), by replacing �̂ by the kernel es-

timator ĝ. It makes use of the fact that d is the only additional parameter, besides the

autoregressive parameters, so that a systematic search with respect to d can be made. Let

�0 be a small positive number and � = �0. Then the procedure is de�ned as follows:

Algorithm A:

Step 1: De�ne L = maximal order of �(B) that will be tried, and a suÆciently �ne grid

G 2 (�0:5; 1:5) n f0:5g. Then, for each p 2 f0; 1; :::; Lg, carry out steps 2 through 4.

Step 2: For each d 2 G, set m = [d+0:5], Æ = d�m, and Ui(m) = (1�B)mYi, and carry

out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let h0 = �0min(n(2Æ�1)=(5�2Æ) ; 0:5) and set j = 1.

Step 3b: Calculate ĝ(ti;m) using the bandwidth hj�1. Set X̂i = Ui(m)� ĝ(ti;m).

Step 3c: Set ~ei(d) =
Pi�1

j=0 �j(Æ)X̂i�j , where the coeÆcients �j are de�ned before.

Step 3d: Estimate the autoregressive parameters �1; :::; �p from ~ei(d) and obtain

the estimates �̂2� = �̂2� (d; j) and ĉf = ĉf (j). Estimation of the parameters can

be done, for instance, by using the S-PLUS function ar.burg or arima.mle. If

p = 0, set �̂2� equal to n�1
P

~e2i (d) and ĉf equal to �̂2�=(2�).

Step 3e: Set h2;j = (hj�1)
� with � = �0 = (5� 2Æ)=(9 � 2Æ), improve hj�1 by

hj =

 
1� 2Æ

I2(K)

(1� 2�)V̂

Î(g00(t;h2;j))

!1=(5�2Æ)

� n(2Æ�1)=(5�2Æ) : (18)

9



Step 3f: Increase j by one and repeat steps 3b to 3e until convergence is reached or

until a given number of iterations has been done. This yields for each d 2 G

separately, the ultimate value of �̂2� (d), as a function of d.

Step 4: De�ne d̂ to be the value of d for which �̂2� (d) is minimal. This together with the

corresponding estimates of the AR parameters, yields an information criterion, e.g.

BIC(p) = n log �̂2� (p) + p log n, as a function of p and the corresponding values of �̂

and ĝ for the given order p.

Step 5: Select the order p that minimizes BIC(p). This yields the �nal estimates of �0

and g.

Note that a \small" constant �0 is used in order that the starting bandwidth is not too

large. In our implementation we used � = 0:1 and �0 = 0:2. This means that, in the

�rst iteration, at most 20% of the observations are used for estimating g at each point and

ti 2 [�; 1 � �] are all interior points. Note that in step 3, the (trial) values of Æ and m

are �xed. Note also that, if Æ = Æ0, then h0 in step 3 is of the optimal order so that h1 is

already consistent. In the second iteration the e�ect of h0 will be clearly reduced. Further

iterations improve the �nite sample properties of ĥ. If Æ 6= Æ0, the selected bandwidth in

any iteration is not optimal in general.

The following lemma is needed to prove i) in Theorem 1. Denote by ĥ(Æ) the bandwidth

selected by AlgA for a given trial value Æ in the case of m = m0. Lemma 2 shows that

ĥ(Æ)! 0, nĥ(Æ)!1 in probability as n!1.

Lemma 2 Assume that the trial value of m (in AlgA) is equal to m0 and that the con-

ditions of Lemma 1 hold. Then for each trial value Æ there exists an order �Æ such that

(1� 2Æ)=(5 � 2Æ) � �Æ <
5
9and ĥ(Æ) = Op(n

��Æ).

The proof of Lemma 2 is given in the appendix.

Under the conditions of Lemma 1 the following results for AlgA hold:

Theorem 1 Let ĥ; ĝ and �̂ be obtained by AlgA with L � p0, and let 0 < � < 1=2: Then

i)
p
n(�̂ � �o) converges in distribution to a zero mean normal random variable with a

covariance matrix equal to the inverse Fisher information matrix;
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ii)

ĥ = hMf1 +Op(n
2(2Æ0�1)=(9�2Æ0))g: (19)

The rate of convergence of the selected bandwidth given in (19) follows from (16). A

sketched proof of Theorem 1 is given in the appendix.

4.2 Algorithm B

The computing time for AlgA is very long, since the iterative procedure has to be carried

out for each trial value d 2 G. In the following we propose a much faster Algorithm

B (AlgB), where all parameters, except for p and m, are estimated directly from the

residuals by maximizing the likelihood function. In our implementation, the S-PLUS

function arima.fracdi� was used.

The steps of AlgB are de�ned as follows:

Algorithm B:

Step 1: Obtain a bandwidth for estimating m:

Step 1a: Set m = 1. Calculate Ui(m). Estimate g from Ui(m) with the starting

bandwidth h0 = n�1=3. Calculate the residuals.

Step 1b: For each p = 0; 1; :::; L, where L is as de�ned in AlgA, �t a FARIMA model

to the residuals using the S-PLUS function arima.fracdi�, where the order of

the MA component is set equal to zero.

Step 1c: Select the best AR order p following the BIC. Now we obtain estimates of

all parameters except m0.

Step 1d: Calculate the bandwidth h1 following the procedure in section 3 with � =

�̂opt = (5� 2Æ̂)=(7� 2Æ̂).

Step 1e: Set L0 = p̂0.

Step 2: Estimate m0:

Step 2a: Carry out steps 1a to 1c with h1 for m = 0 and m = 1 separately.

Step 2b: Select the best pair of m and p following the BIC. Now we obtain an

estimate of all parameters, including m0.
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Step 2c: Set m = m̂0.

Step 3: Further iterations: Carry out further iterations with L being replaced by L0,

m = m̂0 and a new starting bandwidth h2 := n�5=7 until convergence is reached or

a given number of iterations has been done.

Here m = 1 is used at the �rst iteration in order that the input of the S-PLUS function

arima.fracdi� is stationary. m0 is selected at the second iteration. Afterwards, m̂0 is used.

The estimate m̂0 is consistent, since h1 ! 0, nh1 !1 as n!1. For p̂0 selected at the

�rst iteration in step 1 we have p̂0 ! p0 in probability, if m0 = 1. If m0 = 0, then p̂0

tends to the maximal order L in probability, since now the error process is an ARMA(p,

1), i.e. an AR(1) model. By selecting m0 just one time and by setting L0 = p̂0 at the

end of step 1 much computing time can be saved. For AlgB we have

Theorem 2 Let ĥ; ĝ and �̂ be obtained by AlgB with L � p0, and let 0 < � < 1=2: Then

the same results as given in Theorem 1 hold, except that now

ĥ = hMf1 +Op(n
2(2Æ0�1)=(7�2Æ0))g; (20)

The proof of Theorem 2 is straightforward and is hence omitted. The rate of convergence of

ĥ obtained by AlgB is given by (17), which is faster than for AlgA, since 2(2Æ�1)=(9�2Æ) >
2(2Æ � 1)=(7 � 2Æ) for all Æ 2 (�0:5; 0:5):

4.3 Algorithm C

The iteration at step 1 is carried out so that h1 adapts automatically to the structure of

g and the variation in the data. However, this starting bandwidth is quite large, which

will sometimes result in m̂0 = 0 in the case when m0 = 1. This motivates us to propose

the following algorithm by using a smaller h0 at the beginning and carrying out more

iterations at step 1:

Algorithm C.

Let h0 = n�1=3 at step 1 of AlgB be replaced by h0 = n�5=7. Carry out similarly the

iteration six times using m = 1. The bandwidth h6 is then used at step 2 to select

m0. Carry out step 3 as in AlgB with h7 selected at step 2, if m̂0 = 1, or with

h7 = n�5=7 otherwise.
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The basic idea behind Algorithm C (AlgC) is as follows. If m0 = 1, then h6 obtained

at the end of step 1 is already a good estimate of hM. The estimation of m using h6 will

have high accuracy. In the case m0 = 0, h6 will be a bandwidth adapted to the structure

of g and the variation in the data. So that it can be used for selecting m0. The computing

time of AlgC is slightly longer than for AlgB. It is clear that the estimates obtained by

these two algorithms have the same asymptotic properties.

5 Simulation

5.1 Description of the simulation study

To show the practical performance of the data-driven SEMIFAR models, a large simulation

has been done. The following three trend functions are used:

g1(t) = 2 tanh(5(t� 0:5));

g2(t) = 4 sin2((t� 0:5)�) and

g3(t) = 2 sin(5(t� 0:5)�)

for t 2 [0; 1] (see Figures 1f through 3f). The range of these trends is kept the same.

These trends are chosen as di�erent as possible so that the practical performance of the

proposed algorithms in di�erent cases may be studied. The case without trend (g0 :� 0)

is also included as a comparison.

Fifty parameter combinations with m0 2 f0; 1g, Æ0 2 f�0:4;�0:2; 0; 0:2; 0:4g, �01 2
f�0:7;�0:3; 0; 0:3; 0:7g were selected for the simulation. Here we have p0 = 0 for �01 = 0

and p0 = 1 otherwise. The error process is standardized so that var (Xi) = 1 in all cases.

200 replications were done for each parameter combination with two sample sizes n = 500

and n = 1000. The simulations were carried out using AlgB and AlgC, separately. The

maximal number of iterations was set equal to 20. Simulation using AlgA has not been

done due to long computing time.

5.2 Summary of results

In the following a brief summary of the simulations with n = 500 using AlgB will be given.

The results for n = 1000 and for AlgC are similar and are hence omitted to save place.
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Detailed simulation results are reported in Beran and Feng (2000) as supplement of the

current paper. Tables 1 and 2 give frequencies (in 200 replications) of correctly estimating

m0 and p0 respectively, for m
0 = 0 and m0 = 1 separately. Here the results for g0 are also

given, since m̂0 and p̂0 are still root n consistent for the case without trend. Tables 3 and

4 give the mean and standard deviation of ĥ for m0 = 0 and m0 = 1, separately, together

with hA calculated from (6). Note that hA does not depend on m0. These results are only

given for g1 through g3, since ĥ is not consistent for g0.

The short-memory component of the SEMIFAR model depends on the selection of

m0 and p0. The selection of m0 plays a more important role than that of p0, since it

determines, whether the �rst di�erence should be used in the further calculation. From

Tables 1 and 2 we see that m0 is easy to select. In most cases, m̂0 is always (or almost

always) correct. Estimation of m0 appears diÆcult for m0 = 0 with Æ = �0:2 and �01 = 0:7

and for g0 with m0 = 1. This means that in these cases it is diÆcult to decide, if Yi is

stationary or not. In these cases AlgC turned out to perform better than AlgB (see Beran

and Feng, 2000).

The order p0 is more diÆcult to select than m0. There are mainly two reasons for

this. Firstly, di�erent autoregressive models may have quite similar �nite sample paths.

Secondly, in some cases, it is diÆcult to separate autocorrelation from a complex trend

like g3, when n is not large enough. Hence, p̂0 works worst for g3. The rate of correctly

estimated p0 may be very low, even when m̂0 is correct. Note that model (b) in Beran et

al. (1998) is the same as the case without trend used in this paper. Comparing the results

here and those in Table 1 in Beran et al. (1998), we can �nd that the rate of correctly

estimated p0 is similar. In our case, however, estimation of p0 is more diÆcult, because

knowledge of a constant trend is not assumed.

Results in Tables 3 and 4 show that the proposed bandwidth selector works well in

all cases, although m0 and p0 have also to be estimated simultaneously. The rate of

convergence of ĥ depends only on Æ not on �01. However, the �nite sample performance

of ĥ strongly depends on both parameters. In general, the larger �01 and/or Æ the larger

is the variation in ĥ. The performance of ĥ also depends on the trend function. The

selection of the bandwidth in the case of trend function g1 is more diÆcult than for g2 or

g3. Estimation of m0 and p0 also a�ects the accuracy of ĥ. For instance, if m0 = 0 and

m̂0 = 1, ĥ is clearly larger than the optimal bandwidth (see the case with Æ0 = �0:2 and

�01 = 0:7 in Table 3). In the case m0 = 1 with m̂0 = 0, ĥ is practically zero, when there is
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a trend in the data (see Beran and Feng, 2000). Note also that ĥ performs quite quite the

same way form0 = 0 and m0 = 1. Figures 1 through 3 show the estimated kernel densities

of log(ĥ=hA) from the 200 replications for each case with m0 = 0, where densities for the

same �01 with di�erent Æ's are overlaid in the same plot. The same results for cases with

m0 = 1 are shown in Figures 4 to 6.

6 Final remarks

In this paper three data-driven algorithms for �tting SEMIFAR models are investigated.

The asymptotic behaviour of the algorithms and the selected bandwidths is derived. In

particular, it is shown theoretically that the new algorithms, AlgB and AlgC, perform

better than AlgA (see Theorems 1 and 2). Simulations con�rm the good performance of

AlgB and AlgC and the potential usefulness of the SEMIFAR models for estimating and

distinguishing deterministic trends and a stochastic component. The detailed simulation

results in Beran and Feng (2000) also indicated that in general, AlgB works better form0 =

0, while AlgC works better for m0 = 1. The di�erence between AlgB and AlgC however

also depends on the trend. For g1 and g2, their performance is almost the same. The

simulation results also show that the estimates of the short- and long-memory parameters

depend on each other. When the long-memory parameter is overestimated, the short-

memory parameter will often be underestimated, and vice versa.
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Appendix: Proofs

Proof of Proposition 1: Denote the MISE by M . A well known approximation of

M is the sum of the �rst two terms on the right-hand side of (4) under the assumption

that g is at least twice continuously di�erentiable. Denote this sum by M2, we have

M2 = O(h4) +Of(nh)2Æ�1g. Now, hA is the minimizer of M2. Note that M2 is obtained
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based on the second order approximation of the bias B2 = O(h2) + o(h2). If g(4) is

continuous then the bias may be approximated by B4 = O(h2)+O(h4)+o(h4). We obtain

a more accurate approximation of M , namely, M4 = O(h4) + O(h6) + Of(nh)2Æ�1g, due
to the fact that the second term in the variance part is asymptotically negligible in the

neighborhood of hM. Hence we have

M(hM)�M2(hM)
:
=M4(hM)�M2(hM)

:
= O(h6):

Following the idea in H�ardle et al. (1992) and Feng (1999), it can be shown that

hA � hM
:
= �[M 0

2(hM)�M 0(hM)]=M
00(hM)

:
= �[M 0

2(hM)�M 0

4(hM)]=M
00(hM):

Note that M 00(hM)
:
= O(h2M), we have hA � hM

:
= O(h3M) and (hA � hM)=hM

:
= O(h2M). 2

Proof of Lemma 1: In the following proof the unknown parameters Æ and V instead of

their estimates will be used. The error caused by doing this is quanti�ed by the Op(n
�1=2)

term given in (15) to (17). By the iterative plug-in algorithm a bandwidth of order Op(hM)

plays the key role. Note that ĝ00 (and hence Î) using a bandwidth of order Op(hM) will be

of order Op(1) but not consistent (see (5)). Assuming that h0 = o(hM) (e.g. O(n
�5=7)) is

used at the beginning as proposed in this paper, an iterative plug-in bandwidth selection

procedure may be divided into the following three steps according to the relationship

between h2;j and hM.

Step 1. When h2;j = op(hM), the bias of Î is of the order Op(n
Æ�1=2h

Æ�5=2
2;j ) ! 1 as

n ! 1 (see (5)). In this case one obtains hj = Op(h2;j) (see (13)). This implies

that hj�1 = o(hj), i.e. the bandwidth is in
ated of a larger order. This step will be

iteratively carried out till Step 2 or Step 3 is reached.

Step 2. When h2;j = Op(hM), Î = Op(1). Now, hj = Op(hM). But, in general, the

constant is not consistent. Now we also have hj�1 = o(hj). Step 2 consists of only

one iteration, if it occurs.

Step 3. When hM = op(h2;j), Î is consistent and then hj will be a consistent estimate of

hA (and hM).

After Step 3 we have hvar2;j = Op(n
(2Æ�1)=(10�4Æ)) = Op(h

var
2 ), h02;j = Op(n

(2Æ�1)=(9�2Æ)) =

Op(h
0
2) and h

opt
2;j = Op(n

(2Æ�1)=(7�2Æ)) = Op(h
opt
2 ) for � = �var, �0 and �opt, respectively.
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The corresponding rates of convergence in these three cases may be calculated as follows:

Taylor expansion gives

ĥ� hA
:
= � 1

5� 2Æ
hAI

�1(Î � I):

It follows that

(ĥ� hA)=hA
:
= � 1

5� 2Æ
I�1(Î � I):

It is obvious that (ĥ� hM)=hM
:
= (ĥ� hM)=hA. Observe that (hA � hM)=hM = op(Î � I)

we have (ĥ� hM)=hA
:
= (ĥ� hA)=hA

:
= � 1

5�2Æ
I�1(Î � I). Inserting hvar2 , h02 and h

opt
2 into

the right-hand side of (11), and observing that the second term is negligible for case ii)

and the two terms are of the same order for case iii), we obtain the rates of convergence

in the three cases, respectively. 2

Proof of Lemma 2: In the following we will call �Æ a stable order. De�ne Æ1 = maxf2Æ0�
1=2;�0:5g. It is clear that Æ1 < Æ0. For a trial value Æ1 < Æ < 0:5, we have h2;1 =

h
(5�2Æ)=(9�2Æ)
0 = O(n�~�) with 0 < ~� < (1 � 2Æ0)=(5 � 2Æ0). This means that Î(h2;1)

is consistent and h1 = O(h0). For j � 2 we have hj = hj�1(1 + op(1)). In this case

ĥ(Æ) = Op(n
��Æ) with the stable order �Æ = (1 � 2Æ)=(5 � 2Æ) and a convergent constant

part, whose limit depending on Æ.

The case Æ � Æ1 can only occur if Æ1 > �0:5 (i.e. Æ0 > 0). Thus suppose that Æ1 > �0:5.
In the case Æ = Æ1 we also have �Æ = (1�2Æ)=(5�2Æ). But now, Î = Op(1) is not consistent.

This results in ĥ(Æ) = Op(n
��Æ) with an divergent constant part.

For �0:5 < Æ < Æ1 it can be shown that the stable order is �Æ = 2(Æ0 � Æ)(9 �
2Æ)=f(5 � 2Æ)(4 + 2(Æ0 � Æ))g. Now the constant part is also divergent. In this case �Æ >

(1� 2Æ)=(5 � 2Æ), i.e. the stable bandwidth is now of a smaller order than n(2Æ�1)=(5�2Æ) .

Now, �Æ is monotonically increasing in Æ0 and monotonically decreasing in Æ with the

upper bound 5
9 . 2

A sketched proof of Theorem 1:

Part i): To show the asymptotic normality of
p
n(�̂ � �o) we have at �rst to show that

ĥ(Æ), the bandwidth selected at the end of AlgA for each trial value, satis�es

a) for m = m0, ĥ(Æ)! 0, nĥ(Æ)!1 and

b) for m 6= m0, nĥ(Æ)!1
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in probability as n ! 1. For m 6= m0, the condition h(Æ) ! 0 in probability as n ! 1
is unnecessary, although it can be shown that it holds. The validity of a) and b) can be

seen as follows:

Condition a) follows directly from Lemma 2.

For condition b) we have two cases: In the case m0 = 1 withm = 0 we have Î = Op(n
2)

and hence, for each j, hj � Op(n
�2=(5�2Æ)n(2Æ�1)=(5�2Æ)) = Op(n

(2Æ�3)=(5�2Æ)). In the case

m0 = 0 with m = 1, Î will be asymptotically dominated by the second term on the right-

hand side of (11), which is of order O[(nh2;j)
2Æ�1h�42;j ]. Hence we have hj = Op(h2;j) in

any iteration. In both cases we have nĥ(Æ)!1.

Further proof of part i) follows from the proof of Theorem 2 in Beran (1999).

Part ii): Since m̂ is consistent, we only need to consider the rate of convergence of ĥ in

the case when m̂ = m0. Now, the rate of convergence of ĥ by AlgA follows from Case ii)

in Lemma 1. 2
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Table 1: Frequencies (in 200 replications) of estimatingm0 and p0 correctly (for simulation

using AlgB with n = 500 and m0 = 0).

g1 g2 g3 g0

d
0

�
0

1
m

0
p0 m

0
p0 m

0
p0 m

0
p0

-0.4 -0.7 200 194 200 184 200 173 200 192

-0.4 -0.3 200 194 200 188 200 187 200 190

-0.4 0 200 197 200 199 200 195 200 193

-0.4 0.3 200 170 200 141 200 117 200 183

-0.4 0.7 200 101 200 101 200 33 200 119

-0.2 -0.7 200 190 200 196 200 195 200 149

-0.2 -0.3 200 160 200 181 200 181 200 113

-0.2 0 200 179 200 187 200 198 200 182

-0.2 0.3 200 185 200 175 200 175 200 183

-0.2 0.7 102 19 110 14 112 21 110 23

0 -0.7 200 159 200 180 200 162 200 132

0 -0.3 200 111 200 120 200 81 200 115

0 0 200 169 200 186 200 179 200 176

0 0.3 200 155 200 138 200 86 200 157

0 0.7 192 191 182 180 158 153 185 180

0.2 -0.7 200 166 200 172 200 94 200 175

0.2 -0.3 200 131 200 129 200 75 200 139

0.2 0 200 172 200 180 200 167 200 179

0.2 0.3 158 19 159 22 153 9 161 19

0.2 0.7 197 195 199 198 187 186 199 198

0.4 -0.7 196 195 196 196 200 183 196 190

0.4 -0.3 185 148 193 127 200 52 191 137

0.4 0 196 199 197 198 199 198 195 198

0.4 0.3 150 150 152 151 56 49 152 150

0.4 0.7 187 199 184 195 186 188 185 196
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Table 2: Frequencies (in 200 replications) of estimatingm0 and p0 correctly (for simulation

using AlgB with n = 500 and m0 = 1).

g1 g2 g3 g0

d
0

�
0

1
m

0
p0 m

0
p0 m

0
p0 m

0
p0

0.6 -0.7 200 193 200 187 200 200 165 190

0.6 -0.3 200 195 200 196 200 192 91 135

0.6 0 200 199 200 198 200 192 191 194

0.6 0.3 200 59 200 6 220 110 15 187

0.6 0.7 200 188 200 179 200 9 183 191

0.8 -0.7 200 199 200 194 200 200 187 187

0.8 -0.3 199 163 200 186 200 186 50 11

0.8 0 200 197 200 200 200 196 187 187

0.8 0.3 197 160 200 34 200 33 38 191

0.8 0.7 199 189 200 194 200 81 158 158

1 -0.7 200 196 200 192 200 200 175 170

1 -0.3 200 129 200 135 200 96 45 25

1 0 200 193 200 199 200 169 178 176

1 0.3 199 167 200 149 200 7 172 185

1 0.7 200 171 200 197 199 141 132 131

1.2 -0.7 200 180 200 196 200 200 171 157

1.2 -0.3 200 123 200 107 200 39 80 55

1.2 0 200 185 200 198 200 200 182 176

1.2 0.3 200 184 200 182 200 42 190 188

1.2 0.7 200 156 200 167 200 191 102 96

1.4 -0.7 200 158 200 190 200 200 176 133

1.4 -0.3 200 108 200 109 200 33 146 106

1.4 0 200 178 200 187 200 200 180 155

1.4 0.3 200 190 200 195 200 9 179 172

1.4 0.7 200 140 200 138 200 185 136 87
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Table 3: Mean and standard deviation of ĥ (using AlgB with n = 500, m0 = 0).

g1 g2 g3

d
0

�
0

1
hA Mean SD hA Mean SD hA Mean SD

-0.4 -0.7 0.053 0.050 0.0039 0.039 0.040 0.0015 0.021 0.021 0.0009

-0.4 -0.3 0.065 0.061 0.0048 0.048 0.051 0.0013 0.026 0.027 0.0008

-0.4 0 0.075 0.068 0.0059 0.055 0.058 0.0017 0.029 0.031 0.0007

-0.4 0.3 0.086 0.081 0.0094 0.063 0.066 0.0036 0.034 0.035 0.0014

-0.4 0.7 0.114 0.139 0.0563 0.084 0.106 0.0214 0.045 0.055 0.0063

-0.2 -0.7 0.059 0.054 0.0046 0.043 0.044 0.0018 0.022 0.022 0.0009

-0.2 -0.3 0.074 0.066 0.0074 0.053 0.055 0.0023 0.027 0.028 0.0011

-0.2 0 0.084 0.072 0.0080 0.061 0.062 0.0038 0.031 0.032 0.0010

-0.2 0.3 0.097 0.089 0.0145 0.070 0.073 0.0064 0.035 0.039 0.0023

-0.2 0.7 0.125 0.176 0.1076 0.090 0.131 0.0365 0.046 0.082 0.0210

0 -0.7 0.075 0.066 0.0083 0.053 0.054 0.0037 0.025 0.025 0.0013

0 -0.3 0.094 0.079 0.0126 0.066 0.065 0.0076 0.032 0.032 0.0016

0 0 0.106 0.091 0.0144 0.075 0.076 0.0089 0.036 0.038 0.0029

0 0.3 0.120 0.120 0.0493 0.084 0.095 0.0208 0.041 0.050 0.0080

0 0.7 0.150 0.128 0.0267 0.106 0.105 0.0147 0.051 0.061 0.0113

0.2 -0.7 0.102 0.086 0.0164 0.069 0.068 0.0089 0.031 0.036 0.0339

0.2 -0.3 0.126 0.104 0.0226 0.086 0.083 0.0139 0.039 0.042 0.0258

0.2 0 0.140 0.125 0.0385 0.095 0.096 0.0137 0.043 0.047 0.0056

0.2 0.3 0.154 0.208 0.1157 0.105 0.134 0.0311 0.047 0.074 0.0184

0.2 0.7 0.180 0.179 0.0757 0.123 0.125 0.0193 0.055 0.065 0.0101

0.4 -0.7 0.141 0.118 0.0423 0.093 0.090 0.0141 0.039 0.066 0.0942

0.4 -0.3 0.164 0.139 0.0666 0.107 0.100 0.0222 0.045 0.066 0.1029

0.4 0 0.173 0.185 0.0913 0.114 0.122 0.0200 0.048 0.057 0.0453

0.4 0.3 0.181 0.105 0.0293 0.119 0.092 0.0157 0.050 0.069 0.0341

0.4 0.7 0.193 0.197 0.0923 0.126 0.133 0.0250 0.053 0.064 0.0140
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Table 4: Mean and standard deviation of ĥ (using AlgB with n = 500, m0 = 1).

g1 g2 g3

d
0

�
0

1
hA Mean SD hA Mean SD hA Mean SD

0.6 -0.7 0.053 0.050 0.0036 0.039 0.041 0.0013 0.021 0.021 0.0008

0.6 -0.3 0.065 0.062 0.0060 0.048 0.051 0.0013 0.026 0.027 0.0007

0.6 0 0.075 0.068 0.0057 0.055 0.058 0.0019 0.029 0.031 0.0005

0.6 0.3 0.086 0.079 0.0106 0.063 0.065 0.0045 0.034 0.035 0.0013

0.6 0.7 0.114 0.108 0.0221 0.084 0.092 0.0159 0.045 0.055 0.0054

0.8 -0.7 0.059 0.053 0.0042 0.043 0.044 0.0019 0.022 0.023 0.0009

0.8 -0.3 0.074 0.065 0.0066 0.053 0.055 0.0023 0.027 0.029 0.0009

0.8 0 0.084 0.070 0.0073 0.061 0.061 0.0033 0.031 0.032 0.0008

0.8 0.3 0.097 0.091 0.0139 0.070 0.077 0.0078 0.035 0.040 0.0025

0.8 0.7 0.125 0.109 0.0215 0.090 0.095 0.0142 0.046 0.064 0.0140

1 -0.7 0.075 0.061 0.0064 0.053 0.052 0.0029 0.025 0.025 0.0010

1 -0.3 0.094 0.073 0.0112 0.066 0.062 0.0060 0.032 0.031 0.0012

1 0 0.106 0.084 0.0124 0.075 0.073 0.0069 0.036 0.037 0.0021

1 0.3 0.120 0.110 0.0268 0.084 0.092 0.0186 0.041 0.051 0.0047

1 0.7 0.150 0.136 0.0355 0.106 0.107 0.0162 0.051 0.063 0.0102

1.2 -0.7 0.102 0.082 0.0167 0.069 0.066 0.0075 0.031 0.029 0.0020

1.2 -0.3 0.126 0.100 0.0470 0.086 0.076 0.0121 0.039 0.035 0.0031

1.2 0 0.140 0.123 0.0323 0.095 0.094 0.0121 0.043 0.045 0.0036

1.2 0.3 0.154 0.124 0.0547 0.105 0.099 0.0238 0.047 0.063 0.0107

1.2 0.7 0.180 0.193 0.0883 0.123 0.140 0.0633 0.055 0.063 0.0067

1.4 -0.7 0.141 0.133 0.0707 0.093 0.088 0.0140 0.039 0.038 0.0041

1.4 -0.3 0.164 0.150 0.0820 0.107 0.108 0.0636 0.045 0.039 0.0058

1.4 0 0.173 0.196 0.1036 0.114 0.124 0.0508 0.048 0.051 0.0063

1.4 0.3 0.181 0.120 0.0562 0.119 0.096 0.0439 0.050 0.062 0.0054

1.4 0.7 0.193 0.230 0.1311 0.126 0.155 0.0949 0.053 0.059 0.0095

24



-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4
5

Figure 1a: phi1=-0.7, all delta’s
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Figure 1b: phi1=-0.3, all delta’s
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Figure 1c: phi1= 0.0, all delta’s
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Figure 1d: phi1= 0.3, all delta’s
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Figure 1e: phi1= 0.7, all delta’s
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Figure 1f: The trend function g1

t

Figure 1: Kernel densities of log(ĥ=hA) selected by AlgB for g1 with m0 = 0, n = 500.

Lines in Figures 1a through 1e are for �01 = �0:7 to �01 = 0:7 with all Æ0's (solid line:

Æ0 = �0:4; points: Æ0 = �0:2; short dashes: Æ0 = 0; middle dashes: Æ0 = 0:2 and long

dashes: Æ0 = 0:4). The trend function g1 is shown in Figure 1f.
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Figure 2a: phi1=-0.7, all delta’s
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Figure 2b: phi1=-0.3, all delta’s
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Figure 2c: phi1= 0.0, all delta’s
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Figure 2d: phi1= 0.3, all delta’s
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Figure 2e: phi1= 0.7, all delta’s

Log[hat(h)/ha]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 2f: The trend function g2

t

Figure 2: The same results as given in Figure 1 but for the trend function g2.
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Figure 3a: phi1=-0.7, all delta’s
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Figure 3b: phi1=-0.3, all delta’s
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Figure 3c: phi1= 0.0, all delta’s
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Figure 3d: phi1= 0.3, all delta’s
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Figure 3e: phi1= 0.7, all delta’s

Log[hat(h)/ha]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

Figure 3f: The trend function g3

t

Figure 3: The same results as given in Figure 1 but for the trend function g3.
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Figure 4a: phi1=-0.7, all delta’s
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Figure 4b: phi1=-0.3, all delta’s
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Figure 4c: phi1= 0.0, all delta’s
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Figure 4d: phi1= 0.3, all delta’s
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Figure 4e: phi1= 0.7, all delta’s
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Figure 4: The same results as given in Figures 1a through 1e but for m0 = 1.
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Figure 5a: phi1=-0.7, all delta’s
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Figure 5b: phi1=-0.3, all delta’s
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Figure 5c: phi1= 0.0, all delta’s
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Figure 5d: phi1= 0.3, all delta’s
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Figure 5e: phi1= 0.7, all delta’s

Log[hat(h)/ha]

D
en

si
ty

Figure 5: The same results as given in Figures 2a through 2e but for m0 = 1.
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Figure 6a: phi1=-0.7, all delta’s
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Figure 6b: phi1=-0.3, all delta’s
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Figure 6c: phi1= 0.0, all delta’s
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Figure 6d: phi1= 0.3, all delta’s
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Figure 6e: phi1= 0.7, all delta’s
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Figure 6: The same results as given in Figures 3a through 3e but for m0 = 1.
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