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Local Polynomial Estimation

with a FARIMA-GARCH Error Process

By Jan Beran and Yuanhua Feng

University of Konstanz

Abstract

This paper considers a class of semiparametric models being the sum of a non-

parametric trend function g and a FARIMA-GARCH error process. Estima-

tion of g(�), the �th derivative of g, by local polynomial �tting is investigated.

The focus is on the derivation of the asymptotic normality of ĝ(�). At �rst a

central limit theorem based on martingale theory is developed and asymptotic

normality of the sample mean of a FARIMA-GARCH process is proved. The

central limit theorem is then extended from the case of an unweighted sum

to a weighted sum in order to show the asymptotic normality of ĝ(�). As an

auxiliary result, the weak consistency of a weighted sum is obtained for sec-

ond order stationary time series with short- or long memory under very weak

conditions. Asymptotic results on ĝ
(�) in the presentation of long memory as

well as antipersistence are also given for the current model.

Keywords. Local polynomial estimation, FARIMA-GARCH process, semi-

parametric models, long memory, square-integrable martingale-di�erence,

asymptotic normality.

1 Introduction

In this paper a semiparametric model of the form Yi = g(ti)+Xi is considered, where

g(t) is a smooth nonparametric regression function and the error process Xi follows a

FARIMA-GARCH (fractional autoregressive integrated moving average - generalized

autoregressive conditional heteroskedastic) model. We call this a semiparametric

FARIMA-GARCH model. Such a model allows for simultaneous estimation of trend,

long memory as well as conditional heteroskedasticity in a time series (see Beran 1994

for the de�nition of long memory processes and see Engle 1982 and Bollerslev 1986

for time series models with conditional heteroskedasticity). Estimation of g(�), the
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�th derivative of g, leads to a nonparametric regression problem with a speci�ed long

memory error process. Recent research on the topic of nonparametric regression with

long memory errors may be found in Hall and Hart (1990), Cs�org�o and Mielniczuk

(1995), Beran (1999) and Beran and Feng (1999).

The most popular stationary long memory process is the FARIMA model pro-

posed by Granger and Joyeux (1980) and Hosking (1981). On the other hand, to

analyze time series with conditional heteroskedasticity, Engle (1982) introduced the

ARCH (autoregressive conditional heteroskedastic) model, which was generalized by

Bollerslev (1986) to the so-called GARCH model. This class of models has impor-

tant applications, in particular to the analysis of �nancial time series. Ling and Li

(1997) (see also Ling 1998, 1999) proposed a so-called FARIMA-GARCH model so

that long memory and conditional heteroskedasticity may be analyzed in a uni�ed

approach. Their approach generalizes FARIMA introduced in Beran (1995). Fol-

lowing Ling and Li (1997) and Ling (1998, 1999) a FARIMA(l; �;m)-GARCH(r; s)

model is de�ned to be a discrete time series Yi that satis�es the following equation:

�(B)(1�B)�fYi � �g =  (B)�i; (1.1)

�i = zih
1
2

i ; hi = �0 +
rX
j=1

�j�
2
i�j

+
sX

k=1

�khi�k; (1.2)

where zi are iid random variables with zero mean and variance 1, �0 > 0,

�1; :::; �r; �1; :::; �s � 0, r and s are nonnegative integers, � 2 (�0:5; 0:5) is a

real number, B is the backshift operator, �(B) = 1 � �1B � � � � � �lB
l and

 (B) = 1 +  1B + � � � +  mB
m are polynomials in B with no common factors

and all roots outside the unit circle and, l and m are nonnegative integers. Fur-

thermore, it is assumed that
P
r

j=1 �j +
P
s

k=1 �k < 1. Here, the fractional di�erence

(1 � B)� introduced by Granger and Joyeux (1980) and Hosking (1981) is de�ned

by

(1� B)� =
1X
k=0

bkB
k (1.3)

with

bk(�) =
�(k � �)

�(k + 1)�(��)
: (1.4)

Remark 1. Note that (1.2) de�nes a GARCH process in a sense wider than the

original GARCH model de�ned by Bollerslev (1986), where �i are assumed to be

conditionally normal. Conditional normality is also assumed in Ling and Li (1997).
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In our paper this is not required. The de�nition (1.2) follows (6.1)-(6.2) in Ling

(1999). If zi are iid standard normal random variables, then (1.1)-(1.2) reduces to

the de�nition as given in Ling and Li (1997).

Some time series, in particular �nancial time series, may however exhibit trend,

long memory and conditional heteroskedasticity at the same time. Following the pro-

posal of the SEMIFAR (semiparametric fractional autoregressive) model (see Beran

1995, 1999) we obtain the semiparametric FARIMA-GARCH model by introducing

a nonparametric trend g(t) in (1.1),

�(B)(1� B)�fYi � g(ti)g =  (B)�i; (1.5)

�i = zih
1
2

i ; hi = �0 +
rX
j=1

�j�
2
i�j

+
sX

k=1

�khi�k; (1.6)

where ti = (i=n) and g : [0; 1] ! < is a smooth function, l, m, r, s, �0, �1; � � � ; �r,

�1; � � � ; �s, �, B, �(B),  (B) and zi are as before. Model (1.5)-(1.6) provides an

analytic tool for modeling time series with long-range dependence and conditional

heteroskedasticity which is nonstationary in the mean.

The current paper focuses on investigating the asymptotic properties of local

polynomial estimation of g(�) in (1.5)-(1.6). Uni�ed consistency and asymptotic

normality of ĝ(�) on the whole support [0; 1] are obtained for errors with short-

or long memory as well as for errors with antipersistence. The rate of conver-

gence of a pth order local polynomial estimator ĝ(�) with p� � odd is shown to be

n(2��1)(p+1��)=(2p+3�2�) for all � 2 (�0:5; 0:5). The asymptotic normality of ĝ(�)(t) is

derived based on a central limit theorem for stationary processes with short- or long

memory, which is an extension of theorem 18.6.5 in Ibragimov and Linnik (1971).

Asymptotic results on the estimator �̂ = �Y = 1
n

P
n

i=1 Yi under model (1.1)-(1.2) are

also given. Similar to the SEMIFAR model, model (1.5)-(1.6) can also be extended

to include stochastic trends by allowing � > 0:5.

The paper is organized as follows. The proposed local polynomial estimators

are described in section 2. Section 3 gives some auxiliary results including a central

limit theorem for stationary processes being a sum of a square-integrable martingale-

di�erence. Our main results are given in section 4. Section 5 contains some �nal

remarks. Proofs of theorems are put in the appendix.
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2 The estimator

Assume that
P
r

j=1 �j +
P
s

k=1 �k < 1. Then the process Xi := Yi � g(ti) de�ned by

model (1.5)-(1.6) is stationary, causal and invertible. Hence, model (1.5)-(1.6) can

be rewritten as

Yi = g(ti) +Xi; (2.1)

where

Xi = (1� B)����1(B) (B)�i (2.2)

with

�i = zih
1
2

i ; hi = �0 +
rX
j=1

�j�
2
i�j

+
sX

k=1

�khi�k; (2.3)

where ti = (i=n) and g : [0; 1] ! < is a smooth function, l, m, r, s, �0, �1; � � � ; �r,

�1; � � � ; �s, �, B, �(B),  (B) and zi are as before. The error process Xi can be

rewritten as Xi = (1� B)��Ui with Ui = ��1(B) (B)�i. Ui is a stationary process

having short memory so that 0 < V0 :=
P
1

k=�1 cov (Ui; Ui+k) < 1. Hence, model

(2.1)-(2.3) de�nes an equidistant nonparametric regression with short memory (� =

0), long memory (0 < � < 0:5) and antipersistence (�0:5 < � < 0).

Beran and Feng (1999) proposed to estimate g(�) in nonparametric regression

with long memory errors by local polynomial �tting introduced by Stone (1977) and

Cleveland (1979). The proposed approach in this paper follows the idea in Beran

and Feng (1999). Local polynomial �tting has some advantages in comparison with

kernel estimation. It is an automatic kernel method. A kernel estimator ĝ is just

a local constant estimator. Also, the estimation of the �th derivative of g by local

polynomial �tting is very simple. For recent developments in this context of we

refer the readers to Ruppert and Wand (1994), Wand and Jones (1995), and Fan

and Gijbels (1995, 1996) and references therein.

Assume that g is at least (p+1)-times di�erentiable at a point t0. Then g(t) can

be approximated locally by a polynomial of order p:

g(t) = g(t0) + g0(t0)(t� t0) + :::+ g(p)(t0)(t� t0)
p=p! +Rp (2.4)

for t in a neighborhood of t0, where Rp is a remainder term. Let K be a symmetric

density (a kernel of order two without boundary correction) having compact support

[�1; 1]. Giving n observations Y1, ..., Yn, we can obtain an estimator of g(�) (� � p)
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by solving the locally weighted least squares problem

Q =
nX
i=1

8<
:Yi �

pX
j=0

bj(ti � t0)
j

9=
;

2

K

�
ti � t0

b

�
) min; (2.5)

where b is the bandwidth andK is called the weight function. Let b̂ = (b̂0; b̂1; :::; b̂p)
T,

then it is clear from (2.4) that �!b̂� estimates g(�)(t0), � = 0; 1; :::; p. Let

X =

2
6664
1 t1 � t0 � � � (t1 � t0)

p

...
...

. . .
...

1 tn � t0 � � � (tn � t0)
p

3
7775 :

and let ej, j = 1; :::; p+ 1, denote the jth (p+1)�1 unit vector. Also, let K denote

the diagonal matrix with

ki = K

�
ti � t0

b

�

as its ith diagonal entry. Finally, let y = (Y1; :::; Yn)
T. Then ĝ(�)(t0) can be written

as

ĝ(�)(t0) = �!eT
�+1(X

TKX)�1XTKy

=: fw�(t0)g
Ty; (2.6)

where fw�(t0)g
T = �!eT

�+1(X
TKX)�1XTK is called the weighting system. We see

that ĝ(�)(t0) is a linear smoother with the weighting system w�(t0) = (w�1 ; :::; w
�

n
)T,

where w�
i
6= 0 only if jti � t0j � b. The weighting system does not depend on the

dependence structure of the error process. For any interior point t0 2 [b; 1 � b]

the non-zero part of w�(t0) is the same, i.e. ĝ(�) works as a moving average in the

interior. Furthermore, w�(t0) satis�es:

nX
i=1

w�
i
(ti � t0)

� = �! and
nX
i=1

w�
i
(ti � t0)

j = 0 for j = 0; :::; p; j 6= �: (2.7)

The property (2.7) ensures that ĝ(�) is exactly unbiased if g is a polynomial of order

not larger than p.

Local polynomial �tting is asymptotically equivalent to some kernel estimation.

In the interior, the di�erence in �nite samples is also not large (see e.g. M�uller 1987

and Feng 1998). These results also hold for the current case (see Beran and Feng,

1999), since the weights do not depend on the dependent structure of the data.

This provides a powerful tool for deriving the asymptotic results of local polynomial

�tting. In particular, we have max jwij = O[(nb1+�)], which will be used in the

appendix.
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3 Auxiliary results

To prove the asymptotic normality of ĝ(�) we need some auxiliary results. In the

following we will develop a central limit theorem for the sum of random variables

Sn =
P
n

i=1Xi, where Xi is a weighted sum of (0; �2) random variables �k forming

a square-integrable martingale-di�erence. If �k are iid (0; �2) random variables, the

result is given by theorem 18.6.5 of Ibragimov and Linnik (1971). However, their

result (and hence theorems 2 and 8 in Hosking (1996) based on this result) can not

be applied to the case when �i de�ned in (2.1)-(2.3) follow a GARCH or ARCH

process, since now they are conditionally heteroskedastic and not independent.

Here, martingales and martingale-di�erences are de�ned as follows (see e.g. Hall

and Heyde 1980 and Shiryaev 1996). Let (
;F ; P ) be a probability space, where F

is a �-�eld of subsets of 
. Let I be any interval of the form (a; b), [a; b), (a; b] or

[a; b] of the ordered set f�1; :::;�1; 0; 1; :::;1g. Let fFi; i 2 Ig be a nondecreasing

sequence of �-�elds of F sets. A stochastic sequence M = (Mi;Fi; i 2 I) is said to

be a martingale (with respect to Fi), if

E(jMij) <1 and E(MijFi�1) =Mi�1 (a.s.):

M is said to be square-integrable, if E(M2
i
) < 1. A stochastic sequence � =

(�i;Fi; i 2 I) is said to be a martingale-di�erence, if

E(j�ij) <1 and E(�ijFi�1) = 0 (a.s.):

A martingale-di�erence with �nite variance is called a square-integrable martingale-

di�erence.

The following central limit theorem extends theorem 18.6.5 of Ibragimov and

Linnik (1971) to the case when the innovations form a square-integrable martingale-

di�erence satisfying given conditions, which includes the GARCH process as a spe-

cial case.

Theorem 1. Let the sequence (�i; Fi; i 2 I = f�1; :::;�1; 0; 1; :::;1g) be a square-

integrable martingale-di�erence with identical variance, i.e. E(�ijFi�1) = 0, E(�2
i
) =

E(�20) <1. Let

Xi =
1X

k=�1

ck�i�k; (3.1)
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where
1X

k=�1

c2
k
<1: (3.2)

Assume that �2
n
= E(X1 + :::+Xn)

2
!1 as n!1.

Case 1. Let hi = E(�2
i
jFi�1) be the conditional variance of �i. If hi � E(�20), then

(X1 + ::: +Xn)=�n
D

! N(0; 1).

Case 2. Suppose that �2
i
is a second order stationary process with autocovariances


�2(k) = cov (�2
i
; �2
i+k). If 
�2(k)! 0 as k !1, then

(X1 + ::: +Xn)=�n
D

! N(0; 1).

Remark 2. Note that iid (0; �2) random variables form a square-integrable

martingale-di�erence with hi � �2, case 1 of theorem 1 includes theorem 18.6.5

of Ibragimov and Linnik (1971) as a special case.

Although the conditions of theorem 1 are much weaker than those used by Ibrag-

imov and Linnik (1971), we do not declare that they are necessary. Some of them

are made here for simplifying the proof. Noting that a square-integrable martingale-

di�erence is a sequence of uncorrelated random variables (see Shiryaev 1999, p. 42),

the assumption that �i have identical variance implies that it is an uncorrelated

white noise. Hence, the assumptions on �i given in theorem 1 are stronger than that

�i is an uncorrelated white noise but much weaker than that �i are iid random vari-

ables. For long memory process the assumption of an uncorrelated (0; �2) random

variables is not su�cient for the derivation of asymptotic normality of the sample

mean (see e.g. Taqqu 1975).

The proof of theorem 1 is given in the appendix. To prove this theorem under

the condition given in case 2, we need to prove the weak consistency of a weighted

sum of the second order stationary time series �2
i
. This is just a very special case of

the following results on the convergence of the variance (to zero) of a general linear

�lter and the weak consistency of a general weighted sum, both are given for second

order stationary time series.

Theorem 2. Let (Xi;n), 1 � i � n, n = 1; 2; ::: be a triangular array of random

variables from a second order stationary time series with zero mean, variance �2

and autocovariances 
(k) such that 
(k)! 0 as k!1. Let (wi;n) be a triangular

7



array of weights such that
P
n

i=1 jwij < 1 and max1�i�n jwij ! 0 as n ! 1, then

var (
P
n

i=1wiXi)! 0 as n!1.

The proof of theorem 2 is given in the appendix. The weighting system wi is

\formless"; wi are also allowed to be negative. Localized weighting systems are in-

cluded by setting wi � 0 for all i outside a given interval. Hence, all of the weighting

systems generated by commonly used kernel estimators or local polynomial estima-

tors of g(�) are included as special cases of theorem 2. This shows that the variances

of these estimators converge to zero for any second order stationary time series with


(k) ! 0 as k ! 1. Furthermore, if Xi is a process with unknown mean �, we

have

Corollary 1. Let (Xi;n) and (wi;n), 1 � i � n, n = 1; 2; ::: be the triangular array

as de�ned in theorem 2. Suppose that now the mean � of Xi is unknown and is

estimated by �̂ =
P
n

i=1wiXi. If
P
n

i=1wi ! 1 as n!1 and the other conditions of

theorem 2 are satis�ed, then �̂ is weakly consistent.

4 Main results

4.1 Properties of the error process

In the following we will show that the GARCH process ful�lls the conditions on

�i given in theorem 1 (case 2). Bollerslev (1986) showed that, under the conditionP
r

j=1 �j+
P
s

k=1 �k < 1, a GARCH process is second order stationary with E(�i) = 0,

var (�i) = �0(1 �
P
r

j=1 �j �
P
s

k=1 �k)
�1 and cov (�i; �i+k) = 0 for k 6= 0. Note that

the FARIMA process Xi can also be de�ned by taking the innovations �i to be

an uncorrelated white noise, i.e. uncorrelated (0, �2) random variables, called a

FARIMA process in the wide sense (see e.g. Brockwell and Davis, 1991). Hence, the

FARIMA-GARCH process is a special case of a FARIMA process in the wide sense,

since a GARCH process is an uncorrelated white noise. It is easy to show that under

the condition
P
r

j=1 �j+
P
s

k=1 �k < 1 the GARCH process is also a square-integrable

martingale-di�erence with respect to (Fi; i 2 f�1; :::;�1; 0; 1; :::;1g), where Fi is

the �-�eld generated by the information in the past, i.e. Fi = �f�i; �i�1; :::g (see

Shiryaev 1999). Note that, if �i follows a GARCH model, then �2
i
has an ARMA

(autoregressive moving average) representation in the wide sense (see (A.11) in the

8



appendix). Hence, for a GARCH process, the condition E(�4
i
) <1 on �i is su�cient

for theorem 1, since this condition guarantees that �2
i
is a second order stationary

process with summable autocovariances.

A general condition for the existence of 2mth moments of a GARCH process was

given by Ling (1999) (see also Ling and Li 1997). Let

Ai =

0
BBBBB@

�1z
2
i

� � � �rz
2
i

�1z
2
i

� � � �sz
2
i

I(r�1)�(r�1) O(r�1)�1 O(r�1)�s

�1 � � � �r �1 � � � �s

O(s�1)�r I(s�1)�(s�1) O(s�1)�1

1
CCCCCA ; (4.1)

where I denotes an identity matrix,O denotes a matrix of zeros and zi are as de�ned

before. Denote by A
n

i the Kronecker product of n matrices Ai and by �(A) the

spectral radius of a matrixA. Suppose that E(z2m
i
) is �nite for some positive integer

m. If

�[E(A
m

i
)] < 1; (4.2)

then the GARCH process �i is strictly stationary and ergodic, and its 2mth moments

are �nite (see theorem 6.2 in Ling 1999). The examples in Ling (1999) show that

condition (4.2) is equivalent to known conditions. Form = 1, condition (4.2) reduces

to the above mentioned one, i.e.
P
r

j=1 �j +
P
s

k=1 �k < 1. This shows that theorem

1 in Bollerslev (1986) holds without the assumption of conditional normality. For a

GARCH(1,1) model and m = 2, let E(z4
i
) = 3 + �, where � denotes the kurtosis of

zi, condition (4.2) becomes (3 + �)�2
1 + 2�1�1 + �2

1 < 1. When zi are iid standard

normal random variables, i.e. � = 0, this condition reduces to 3�2
1+2�1�1+�

2
1 < 1.

This is the one given by theorem 2 in Bollerslev (1986) with m = 2. We see that

the condition for the existence of fourth moments of a GARCH model depends on

the kurtosis � of the iid random variables zi.

Denote by � the stationary distribution of the GARCH process. It is assumed

for simplicity that the process starts in�nitely far in the past with this stationary

distribution �. Based on theorem 6.2 in Ling (1999) and the above mentioned

properties of a GARCH process we obtain the following lemma.

Lemma 1. Let �i be the GARCH process generated by model (2.1)-(2.3). Suppose

that �0 > 0, �j � 0, �k � 0 and
P
r

j=1 �j +
P
s

k=1 �k < 1. If �[E(A
2
i )] < 1, then:

1. �i is strictly stationary having �nite fourth moments and forming a square-

integrable martingale-di�erence.

9



2. The process �2
i
is second order stationary with

P
1

k=�1 
�2(k) <1.

Lemma 1 ensures that �i generated by (2.1)-(2.3) ful�ll the conditions on the inno-

vations given in theorem 1. Let Xi := Yi� g(ti) as de�ned in (2.1)-(2.3). Under the

assumptions of lemma 1, Ling and Li (1997) further showed that Xi is also strictly

stationary having �nite fourth moments.

The covariance structure of a FARIMA-GARCH process is given by the following

lemma, which also holds for a FARIMA process in the wide sense (see theorem 13.2.2

of Brockwell and Davis 1991).

Lemma 2. Let Yi be generated by (1.1)-(1.2). Suppose that � 2 (�0:5; 0:5), �(B)

and  (B) have no common factors, all roots of �(B) and  (B) lie outside of the

unit circle and
P
r

j=1 �j +
P
s

k=1 �k < 1.

1. Denoting by 
(k) the autocovariances, then we have

8>>>>>><
>>>>>>:


(k) � c
 jkj
�1+2� with c
 > 0;

1P
k=�1


(k) =1

j
(k)j � c0�
�k with c0 > 0; 0 < � < 1;

1P
k=�1


(k) = V0 > 0


(k) � c
 jkj
�1+2� with c
 < 0;

1P
k=�1


(k) = 0

(4.3)

for � > 0, = 0 and < 0 respectively, where \�" means that the ratio of the

left and right hand sides converges to one.

2. And denoting by f(�) the spectral density, we have

f(�) =
�2
�

2�

j (e�i�)j2

j�(e�i�)j2
j1� e�i�j�2� �

�2
�

2�
[ (1)=�(1)]2��2� (4.4)

as �! 0, where �2
�
:= �0(1�

P
s

j=1 �j�
P
r

k=1 �k)
�1 denotes the �nite variance

of �i.

The proof of lemma 2 will be omitted, since these results are just known facts on

long memory processes (see e.g. Beran 1994 and Brockwell and Davis 1991).

Now, we consider the asymptotic properties of the sample mean of a FARIMA-

GARCH process. To our knowledge, there are no detailed results on this topic in

the literature. Based on theorem 1 and lemma 1 we have:

10



Theorem 3. LetXi be generated by model (2.1)-(2.3) with � 2 (�0:5; 0:5). Suppose

that the assumptions of lemmas 1 and 2 hold. Then

a) var ( �X) � n2��1V� as n!1,

b) n1=2�� �X
D

! N(0; V�),

where

V� = �2
�

j (1)j2

j�(1)j2
�(1� 2�)

(2� + 1)

sin(��)

��
:

As shown in Hosking (1996), similar result holds for � = �
1
2
but with a di�erent

formula. Theorem 3 b) is the basis for the derivation of the asymptotic normality of

parametric and nonparametric regression estimators with a FARIMA-GARCH error

process. The importance of theorem 3 is shown by theorem 4 below, which gives

a connection between the asymptotic normality of �X and that of a weighted sum

whose weights satisfy given conditions. In particular, these conditions are satis�ed

by the weights of a kernel or a local polynomial estimator ĝ(�)(t) under (2.1)-(2.3).

4.2 An extension of theorem 1

Theorem 1 is a central limit theorem on the sample mean of a second order stationary

time series. In the following we will extend it to a central limit theorem for a linear

�lter of such a process, which can be directly used to derive asymptotic normality

of a kernel or a local polynomial estimator.

Theorem 4. Let (Xi;n), 1 � i � n, n = 1; 2; ::: be a triangular array of random

variables as de�ned in (3.1)-(3.2) and let (wi;n) be a triangular array of weights such

that �2
n
:= var (

P
n

i=1wiXi) > 0 for all n. If

max
1�i�n

jwij=�n ! 0 as n!1; (4.5)

sup
k

j

nX
i=1

wick�ij=�n ! 0 as n!1 (4.6)

and the conditions as given in cases 1 and 2 of theorem 1 hold, respectively, then

[
nX
i=1

wiXi]=�n
D

! N(0; 1):

11



Condition (4.5) means that the weights wi are uniformly negligible. If max jwij =

O(1), then it implies the condition given by theorem 1 on �2
n
, i.e. �2

n
! 1 as

n ! 1. Condition (4.6) on the weighted sum
P
wick�i is often not independent

of (4.5). Theorem 1 is a special case of theorem 4 with wi � 1, in which case

(4.6) can be derived from (4.5) (see Hosking 1994 and the proof of theorem 1 in the

appendix). The central limit theorem given by M�uller (1988) (theorem 4.2 therein)

for the derivation of asymptotic normality of kernel or local polynomial estimators

with iid errors is also a very special case of theorem 4 with � being iid (0; �2) random

variables and c0 = 1, ck = 0 for k 6= 1. Based on theorem 4 the asymptotic normality

of ĝ(�) is easy to prove.

4.3 Pointwise asymptotic results

What follows gives uni�ed formulas for pointwise asymptotic bias and asymptotic

variance for interior points t 2 [b; 1 � b] as well as for boundary points t 2 [0; b) [

(1 � b; 1]. The discussion will only be carried out for the region [0; b]. The results

at point t 2 (b; 1 � b] are the same as those at t = b. Formulas for t 2 (1 � b; 1]

are symmetric to those for t = 1� t. Note, however, that any �xed point t 2 (0; 1)

will asymptotically not be a boundary point, since b ! 0 as n ! 1. A standard

de�nition of a left boundary point is t = cb with 0 � c < 1.

In the following it is assumed that p�� is odd and k = p+1. Here k denotes the

order of the asymptotically equivalent kernel. It will be shown that ĝ(�)(t) converges

to g(�)(t) at the same rate in the interior as well as at the boundary, if p � � is

odd. However, the convergence rate of ĝ(�)(t) at the boundary is slower than in

the interior, if p � � is even (see Beran and Feng 1999). Hence, a local polynomial

approach with p� � odd is more preferable. To derive the asymptotic results given

below additional assumptions are required:

A1. g is an at least k times continuously di�erentiable function on [0; 1].

A2. The weight function K(u) is a symmetric density (a kernel of order two) with

compact support [�1; 1] having the polynomial form

K(u) =
rX
l=0

�lu
2l1I[�1;1](u)

12



(see e.g. Gasser and M�uller 1979).

A3. The bandwidth satis�es: b! 0, (nb)1�2�b2� !1 as n!1.

For 0 � c � 1 we de�ne the truncated kernel Kc(u) as

Kc(u) =

�Z 1

�c

K(x)dx

��1
K(u)1I[�c;1](u) : (4.7)

For c = 1, i.e. in the interior, we have K1(u) = K(u). The truncated kernel used

for the estimation at the left end point with c = 0 is K0(u) = 2K(u)1I[0;1].

Let

Npc =

2
6666664

1 �1;c � � � �p;c

�1;c �2;c � � � �p+1;c

...
...

. . .
...

�p;c �p+1;c � � � �2p;c

3
7777775
; (4.8)

where �j;c =
R 1
�c
ujKc(u)du is the jth moment of Kc. For i; j = 1; :::; p + 1, let

(�i;j;c) = N�1
pc

and de�ne

K(�;k;c)(u) = �!Q(�;k;c)(u)Kc(u); (4.9)

where

Q(�;k;c)(u) =
p+1X
j=1

��+1;j;cu
(j�1):

It is easily established that the function K(�;k;c) de�ned in (4.9) satis�es

Z 1

�c

ujK(�;k;c)(u)du =

8>><
>>:

0; j = 0; :::; � � 1; � + 1; :::; k � 1;

�!; j = �;

�(�;k;c); j = k;

(4.10)

where �(�;k;c) is a non-zero constant. Therefore, K(�;p;c) is a boundary kernel of order

k for estimating the �th derivative, which will be called an \equivalent kernel". In

the interior with c = 1 it is the same as de�ned by Gasser, M�uller and Mammitzsch

(1985) up to a (�1)� sign. It is clear that Kc(u) and the equivalent kernel K(�;k;c)(u)

are both polynomial Lipschitz-continuous kernels. Beran and Feng (1999) show

that ĝ(�) is asymptotically equivalent to a kernel estimator using the kernel function

de�ned in (4.9).
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In the following we denote xi = (ti � t)=b, yj = (tj � t)=b. Let n0 = [nt + 0:5],

n1 = [nb], nc = [ncb], where [�] denotes the integer part. The notation

Vn(c; b) = (nb)�1�2�
n0+n1X

i;j=n0�nc

K(�;k;c)(xi)K(�;k;c)(yi)
(i� j) ; (4.11)

will be used for convenience. We obtain

Theorem 5. Let Yi be generated by model (2.1)-(2.3). Suppose that the assumptions

of theorem 3 hold. Under the assumptions A1 to A3, and let t = cb with 0 � c � 1.

Then for � 2 (�0:5; 0:5), we have

i) Bias:

E[ĝ(�) � g(�)] = b(k��)
g(k)(t)�(�;k;c)

k!
+ o(b(k��)) ; (4.12)

ii):

lim
n!1

Vn(c; b) = V (c); (4.13)

where 0 < V (c) <1 is a constant;

iii) Variance:

var (ĝ(�)(t)) = (nb)�1+2�b�2� [V (c) + o(1) ]; (4.14)

iv) Asymptotic normality: In the case that the bias has the representation (4.12),

assuming that nb(2k+1�2�)=(1�2�)
! d2 as n!1, for some d > 0, then

(nb)1=2��b�(ĝ(�)(t)� g(�)(t))
D

! N(d�; V (c)); (4.15)

where � =
g(k)(t)�(�;k;c)

k!
and V (c) is the constant de�ned in (4.13).

Remark 3. All of the results of parts i) to iii) and those of theorem 6 given below

also hold in the case when Xi in (2.1)-(2.3) is a FARIMA process in the wide sense.

In order that iv) holds, the innovations �i have just to satisfy the conditions given

in theorem 1. Hence, iv) holds of cause in the case when �i are iid random variables

(cf. the results in theorems 1 and 2 in Hosking 1996).

Remark 4. The formula for the asymptotic bias is the same as that for nonpara-

metric regression with independent errors. The formula for the asymptotic variance

with � 6= 0 is di�erent from that for nonparametric regression with independent

errors or short memory errors, i.e. the case of � = 0. In this case the asymptotic

14



variance converges to zero at the rate (nb)�1b2� . When � > 0, var (ĝ(�)) converges

to zero at a slower rate, while the rate of convergence of var (ĝ(�)) for � < 0 is higher

than that for � = 0.

Remark 5. Theorem 6 below shows that a bandwidth b = O(n(2��1)=(2k+1�2�)) is

of the optimal order. In this case the asymptotic bias and the asymptotic variance

are of the same order. If the bandwidth b is of higher order, i.e. with a small

bandwidth, the result in theorem 5, iv) also holds with � = 0. Now the asymptotic

bias is negligible. On the other hand, the asymptotic result will be dominated by the

bias part, if the bandwidth b is of a smaller order. In this case, b�k+�(ĝ(�)(t)�g(�)(t))

has a degenerate asymptotic distribution with a constant mean and variance zero.

4.4 The MISE

A well known criterion for the quality of a nonparametric regression estimator is the

MISE (mean integrated squared error) de�ned by

MISE(ĝ(�)(x)) =

Z 1

0
Ef[ĝ(�)(x)� g(�)(x)]2gdx: (4.16)

For p� � even MISE(ĝ(�)(x)) is dominated by the estimation in the boundary area.

For p � � odd the MISE due to the estimation in the boundary area is negligible.

Let

I(g(k)) =

Z 1

0
[g(k)(t)]2dt ; (4.17)

and denote by K(�;k), �(�;k) and V respectively the equivalent kernel, the kernel

constant and the variance component for the interior points with c = 1. Then the

following result holds:

Theorem 6. Under the assumptions of theorem 5 and for � 2 (�0:5; 0:5), we have

i) The mean integrated squared error (MISE) of ĝ(�) is given by

Z 1

0
Ef[ĝ(�)(t)� g(�)(t)]2gdt

= MISEasympt(n; b) + o(max(b2(k��); [(nb)2��1b�2�]))

= b2(k��)
I(g(k))�2

(�;p)

k!
+ (nb)2��1b�2�V

+o(max(b2(k��); [(nb)2��1b�2� ])) ; (4.18)
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ii) The optimal bandwidth that minimizes the asymptotic MISE is given by

bopt = Coptn
(2��1)=(2k+1�2�) ; (4.19)

where

Copt =

2
42� + 1� 2�

2(k � �)

[k!]2V

I(g(k))�2
(�;p)

3
5
1=(2k+1�2�)

; (4.20)

where it is assumed that I(g(k)) > 0.

The proof of theorem 6 and the following formulas will be omitted, since they are

they same as the case that only uncorrelated (0; �2) innovations are assumed (see

Beran and Feng 1999).

Note that by inserting bopt in (4.18), theorem 2 implies that for p � � odd the

optimal MISE is of the orderZ 1

0
Ef[ĝ(�)(t)� g(�)(t)]2gdt = O(n2(2��1)(k��)=(2k+1�2�)): (4.21)

The rate of convergence of ĝ(�) is n(2��1)(k��)=(2k+1�2�) = n(2��1)(p+1��)=(2p+3�2�) . For

� = 0 with � � 0, Hall and Hart (1990) show that this is the optimal convergence

rate. The following remarks clarify the results given above.

Remark 6. For bandwidth selection with the plug-in method one has to calculate

the value of V . Let cf = (2�)�1
P
1

k=�1 cov (Ui; Ui+k) = (2�)�1V0. Under the

assumptions of theorem 1 we have:

V = 2�cf

Z 1

�1
K2

(�;k)(x)dx (4.22)

for � = 0, and

V = 2cf�(1� 2�) sin(��)

Z 1

�1

Z 1

�1
K(�;k)(x)K(�;k)(y)jx� yj2��1dxdy (4.23)

for � > 0 (see Hall and Hart 1990 and Beran 1999). The explicit form of V for � < 0

is more complex, since the integral
R 1
�1K(�;k)(y)jx�yj

2��1dy does not exist. However,

at any point x the kernel K(�;k)(y) may be written as K(�;k)(y) =
P
r

l=0 �l(x)(x �

y)l =: K0(x) + K1(x � y), where r is an integer, K0(x) = �0(x) and K1(x � y) =P
r

l=1 �l(x)(x�y)
l. Note that, in the case of antipersistence it holds

P
1

k=�1 
(k) = 0.

We have, for � < 0 (see Beran and Feng 1999),

V = 2cf�(1� 2�) sin(��)

Z 1

�1
K(�;k)(x)�(Z 1

�1
K1(x� y)jx� yj2��1dy �K0(x)

Z
jyj>1

jx� yj2��1dy

)
dx: (4.24)
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If g is estimated by a �rst order local polynomial with the uniform kernel as the

weight function, then we have, in the interior, K(0;2)(x) = K(x) = 1Ifjxj�1g=2. In

this case we have K0(x) = 1Ifjxj�1g=2 and K1 � 0. The formulas (4.22), (4.23) and

(4.24) give the same result

V (�) =
22�cf�(1� 2�) sin(��)

�(2� + 1)
(4.25)

with V (0) = lim
�!0

V (�) = �cf (see corollary 1 in Beran 1999).

5 Final remarks

In this paper we introduced a class of semiparametric FARIMA-GARCH models

with short- or long memory allowing the conditional variance of the innovations to

change. Asymptotic results on the nonparametric estimation of g(�) are investigated

in detail. The ARCH and GARCH models proposed by Engle (1982) and Bollerslev

(1986) have become a widely used model for analyzing �nancial time series. Ling

and Li (1997) showed the potential usefulness of the FARIMA-GARCH model. As

a semiparametric extension of the FARIMA-GARCH model, the model proposed

in this paper is expected to become a useful tool for modeling stochastic processes

with trends, long memory as well as conditional heteroskedasticity. Particularly,

it provides a more general class of models for analyzing volatility in �nancial time

series. In this paper we did not given any application example. However, examples

for modeling �nancial time series with the related SEMIFAR model proposed by

Beran (1999) (see e.g. Beran and Ocker, 1999, Beran et al. 1999 and Ocker 1999)

illustrate the potential usefulness of semiparametric long memory time series models.

To estimate the whole model one has to combine the proposal here and the

approach for estimating the parameters, which determine the stochastic structure

of the model, as proposed in Beran (1995, 1999) and Ling and Li (1997). This will

be discussed elsewhere. Although the given results on the asymptotic behaviors

of the proposed estimators do not depend on the exact distribution of zi in (1.1),

conditionally normal distribution is required, if one wants to estimate the unknown

parameters determining the whole model by maximum likelihood.
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Appendix: Proofs of theorems

To prove theorem 1 we need the following lemmas A.1 and A.2. Suppose that on

the probability space (
;F ; P ) there are given stochastic sequences

�n = (�nk;Fnk); 0 � k � n; n � 1;

with �n0 = 0, Fn0 = (�;
), Fnk � Fnk+1 � F . Set

Snk =
kX
i=0

�ni 1 � k � n:

The double sequence fSnk;Fnk; 1 � k � n; n � 1g will be called a martingale array.

For the proof of case 1 in theorem 1 we will use lemma A.1, which is a special

case of theorem 4 of Shiryaev (1996, Chapter VII, x8) (see also corollary 3.1 of Hall

and Heyde 1980 and corollary 6 of Liptser and Shiryaev 1980). Denote by I(A) the

indicator function of a set A, then we have:

Lemma A.1. Let the square-integrable martingale-di�erences �n = (�nk;Fnk),

n � 1, satisfy the conditional Lindeberg condition: for each � > 0

nX
k=0

E[�2
nk
I(j�nkj > �)

���Fn k�1] P
! 0 (A.1)

and the condition
nX
k=0

E(�2
nk
jFn k�1)

P
! 1: (A.2)
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Then Snn
D

! N(0; 1).

See Shiryaev (1996) for the proof.

The proof of case 2 of theorem 1 is based on lemma A.2, a special case of theorem

3.2 of Hall and Heyde (1980). Theorem 24.3 of Davidson (1994) is very similar to

lemma A.2, where slightly di�erent conditions are used.

Lemma A.2. Let fSnk;Fnk; 1 � k � n; n � 1g be a zero mean, square-integrable

martingale array with di�erences �nk. Suppose that

max
k

j�nkj
P
! 0; (A.3)

nX
k=0

�2
nk

P
! 1 (A.4)

and

E(max
k

�2
nk
) is bounded in n: (A.5)

Then Snn
D

! N(0; 1).

For the proof see Hall and Heyde (1980).

Remark A.1. Lemma A.2 is a special case of theorem 3.2 in Hall and Heyde (1980)

by setting kn there equal to n and by replacing the a.s. �nite random variable �2

with the constant 1. The \nested �-�eld" condition (3.21) in Hall and Heyde (1980)

is now not necessary due to the latter speci�cation. This lemma is used here to

avoid checking the conditional Lindeberg condition (A.1).

Proof of theorem 1. Let �2
n
= E(X1+ :::+Xn)

2 as de�ned in theorem 1. We �rst

show that, following Ibragimov and Linnik (1971) and Hosking (1994), (X1 + ::: +

Xn)=�n can be rewritten as (X1 + :::+Xn)=�n = Snn + �n, where �n
P
! 0 and

Snk =
kX
i=0

�ni; 1 � k � n;

where �nk form a square-integrable martingale-di�erence �n = (�nk;Fnk) and

fSnk;Fnk; 1 � k � n; n � 1g is a zero mean square-integrable martingale array

with respect to Fnk as de�ned below. Then we show that they satisfy the conditions

of lemmas A.1 and A.2, respectively, for cases 1 and 2 of theorem 1.
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Suppose that E(�20) = 1 for simplicity. Following the proof of their theorem 18.6.5

in Ibragmov and Linnik (1971), we have

�2
n

= E(X1 + � � �+Xn)
2 = � � �

=
1X

k=�1

(ck�1 + � � �+ ck�n)
2

=
1X

k=�1

c2
k;n

; say.

Hosking (1994) gave some corrections of the proof of Ibragmov and Linnik (1971)

and showed that

jck;nj=�n � an :=

2
648��1n

8><
>:
0
@ 1X
i=�1

c2
i

1
A

(1=2)

+
1

2
��1
n

1X
i=�1

c2
i

9>=
>;
3
75
(1=2)

; (A.6)

i.e., ck;n=�n tends to zero uniformly in k as n ! 1. Following Hosking (1994),

de�ne ak;n = ck;n=�n, we have

��1
n
(X1 + � � �+Xn) =

1X
k=�1

ak;n�k

with
1X

k=�1

a2
k;n

= 1:

For each n � 1 let n1 = �[n�1
2
], n2 = [n

2
] such that n1 � 0, n2 � 0 and

n1 + n2 + 1 = n, where [�] denotes the integer part. De�ne the square integrable

martingale-di�erence �n = (�nk;Fnk) with

�nk = an1+k�1;n�n1+k�1; and Fnk = Fn1+k�1; k = 1; :::; n:

Denote an1+k�1;n by bnk for convenience. Then we have

��1
n
(X1 + � � �+Xn) =

1X
k=�1

ak;n�k

=
n2X

k=n1

ak;n�k +
X
k<n1
k>n2

ak;n�k

= Snn + �n (A.7)

with

Snk =
n1+k�1X
i=n1

ai;n�i =
kX
i=1

bni�n1+i�1 ; k = 1; :::; n;
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and

�n =
X
k<n1
k>n2

ak;n�k:

It is clear that �n = op(1), since E(�n) = 0 and

var (�n) =
X
k<n1
k>n2

a2
k;n
! 0; as n!1:

Here, �n = (�nk;Fnk) is a square-integrable martingale-di�erence and

fSnk;Fnk; 1 � k � n; n � 1g is a zero mean square-integrable martingale array.

It remains to show that, in case 1 of theorem 1, �n = (�nk;Fnk) ful�ll the conditions

of lemma A.1 and, in case 2 of theorem 1, fSnk;Fnk; 1 � k � n; n � 1g ful�ll those

of lemma A.2, respectively.

Case 1. In this case it is easy to show that the square-integrable martingale-

di�erences �n = (�nk;Fnk) satisfy conditions (A.1) and (A.2). We have

E(�2
nk
jFn k�1) = b2

nk
and hence

nX
k=0

E(�2
nk
jFn k�1) =

n2X
k=n1

b2
nk

=
1X

k=�1

a2
k;n

+ o(1)! 1:

(A.2) is satis�ed. Furthermore, using (A.6) and noting that
P
b2
nk
� 1, we have

nX
k=0

E[�2
nk
I(j�nkj > �)

���Fn k�1] =
nX
k=0

b2
nk
E[�20I(j�0j > �=bnk)]

�

nX
k=0

b2
nk
E[�20I(j�0j > �=an)]

� E[�20I(j�0j > �=an)]! 0:

This shows that �n = (�nk;Fnk) satisfy (A.1).

Case 2. Now, we have to check that the zero mean square-integrable martingale

array fSnk;Fnk; 1 � k � n; n � 1g ful�lls the conditions (A.3)-(A.5). It is clear that

E(maxk �
2
nk
) is bounded in n, i.e. (A.5) is satis�ed. For (A.3) we have, by using

(A.6),

max
k

j�nkj � anmax
k

j�n1+k�1j

= o(1)max
k

j�n1+k�1j
P
! 0:
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To see fSnk;Fnk; 1 � k � n; n � 1g ful�lls (A.4) noting that

nX
k=0

�2
nk

=
nX
k=1

�2
nk

=
nX
k=1

b2
nk
�2
n1+k�1;

since �n0 = 0 by de�nition. Under the condition of case 2 �2
i
is a second order

stationary process with E(�20) = 1 and 
k(�i; �i+k) ! 0 as n ! 1. And, observing

that the weights b2
nk

satisfy the condition of corollary 1 of theorem 2, we haven

nX
k=0

�2
nk

=
nX
k=1

b2
nk
�2
n1+k�1

P
! E(�20) = 1:

This completes the proof. 2

Proof of theorem 2.

Again, we put var (�i) = 1 for convenience. In this case we have that j
(k)j �

1. For simplicity, assume that max1�i�n jwij = O(n��), with � > 0, since

max1�i�n jwij = o(1). The following proof can be, of cause, easily extended to

general cases. Let N = n�=2 such that N ! 1, N � max
1�i�n

jwij ! 0 as n ! 1. We

have

var (
nX
i=1

wi�i) =
nX
i=1

nX
j=1

wiwj
(i� j)

=
nX
i=1

wi

nX
j=1

wj
(i� j)

=
nX
i=1

wi

2
4 X
ji�jj�N

wj
(i� j) +
X

ji�jj>N

wj
(i� j)

3
5

�

nX
i=1

jwij

2
4 X
ji�jj�N

jwjj j
(i� j)j+
X

ji�jj>N

jwjj j
(i� j)j

3
5 :

Observing that
P
1

i=�1 jwij <1. It is su�cient to show that

X
ji�jj�N

jwjj j
(i� j)j+
X

ji�jj>N

jwjj j
(i� j)j = o(1) (A.8)

holds uniformly in i. Consider the �rst part on the left side of (A.8),

X
ji�jj�N

jwjj j
(i� j)j � (2N + 1) max
1�i�n

jwij = O(Nn��)

= O(n��=2) = o(1): (A.9)
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For the second part we have

X
ji�jj>N

jwjj j
(i� j)j � max
jkj>N

(j
(k)j)
X
jkj>N

jwkj

= O(max
jkj>N

j
(k)j) = o(1); (A.10)

completing the proof of theorem 2. 2

Proof of corollary 1. By theorem 2 we have, var (�̂) ! 0 as n ! 1. SinceP
n

k=1wk ! 1 as n!1, we have

E(�̂) = E

 
nX
k=1

wk�k

!
! � as n!1:

2

Proof of lemma 1. Under the condition of this lemma, Ling (1998 1999) showed

that �i is strictly stationary with �nite fourth moments. In this case, the statement

that �i is a square-integrable martingale-di�erence follows immediately from the

de�nitions. To show that
P
1

k=�1 
�2(k) < 1 de�ne vi = �2
i
� hi. Under the

condition
P
r

j=1 �j+
P
s

k=1 �k < 1, we have Ejvij <1 and E(vijFi�1) = 0, i.e. vi is a

martingale-di�erence (see Shiryaev 1999, p. 106�). Noting that, under the condition

�[E(A
2
i )] < 1, the fourth moments of �i, and hence the second moments of �2

i
, exist.

vi is a martingale-di�erence with �nite variance var (vi) <1 and hence vi is again

a square-integrable martingale-di�erence as well as an uncorrelated white noise.

Furthermore, �2
i
has the ARMA(max(r; s), s) representation in the uncorrelated

white noise vi

�2
i
= �0 +

rX
j=1

�j�
2
i�j

+
sX

k=1

�k�
2
i�k

�

sX
k=1

�kvi�k + vi (A.11)

(see e.g. Bollerslev 1986 and Shiryaev 1999). By applying the well known fact that

the autocovariances of a second order stationary ARMA(p, q) process is absolutely

summable, the proof of lemma 1 is completed. 2

Proof of theorem 3. The formula of the asymptotic variance of �X stays unchanged

from case to case, if only �i are uncorrelated (0; �2) random variables. Hence, it is

the same as that for iid innovations given by theorems 1 and 8 of Hosking (1996),

i.e. var ( �X) = n2��1V� for �
1
2
< � < 1

2
, where

V� = �2
�

j (1)j2

j�(1)j2
�(1� 2�)

(2� + 1)

1

�(1 + �)�(1� �)
:
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Using the relationships �(1 + �) = ��(�) and �(�)�(1� �) = �

sin(��)
(for � is not an

integer), we obtain the alternative representation of V�

V� = �2
�

j (1)j2

j�(1)j2
�(1� 2�)

(2� + 1)

sin(��)

��
;

which is used in this paper.

Since Xi de�ned in (2.1)-(2.3) is a zero mean FARIMA process with innovations

�i following a GARCH model. We have

Xi =
1X
k=0

ck�i�k (A.12)

with ck �
j (1)j
j�(1)j

k��1 as n ! 1. Hence, for �0:5 < � < 0:5,
P
1

k=0 c
2
k
< 1. This

together with lemma 1 shows that Xi ful�lls the conditions of theorem 1, and so

(X1+ � � �+Xn)=�n
D
! N(0; 1). Observing that [n1=2�� �X� (X1+ � � �+Xn)=�n]

P
! 0,

we have n1=2�� �X
D
! N(0; 1). 2

Proof of theorem 4. In order to prove theorem 4 we only need to show that the

decomposition (A.7) holds for proper ak;n. Following (3.1), the weighted sum can

be rewritten as

nX
i=1

wiXi =
nX
i=1

wi(
1X

k=�1

ci�k�k)

=
1X

k=�1

(
nX
i=1

wick�i)�k

=:
1X

k=�1

ck;n�k: (A.13)

where ck;n = (w1ck�1 + � � � + wnck�n). Noting that �k are uncorrelated random

variables, we have

�2
n

:= E(
nX
i=1

wiXi)
2

=
1X

k=�1

c2
k;n
: (A.14)

De�ne ak;n = ck;n=�n, we have

��1
n

nX
i=1

wiXi =
1X

k=�1

ak;n�k;
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with
1X

k=�1

a2
k;n

= 1:

The uniform negligibility of ak;n, i.e. it tends to zero uniformly in k as n ! 1, is

guaranteed by condition (4.6). The rest part of the proof of theorem 4 is the same

as that of theorem 1. 2

Proof of theorem 5. The proof of the �rst three parts will be omitted (see Beran

and Feng 1999). Note that

ĝ(�)(t)� g(�)(t) =
nX
i=1

wiXi:

The weights of ĝ(�) generated by local polynomial �tting have the properties that

maxi jwij = O[(nb1+�)�1] and wi � 0 outside an interval with length of order b.

Using the result given in part iii) we have max jwij=�n = O[(nb)�1=2��] ! 0 as

n!1. Noting that ck � k��1,

j

nX
i=1

wick�ij=�n � max
i
jwij[

nX
i=1

jck�ij
���wi 6= 0]=�n

= O[(nb)�1=2��]O[(nb)�]

= O[(nb)�1=2]! 0 as n!1:

Conditions (4.5) and (4.6) are satis�ed by the weights of ĝ(�)(t). We have

(ĝ(�)(t)� g(�)(t))=var (ĝ(�)(t))
D
! N(0; 1):

In case that the bias has the representation (4.12), and assuming that nb
2k+1�2�
1�2� ! d2,

for some d > 0, we obtain,

(nb)1=2��b�(ĝ(�)(t)� g(�)(t))
D

! N(d�; V (c));

where � =
g(k)(t)�(�;k;c)

k!
and V (c) is the constant de�ned in (4.13). 2
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