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Prediction of 0-1-events for short- and long-

memory time series

Jan Beran

Abstract. The problem of predicting 0-1-events is considered under general

conditions, including stationary processes with short and long memory as well

as processes with changing distribution patterns. Nonparametric estimates of

the probability function and prediction intervals are obtained.

Keywords: 0-1-events, long-range dependence, short-range dependence, antipersis-

tence, kernel smoothing, bandwidth, prediction

1. The general problem

In time series applications, the main concern is sometimes to predict whether a

certain event will occur or not. For instance, in �nance, a decision may be based

on the probability that a stock price stays within certain bounds; in meteorology,

we may want to know whether certain disastrous weather conditions are likely

to occur or not etc. This motivates the following problem: Let Xt(t 2 N) be a

stochastic process on a probability space (
;A; P ) where 
 � RN is a subspace

of real valued functions on N and A is a suitable ��algebra. For a �xed k 2 N+,

and �1; :::; �k 2 N; let A�1;:::;�k(i) 2 A be such that

A�1;:::;�k(i) = f! : (Xi+�1 ; Xi+�2 ; :::; Xi+�k) 2 Bg;

for some B � Rk and

p = p(i; �1; :::; �k) = P (A�1;:::;�k(i))

the probability of this event. The general question is now: Given observations

X1; :::; Xn; how can we estimate p; without making too strong assumptions on the

unknown underlying probability distribution P:

2. Speci�c assumptions

The following assumptions will be used: Let

(1) Yi = 1fA�1;:::;�k(i)g
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and

(2) p = p(ti) = P (Yi = 1):

The process Yi is assumed to have the following properties:

� (A1)

(3) Zi =
Yi � p(ti)p

p(ti)(1� p(ti))

is a second order stationary process with autocovariances 
(k) and spectral

density f(�) = (2�)�1
P
1

k=�1 exp(ik�)
(k):

� (A2) The spectral density is continuous in [��; 0)[(0; �] and at the origin
we have

(4) f(�) � cf j�j�2d (j�j ! 0)

for a constant cf > 0 and d 2 (� 1
2
; 1
2
); where " � " means that the ratio

of the left and right hand side converges to one.

� (A3) p 2 C2[0; 1]

� (A4) sup0<x<1maxj=0;1;2jp(j)(x)j � C1 < 1 where p(j) denotes the j'th

derivative of p:

� (A5) jp00

(x)�p00

(y)j � C2�jx�yj� for all x; y 2 [0; 1]; constants C1; C2 <1;

and some � 2 (2; 3]:

� (A6) For a given � 2 (0; 1
2
), supt2[�;1��] jp(l+1)(t)j > 0 for at least one

l 2 f0; 1g and p(l) achieves an absolute maximum or minimum in [�; 1��]:

Remarks:

1. Since Yi is a 0-1-process, we have var(Yi) = p(ti)(1�p(ti)) so that Yi�p(ti)
can not be stationary. Therefore, the standardized process Zi is considered.

2. Zi can be second order stationary even if neither the Xi nor Xi � E(Xi)

are stationary. For instance, let Xi be iid with �xed ��quantile q� but

arbitrary distributions Fi that di�er, for instance, in their variance. Then

Xi is not second order stationary, in contrast to the 0-1-process Yi =

1fA� (i)g with A� (i) = fXi+��1 > q�g.
3. Three cases can be distinguished (see e.g. Beran 1994 and references

therein):

(a) Short memory: d = 0; f is continuous in the whole interval [��; �]
and 0 6=P 
(k) <1 ;

(b) Long memory: d > 0; f is in�nite at zero and
P

(k) =1 ;

(c) Antipersistence: d < 0; f(0) = 0 and
P

(k) = 0:

4. The assumptions include in particular the special case where the original

process itself consists of 0-1-variables, i.e. where Yi = Xi:
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3. Estimation of p

Under the assumptions given above, the estimation problem consists of estimating

a smooth function p(t); where 0 � p � 1: If the distribution of the process Xi

is known, except for a �nite dimensional parameter vector �; then the optimal

method is to estimate � from the original observations Xi (for instance by maxi-

mum likelihood) and set bp(t) = p(t; b�): Here, we address the problem of estimating

p; when only the assumptions given in the previous section are known. Note that

these are assumptions on the process Yi - no knowledge about the distribution of

the original process Xi is needed. Thus, we consider estimation of p(t) (t 2 [0; 1])

where p(ti) = E(Yi); Yi 2 f0; 1gand
(5) Yi = p(ti) +

p
p(ti)(1� p(ti))Zi

where Zi is a stationary zero mean process as de�ned in (A1). We will consider

kernel estimation of p : Let K : [�1; 1] ! R+ be a positive symmetric function

with support [�1; 1] and b > 0 a bandwidth, then we de�ne

(6) bp(t; b) = 1

nb

nX
i=1

K(
t� ti

b
)Yi:

The general problem of estimating a smooth function � from data of the form

(7) Yi = �(ti) + Zi

has been considered by various authors for the case where the error process Zi

is stationary with (i) short-range dependence (see e.g. Chiu, 1989; Altman, 1990;

Hall and Hart, 1990; Herrmann, Gasser and Kneip, 1992) or (ii) long-range de-

pendence, i.e. 0 < � < 1 (see e.g. Hall and Hart, 1990; Cs�org�o and Mielniczuk,

1995; Ray and Tsay, 1997) or (iii) antipersistence (Beran and Feng 2002a). Beran

and Feng (2002a,b,c) consider the more general case where it is not known a priori

whether Zi is stationary (including antipersistence as well as short- and long-range

dependence) or nonstationary.

The essential question to be solved is how to choose the bandwidth b op-

timally. Note that, in contrast to the usual setup, for 0-1-processes the variance

of the error process is related to the mean function and the mean function is

bounded from below and above. One may therefore either estimate p itself, under

the constraint 0 � p � 1 or one may instead estimate a suitable transforma-

tion of p: Obvious transformations are, for instance, the logistic transformation

g(p) = log[p=(1� p)] or the variance stabilizing transformation g(p) = arcsin
p
p:

Asymptotically, the choice of g does not in
uence bandwidth selection, if the cri-

terion is the mean squared error. This follows from standard arguments: Assume

that bp(t; bn) (n 2 N) is a (weakly) consistent sequence of estimates of p(t): Then

g(bp) = g(p)+ g
0

(p)(bp� p)+ op(bp� p) so that (under suitable regularity conditions
on the sequence bp) we haveMSE(g(bp)) = Ef[g(bp)�g(p)]2g = [g

0

(p)]2MSE(bp)+r
where r is of smaller order than MSE(bp): Since g0

(p) is a constant, independent

of b; the bandwidth minizing MSE(g(bp)) is asymptotically the same as the one
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minimizing MSE(bp): In the following, we thus use the mean squared error of bp as
a criterion for choosing b:

4. Asymptotically optimal bandwidth choice

In this section, asymptotic expressions for the mean squared error and the asymp-

totically optimal bandwidth are given. Using the notations I(p
00

) =
R 1��
�

[p
00

(t)]2dt

and I(K) =
R 1
�1
x2K(x)dx; the following results can be derived in a similar way

as in Beran and Feng (2002a) by taking into account the heteroskedasticity factor

proportional w(t) = p(t)(1� p(t)):

Theorem 1. Let bn > 0 be a sequence of bandwidths such that bn ! 0 and nbn !
1; then we have

(i): Bias:

(8) E[bp(t)� p(t)] = b2n
p

00

(t)I(K)

2
+ o(b2n)

uniformly in � < t < 1��;

(ii): Variance:

(9) (nbn)
1�2d

var(bp(t)) = w(t)V (�) + o(1)

uniformly in � < t < 1�� where 0 < V (�) <1 is a constant;

(iii): IMSE: The integrated mean squared error in [�; 1��] is given byZ 1��

�

Ef[bp(t)� p(t)]2gdt = IMSEasympt(n; bn) + o(max(b4n; (nbn)
2d�1))

(10) = b4n
I(g

00

)I2(K)

4
+ (nbn)

2d�1V (�)

Z 1��

�

w(t)dt+ o(max(b4n; (nbn)
2d�1))

(v): Optimal bandwidth: The bandwidth that minimizes the asymptotic IMSE

is given by

(11) bopt = Copt n
(2d�1)=(5�2d)

where

(12) Copt = Copt(�) = [
(1� 2d)V (�)

R 1��
�

w(t)dt

I(g
00

)I2(K)
]1=(5�2d):

Similar results can be obtained for kernel estimates of derivatives of p: For

instance, the second derivative can be estimated by bp00

(t) = n�1b�3
P
K((tj �

t)=b)Yj where K is a symmetric kernel such that
R
K(x)dx = 0 and

R
K(x)x2dx =

2: The optimal bandwidth for estimating the second derivative is of the order

O(n(2d�1)=(9�2d)): The asymptotic expression V (�) can be given explicitly for d = 0

and d > 0:

(13) V (�) = 2�cf

Z 1

�1

K2(x)dx; (d = 0);
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(14) V (�) = 2cf�(1� 2d) sin�d

Z 1

�1

Z 1

�1

K(x)K(y)jx� yj2d�1dxdy; (d > 0):

For d < 0; a general simple formula for V does not seem to be available., except

in special cases. For the box-kernel, we obtain (see Beran and Feng 2002a)

Corollary 1. Let K(x) = 1
2
1fx 2 [�1; 1]g: De�ne

(15) �(d) =
22d�(1� 2d) sin(�d)

d(2d+ 1)

with �(0) = limd!0 �(d) = �: Then, under the assumptions of Theorem 1, we

have

(i): Bias:

(16) E[bp(t)� p(t)] = b2n
p

00

(t)

6
+ o(b2n);

(ii): Variance:

(17) var(bp(t)) = (nbn)
2d�1�(d)cfw(t) + o((nbn)

2d�1);

(iii): IMSE:Z 1��

�

Ef[bp(t)� p(t)]2gdt = b4n
I(p

00

)

36
+ (nbn)

2d�1�(d)cfW

(18) +o(max(b4n; (nbn)
2d�1))

where W =
R 1��
�

w(t)dt:

(iv): Optimal bandwidth:

(19) bopt = Copt n
(2d�1)=(5�2d)

with

(20) Copt = [
9(1� 2d)�(d)cfW

I(g
00

)
]1=(5�2d)

5. Data driven bandwidth choice

An iterative algorithm for choosing the bandwidth for a modell with a smooth

trend function and a stationary or nonstationary error processes Zi is de�ned

in Beran and Feng (2002a,b). The error process is modelled by a (possibly inte-

grated) Gaussian fractional ARIMA process (Granger and Joyeux 1980, Hosking

1981). Beran and Feng prove convergence of the algorithm and provide �nite sam-

ple modi�cations to improve its performance for short series. Convergence of the

algorithm relies on consistency of the estimate of the spectral distribution f: For a

0-1-process Yi; the spectral distribution function can be estimated consistently by

the Gaussian maximum likelihood estimate for FARIMA-processes if f is indeed
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identical with the spectral density of a fractional ARIMA process. We thus assume

the following additional assumption (A7):

(21) f(�) =
�2"
2�

���� (ei�)�(ei�)

����
2

j1� ei�j1�2d

for some � 1
2
< d < 1

2
: Here, �(x) and  (x) are polynomials of �nite orders m1

and m2 respectively with roots outside the unit circle.

A suitable modi�cation of the algorithm in Beran and Feng (2002a,b,c) can

now be de�ned. (Note that in Beran and Feng (2002c), m1 is set equal to zero.)

The main steps of the algorithm are as follows:

Algorithm:
Step 1: Set j = 1; de�ne a maximal autoregressive order M and an initial

bandwidth bo; and carry out Steps 2 to 5 for each m2 2 f0; 1; :::;Mg:
Step 2: Estimate p and Zi using an the bandwidth bj�1;

Step 3: Estimate f by maximum likelihood (Beran 1995).

Step 4: Given the estimated spectral density f; calculate a new optimal band-

width bj ; set j = j + 1 and a new optimal bandwidth for estimating p00:

Step 5: Stop, if the change in the bandwidth does not exceed a certain bound.

Otherwise go to Step 2.

Step 6: Select the solution that minimizes a consistent model choice criterion

such as the BIC (Schwarz 1978, Beran et al. 1998).

6. Testing and Prediction

An approximate pointwise test for testing the null hypothesis Ho : p(t) � const,

can be obtained by de�ning the rejection region jbp(t)j > c�
2
v̂ where v̂ is equal to

the square root of (nbn)
2bd�1�(bd)cf bp(t)(1 � bp(t)) and c�

2
is the (1 � �

2
)�quantile

of the standard normal distribution. Note that, alternatively, we may test the null

hypothesis Ho : p
0

(t) � 0:

Prediction of Yn+k from Y1; :::; Yn reduces to predicting the succes probability

p(1 + k=n): Beran and Ocker (1999) propose a prediction method in the context

of general nonparametric trend functions that is based on Taylor expansion and

optimal linear prediction of the stochastic component. This approach can, in prin-

ciple, be carried over to forecasts of p(1 + k=n): Note, however, that this may

lead to values outside of the interval [0; 1]: As an alternative, one may extrapolate

a suitable transformation of p: More speci�cally, let g : [0; 1] ! R be a one-to-

one monotonic function such that limx!1 g(x) = 1 and limx!�1 g(x) = �1:

Then g(p(1 + k=n)) may be approximated by g(1) + g�(1) k
n
. The predicted value

of p is bp(1 + k=n) = g�1[g(1) + g�(1) k
n
]. In the context of quantile estimation for

certain long-memory processes, this approach is used, for instance, in Ghosh and

Draghicescu (2001).
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7. Data examples

The method introduced here can be used to explore various linear and nonlinear

properties of time series. This is illustrated by the following application to daily

values of three stock market indices between january 1, 1992 and november 10,

1995. The indices are: FTSE 100 (�gure 1), CAC (�gure 2) and the Swiss Bank

Corporation Index (�gure 3). We consider the event

(22) A(i) = f! : Xi+20 > Xi and min
s=1;:::;20

Xi+s > 0:9Xig:

The event A(i) means that in one month (20 work days) the index will be higher

than the initial value Xi and during this one-month period it never drops below

90% of Xi. The estimated probability functions p(ti) = P (A(i)) are displayed in

�gures 1c, 2c and 3c respectively. The shaded areas correspond to time stretches

where p is signi�cantly di�erent from a constant. (fully shaded area for "high

level" and area shaded with lines for "low level"). Although the critical limits to

test for non-constant p(t) are pointwise limits only, the similar patterns for all

three series support the conjecture that p is not constant. In particular, there is a

period (around observation 400) where p is considerably higher for all three series.
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 FTSE 100  - differenced series
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Figure 1 c:  FTSE 100  
fitted p(t)=P(X(t+20)>X(t),min[X(t),...,X(t+20)]>0.9*X(t-2)

Figure 1. FTSE 100 between january 1, 1992 and november 10,

1995 - original series (�gure 1a), di�erenced series (�gure 1b) and

estimated probability function p(i=n) = P (A(i)) where A(i) =

f! : Xi+20 > Xi and mins=1;:::;20Xi+s > 0:9Xig: Periods with
signi�cant departures from Ho : p � const are shaded with lines

(for p below critical bound) and fully shaded (for p above critical

bound) respectively.
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Figure 2 b: 
 CAC  - differenced series
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Figure 2 c:  CAC  
fitted p(t)=P(X(t+20)>X(t),min[X(t),...,X(t+20)]>0.9*X(t-2)

Figure 2. CAC between january 1, 1992 and november 10, 1995

- original series (�gure 1a), di�erenced series (�gure 1b) and es-

timated probability function p(i=n) = P (A(i)) where A(i) = f! :

Xi+20 > Xi and mins=1;:::;20Xi+s > 0:9Xig: Periods with sig-

ni�cant departures from Ho : p � const are shaded with lines

(for p below critical bound) and fully shaded (for p above critical

bound) respectively.
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Figure 3 a: 
 SBC  - original series
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 SBC  - differenced series

day

p(
t)

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3 c:  SBC  
fitted p(t)=P(X(t+20)>X(t),min[X(t),...,X(t+20)]>0.9*X(t-2)

Figure 3. SBC between january 1, 1992 and november 10, 1995

- original series (�gure 1a), di�erenced series (�gure 1b) and es-

timated probability function p(i=n) = P (A(i)) where A(i) = f! :

Xi+20 > Xi and mins=1;:::;20Xi+s > 0:9Xig. Periods with sig-

ni�cant departures from Ho : p � const are shaded with lines

(for p below critical bound) and fully shaded (for p above critical

bound) respectively.


