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Abstract. This paper puts a focus on the hazard function of inter-trade du-

rations to characterize the intraday trading process. It sheds light on the time

varying trade intensity and, thus, on the liquidity of an asset and the informa-

tion channels which propagate price signals among asymmetrically informed

market participants. We show, based on an exogenous information process,

that the way traders aggregate information has implications for the shape of

the hazard function. We use a semiparametric proportional hazard model

which is augmented by an ARMA structure very similar to the wide spread

ACD model to obtain consistent estimates of the baseline survivor function

and to capture well known serial dependencies in the trade intensity process.

From an inspection of conditional transaction probabilities based on Bund

future transaction data of the DTB we �nd a decreasing hazard shape providing

evidence for the use of non-trading intervals as an indication for the absence

of price information among market participants. However, this information

content seems to be diluted by a high liquidity base level, particularly with

respect to a large inow of potential traders from the U.S.

Furthermore, we provide evidence that past sequences of prices and volumes

have a signi�cant impact on the trading intensity in accordance with theoretical

models.

1. Introduction

The analysis of the time between transactions is an ongoing topic in the empir-

ical analysis of market microstructure. After the seminal work of Engle (1996)1

a broad range of extensions was proposed in the literature. One string of the
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2 F. GERHARD AND N. HAUTSCH

literature deals with the modelling of the well known serial dependency in the

inter-trade duration process and deals with more exible dynamics, like in the

SVD model proposed by Ghysels, Gourieroux, and Jasiak (1998) or the SCD

model introduced by Bauwens and Veredas (1999). The other set of extensions

emphasizes more exible forms of the underlying distribution and, thus, the haz-

ard function of the inter-trade durations. See e.g. Grammig and Maurer (1999)

and also Bauwens and Veredas (1999).

In this paper we propose a consistent estimator of the hazard function which

also accounts for the serial dependency in inter-trade durations. We use the

proportional hazard ARMA (PHARMA) model 2 that extends the traditional

semiparametric proportional hazard model by allowing for serial dependency in

the durations. The main advantage of this type of duration model compared

with the class of ACD models proposed by Engle and Russell (1998) or the SVD

model is that it requires no parametric speci�cation of the duration distribution.

It yields a nonparametric estimate of the baseline hazard function and allows for

ARMA-structures in the inter-trade duration process. Explanatory variables can

be included dynamically, corresponding to an ARMAX speci�cation, but also

statically, i.e. without any lag structure.

The contribution of our paper is twofold: First, by using the PHARMA model

for the inter-trade duration process we model the conditional probability to ob-

serve the next transaction as a function of the elapsed time since the last trade,

conditional on explanatory variables capturing the state of the market. The

shape of these conditional failure probabilities, i.e. the hazard function, allows

us to quantify the duration dependence, i.e. the impact of the elapsed time since

the last trade on the timing of the next transaction.

Note, that a constant (at) hazard rate corresponds to a duration-independence

between the trades, i.e. the timing of one trade has no impact on the timing of the

next trade, corresponding to a Poisson process for the arrival rate of transactions.

On the other hand, a negative (positive) time dependence between particular

trades means that the probability of observing a further transaction decreases

2See Gerhard and Hautsch (2000).
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(increases) the longer the time span since the last transaction. This duration de-

pendency has implications for trade-to-trade market dynamics and provides some

evidence on the informational content of no-trade intervals. Assuming an exoge-

nous information process, we show that the shape of the hazard rate provides

information about the way traders aggregate information.

Second, we provide some results on the impact of market microstructure vari-

ables, indicating the state of the market. We investigate whether the probability

for the occurrence of a new transaction depends not only on the elapsed time since

the last trade but also on market microstructure characteristics, like past and

contemporaneous price changes and volumes. We investigate di�erent hypothe-

ses concerning the learning of market participants from past market sequences

and the strategic behaviour of traders.

By analyzing Bund future transaction data of the Deutsche Terminb�orse (DTB)

in Frankfurt we show that the PHARMA model does a good job capturing the

serial dependency in the inter-trade duration process while it allows to semipara-

metrically asses the shape of the hazard rate.

We obtain a decreasing hazard function indicating evidence for the use of non-

trading intervals as a proxy for the absence of price information among market

participants. This may be due to trading schemes of market participants who

infer from past sequences of market activities and account for the intensity of

price signals.

The outline of the paper is as follows: In section 2 we derive economic impli-

cations of the hazard shape and testable hypothesis originating in market mi-

crostructure models. The econometric model is presented in section 3. Section 4

gives a description of the data set, while section 5 presents the empirical results.

Section 6 concludes.

2. Market Microstructure

2.1. Economic implications of the hazard rate. One of the main targets of

this study is to show that the hazard rate is a key instrument to measure the

informational content of inter-trade waiting times. In the following we briey
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characterize the economic implications of di�erent shapes of the hazard function.

We show that di�erent trading schemes, i.e. di�erent ways traders aggregate

their information, lead to di�erent shapes of the hazard function of the resulting

inter-trade durations.

We assume that the arrival of exogenous information during the trading day

follows a Poisson process and is observable by the informed market participants.

The information corresponds to price signals where we assume that the amount

of information provided by every particular signal is equal. Within this frame-

work we assume the existence of an uninformed, risk neutral market maker. We

distinguish between three types of market participants who trade on the basis of

di�erent information aggregation schemes. Our analysis is based on the trading

behaviour of one representative trader of each group.

(a) The �rst type of market participants trades after every arrival of a new

price signal. Hence, his transaction process corresponds to the information

process, thus the resulting inter-trade durations are distributed according

to an exponential distribution, i.e. the hazard function is constant and has

a at shape.

(b) The second group of traders contains market participants who are usually

described as traders who trade according to exogenous reasons, like port-

folio aspects. We call such a trader 'fundamental' trader. In this context

this trader's behaviour is not exogenous, but dependent on the information

process. This market participant does not trade after every price signal but

only after observing a certain amount of new information. He adjusts his

portfolio only if the deviation from his optimal portfolio exceeds a certain

threshold. Each arrival of a new signal is considered to shift the trader away

from his desired position as he gains succesively more information on the

asset. Thus, a trader of group a) can be seen as the limiting case of a trader

from group b) with a threshold of zero. Motivations for the introduction of

such a threshold can easily be found in the presence of transaction costs.

An important assumption in this context is, that this type of traders does

not regard the speed of information arrival, i.e. the information intensity.
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Hence, the fundamental trader aggregates information independent of the

timing of the particular events. This kind of information aggregation leads to

a trading behaviour where the market participant trades only after observing

a certain amount of price signals. The following proposition establishes the

shape of the resulting hazard rate.

Proposition 1: Based on a Poisson process for the arrival of information,

a 'fundamental' trading strategy leads to an increasing shape of the hazard

rate of the resulting inter-trade durations.

Proof: See Appendix.

(c) The third type of market participants consists on traders who are usually

considered to trade according to endogenous reasons, we call these traders

'technical' traders. We assume that the technical trader learns from past

sequences of price signals. He wants to exploit the informational content of

sequences of price signals optimally by explicitly accounting for the infor-

mation intensity, i.e. the number of signals which occur within a given time

interval T .

While 'fundamental' market participants wait until they observe a certain

amount of information, 'technical' traders update their beliefs continuously,

i.e. in market phases with a suÆciently high information intensity they trade

after every new price signal. Proposition 2 states the hazard shape of inter-

trade durations based on a technical trading strategy.

Proposition 2: Based on a Poisson process for the arrival of information,

a 'technical' trading strategy leads to a shape of the resulting inter-trade

hazard rate that decreases for duration values � 2 (0; T ] and is constant for

values � 2 (T;1).

Proof: See Appendix.

These results show that, based on a certain information arrival process, the

way market participants aggregate their information has important implications

for the shape of the hazard function. The main di�erence between the shapes

arises by the fact that 'fundamental' traders ignore the timing of the events and
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accounting for the amount of information only while 'technical' trading is based

on the speed of information arrival. 3

In our setting it is easy to show that the hazard shape becomes more at the

more traders with di�erent trading behaviours enter the market. Intuitively it is

clear that, in the extreme case, in�nitely many di�erent information aggregation

schemes lead to transactions after every price signal. Hence, the transaction

process corresponds to the information process, leading to a constant hazard

function.

2.2. Determinants of inter-trade durations. A further scope of our paper is

to provide some insight into the impact of microstructure variables on the inter-

trade durations. In market microstructure theory the timing of trades plays an

important role in the learning mechanism of market participants drawing infer-

ences from the trading process. In this context inter-trade durations are regarded

as means to aggregate information on price signals available to individual traders

in an asymmetric information environment (see Easley and O`Hara (1992)), com-

plementary to other information channels like the sequence of price changes (see

Hellwig (1982) or Diamond and Verrecchia (1981)) and traded volume (see Blume,

Easly, and O`Hara (1994)).

A central assumption is that the timing of trades is not only driven by the

occurrence of information but also reects the individual decisions of traders.

This implies that agents' learning from past sequences of market activities is also

reected in the expected waiting times until the next transaction. The assump-

tion of the informativeness of past price sequences is based on the noisy rational

expectation equilibrium models of Hellwig (1982) and Diamond and Verrecchia

(1981) which analyze rational expectation equilibria in a market where investors

learn from past prices. If traders' preference for the immediacy increases when

3We also extended the theoretical setting by assuming the existence of di�erent groups of

traders, i.e. market participants that trade according to one of the trading schemes described

above but based on di�erent amounts of information respectively based on di�erent time hori-

zons. Because in this context it is diÆcult to calculate the resulting inter-trade hazard rates

analytically, we simulated the corresponding market activities. These simulations show that

the results above also hold when the market consists of agents that have the same trading

behaviour but di�erent aggregation criteria.
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past market activities provide information to them then past price sequences have

also an impact on the expected inter-trade duration. The assumption that the

information content of a price process is correlated with its volatility leads to the

following hypothesis:

Hypothesis H1a: Large absolute price changes in the past imply a decreased

expected waiting time until the next trade.

Blume, Easly, and O`Hara (1994) analyze the informational role of volume. They

resolve how the statistical properties of volume relate to the behaviour of market

prices and show that traders can also learn from sequences of volume. The cru-

cial result is that volume provides information that cannot be deduced from the

price statistics. In our setting we want to investigate whether this informational

content of trading volumes is also reected in inter-trade durations. Based on

this theoretical setting we formulate the hypothesis H1b:

Hypothesis H1b: Past sequences of volumes are informative for expected inter-

trade durations even if past price sequences are accounted for.

Furthermore, we want to get insights into the impact of the heterogeneity of in-

formation on the trade-to-trade waiting times. Lang, Litzenberger, and Madrigal

(1992) show that the dispersion of private information across the agents inu-

ences the trading volume, but not the price. This divergence of beliefs arising

from asymmetric information plays an important role in generating activity. Ac-

cording to this theoretical literature one would expect that an increase of the

heterogeneity of information has a signi�cant impact on the speed of market ac-

tivities. The inuence of this dispersion of private information on the inter-trade

durations can be empirically tested by analyzing the trade intensity at the DTB

before and after the beginning of American trading. We base this investigation on

the conditional survivor function and the conditional hazard function, given past

and present market activities, that indicate changes in the duration dependence

of the timing of trades. We formulate the following testable hypothesis:

Hypothesis H2: The inow of additional market participants from the U.S. causes
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changes in the duration dependence of inter-trade waiting times.

The last hypothesis we want to test concerns strategic behaviour of market par-

ticipants. The theoretical literature analyzing the strategic behaviour of agents

is heavily inuenced by Kyle (1985). He shows that pro�t-maximizing informed

investors attempt to camouage their information, e.g. by spreading trades over

time. Admati and Peiderer (1988) assume two types of uninformed traders,

"discretionary" liquidity traders, who have some choice over the time at which

they transact, and "nondiscretionary" liquidity traders whose orders are assumed

to arrive in a random fashion. They show that it is optimal for liquidity traders

and also for insiders to trade together leading to concentrations of trading in

particular time periods. While both studies ignore the choice of the trade size

Barclay and Warner (1993) examine the proportion of cumulative price changes

that occur in certain volume categories. Based on an empirical study they �nd

evidence that most of the cumulative price change is due to medium-sized trades.

This result is consistent with the hypothesis that informed traders tend to use

medium volume sizes 4. Empirical evidence on this hypothesis is provided by the

impact of the contemporaneous volume per transaction on the expected waiting

time until the next trade. If informed investors trade medium sizes and want

to exploit their informational advantage by executing a transaction as soon as

possible then one would expect that medium trading volumes have the strongest

impact on the trading intensity leading to a highly nonlinear relationship be-

tween inter-trade durations and the present trading volume. These implications

are summarized in the following hypothesis:

Hypothesis H3: A nonlinear relationship can be observed between the contem-

poraneous volume and the expected time between trades.

4A paper with a related focus is Kempf and Korn (1999) who empirically analyze the relation

between unexpected net order ow and price changes and �nd highly nonlinear relationships.
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3. The Proportional Hazard ARMA model

A speci�c feature of inter-trade durations is the occurrence of clustering. In

the econometric literature there exist two central approaches accounting for in-

tertemporally correlated duration data: Engle and Russell (1995) introduce the

class of Autoregressive Conditional Duration (ACD) models for serially corre-

lated inter-trade durations, which is based on a parametric speci�cation of the

conditional expectation of the duration and employs the GARCH methodology

developed to model the volatility of price processes to analyze the time between

trades. Ghysels, Gourieroux, and Jasiak (1998) propose a class of two factor

models for duration data, where the �rst factor accommodates dynamics in the

conditional mean and the second factor in the conditional variance. Because

of its strong relation to stochastic volatility models they call it the Stochastic

Volatility Duration (SVD) model. They show that the SVD model captures in-

teractive dynamics of the conditional mean and variance and models clustering

and persistence e�ects in both conditional moments.

These types of models belong to the class of accelerated failure time models,

i.e. models where covariates accelerate or decelerate the time between transac-

tions. A drawback of these models is that they do not specify an impact of

covariates on the hazard function, thus, it is not possible to investigate the in-

uence of covariates on the duration dependence. A further drawback is the

requirement of restrictive parametric speci�cations for the assumed distribution

of the durations, at least if one is indeed interested in the shape of the hazard

function. If only the conditional expectation of the time between transactions is

of interest, one has to account for the results of Lee and Hansen (1994) and Lums-

daine (1996) for the PML interpretation of GARCH models which were applied

by Engle and Russell (1998) to ACD models. Hence, the ACD model provides

consistent estimates of the conditional expectation even when the distribution of

the duration process is misspeci�ed.

Grammig and Maurer (1999) analyze the performance of di�erent ACD spec-

i�cations via Monte Carlo studies and show that standard ACD models are
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highly sensitive to the distributional assumptions employed. For this reason

Grammig and Maurer introduced a more exible ACD model by assuming a

Burr-distribution for the standardized durations5 and provide evidence in form

of Monte Carlo simulations in favour of this ML estimator. 6 Bauwens, Giot,

Grammig, and Veredas (2000) compare the predictive performance of several

ACD, Log-ACD (see Bauwens and Giot (1997)) and SVD models via density

forecasts and show that most of these speci�cations fail to capture the true (con-

ditional) distribution of durations. They illustrate that these models work better

the more exible the assumed distribution of the durations is.

Based on the PML property of ACD models it is possible to use the empirical

distribution of the residuals to obtain a nonparametric estimate of the baseline

hazard. The drawback is that the resulting baseline hazard rate is based on

standardized durations, i.e. durations that are standardized by their conditional

duration. Because we are interested in duration dependencies based on pure, non-

transformed, inter-trade durations that allow us to interpret the hazard function

directly as a natural liquidity measure, the use of ACD models in this context is

not reasonable.

Because of these reasons we use an extended semiparametric proportional haz-

ard speci�cation which allows us to account for serial dependency in the inter-

trade duration process and provides a semiparametric estimation of the baseline

hazard rate. Because this model is based on an ARMA structure we call it

Proportional Hazard ARMA (PHARMA) model. The estimation procedure is

based on a discretization of the dependent variable, thus the model corresponds

to a particular quantal response model introduced by Han and Hausman (1990).

Because of its dynamic structure it can be seen as a combination of ACD type

models and hazard rate models 7.

5The Burr-ACD (BACD) nests the standard Exponential-ACD and Weibull-ACD models as

special cases.
6Bauwens and Veredas (1999) introduced the Stochastic Conditional Duration (SCD) model

where the durations are generated by a latent stochastic factor allowing an autoregressive

process. The main innovation of this class of models is to allow for a wider range of shapes of

hazard functions.
7For more details see Gerhard and Hautsch (2000).
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Consider the sequence of arrival times t0; t1; : : : ; tn with t0 < t1 < : : : < tn

as a stochastic process. Associated with this process for the arrival times is a

process for the waiting times between the trades, �i = ti � ti�1; i = 1; : : : ; n, the

inter-trade durations.

In order to provide a exible baseline hazard rate we use a semiparametric

proportional hazard speci�cation as a starting point

�(�tjxt) = �0(�t) exp(�x
0

t
�); t = 1; : : : ; n;(1)

where �0(�t) is an unspeci�ed baseline hazard, xt a vector of covariates and � the

corresponding vector of coeÆcients.

The proportional hazard model admits an interpretation as a linear regression

model using the fact that

~�t = x0
t
� + �t;(2)

where ~�t � ln
�tR
0

�0(s)ds and �t is an identically independently extreme value

distributed error term with mean c = E[�] = �0:57722 and variance V[�] = �2=6.

See e.g. Kiefer (1988) or Han and Hausman (1990). 8

By augmenting the latent model by an ARMA structure to account for serial

dependency in the inter-trade duration process we obtain

~�t = x0
t
� + ut;(3)

with

ut =

pX
j=1

�jut�j +

qX
j=1

�j(�t�j + w0
t�j

) + w0
t
 + �t:(4)

A vector of exogenous explanatory variables wt is included in the dynamic struc-

ture with  as the corresponding vector of coeÆcients.

Note that it is suÆcient that the latent variable ~�t is conditional extreme value

distributed, given the past and the explanatory variables, hence

~�tj��t�1; �wt�1; xt � EV:

8The model can be extended to account for unobserved heterogeneity similar to the SVD

model proposed by Ghysels, Gourieroux, and Jasiak (1998). Such e�ects are included by

specifying a compounder ! acting multiplicatively with the hazard function. By analyzing

LIFFE Bund Future data, Hautsch (1999) shows that unobservable e�ects captured by the

compounder are only very weak. For this reason we ignore the impact of such e�ects.
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Using the standard state space form, the model can be rewritten as

~�t = H � �t + x0
t
�(5)

�t = F � �t�1 + e1 � w
0

t
 + e1 � �t;(6)

where

H =
�
1 �1 : : : �r�1

�
; F =

�
�1 : : : �r
Ir�1 0

�
; e1 =

�
1 0 : : : 0

�
0

and r denotes the dimension of the state space de�ned as r = max(q+1; p): Note

that then �i and �i with i > q or i > p respectively are de�ned to be equal zero.

We use a conditional maximum likelihood estimation procedure proposed by

Gerhard and Hautsch (2000) where the model is regarded as an ordered response

model with an autoregressive structure in the latent process given by eq. (3)

and (4). In this context we categorize the inter-trade durations �t by using �k,

k = 1; 2; : : : ; K � 1; as the observable thresholds between the categories.

We observe the inter-trade duration within the category (�k�1;�k] if the la-

tent variable ~�t lies between the two thresholds (~�k�1; ~�k], i.e. the conditional

probability for observing �k�1 < �t � �k is

Prob(�k�1 < �t � �kj��t�1; �wt�1; xt) =

~�k�mtZ
~�k�1�mt

f�(s)ds;(7)

where mt is de�ned by

mt � E[~�tj��t�1]� c

and f�(s) denotes the density function of �t given by

f�(s) = exp(s� exp(s)):

Hence, in this ordered response framework the conditional log likelihood function,

given ��t�1; �wt�1; xt, takes the usual form of

logL =

NX
t=1

KX
k=1

ytk ln

~�k�mtZ
~�k�1�mt

f�(s)ds;(8)

where the indicator variable ytk is de�ned by

ytk =

�
1 ; if �k�1 < �t � �k
0 ; else:
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The nonparametric baseline survivor function is obtained directly by the esti-

mated thresholds. It can be calculated at the K � 1 discrete points by

S0(�k) = exp(�exp(~�k)); k = 1; : : : ; K � 1:(9)

Note that the function mt is based on an ARMA structure, thus, the log

likelihood (8) has to be computed using a recursion of the latent process. We

calculate the conditional expectation of the latent variable given past realizations

of the observable dependent variable E[�tj��t�1] using a recursion based on the state

equation (6). Following the recursive procedure proposed by Gerhard (2000) the

conditional mean E[�tj��t�1] can be computed by 9

E[�tj��t�1] = c � e1 + F (E[�t�1j��t�2] + e1 � E[�t�1j��t�1]) :(10)

From this, mt is directly evaluated as

mt = E[~�tj��t�1]� c = H � E[�tj��t�1]� c:(11)

The recursion is initialized with the unconditional expectation of the state vari-

able

E[�1j��0] = E[�t] = 0:(12)

Because the dynamic structure is based on variables that are unobservable

(~�t and �t), we use estimates of these variables to execute the recursion (10).

Estimates of ~�t and �t are obtained by using the concept of generalized errors

proposed by Gourieroux, Monfort, and Trognon (1985). Hence, if �k�1 < �t � �k,

the conditional expectation of the error �t is given by

E[�tj�k�1 < �t � �k;��t�1; �wt�1; xt] =

1

F�(~�k �mt)� F�(~�k�1 �mt)
�

~�k�mtZ
~�k�1�mt

sf�(s)ds;(13)

where F�(:) denotes the distribution function of �. Based on these generalized

errors we obtain estimates of ~�t that are used in the recursion.

A necessary condition for consistency of this maximum likelihood estimator is

that the moment condition E[@ logL
@�

] = 0 holds for the true parameter �0. Because

9For ease of notation the regressors xt and wt are omitted. For more details see Gerhard

and Hautsch (2000).
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our approach is based on a latent model the score of the observable model is

not directly applicable. By using the relationships between latent and observable

models proposed by Gourieroux, Monfort, Renault, and Trognon (1987) we verify

that the expectation of the score of the observable model is zero (see in the

appendix).

Under the usual regularity conditions we can show consistency and asymp-

totic normality for this maximum likelihood estimator (see Gerhard and Hautsch

(2000)).

4. The data

The sample contains intra-day transaction data from the Bund Future trading

at the screen based trading system of the Deutsche Terminb�orse (DTB), Frank-

furt, from 01/30/95 to 02/24/95, corresponding to 20 trading days. Within this

period the Bund-Future was one of the most liquid futures in Europe and cor-

responded to a 6% German government bond of DEM 250.000 face value. The

Bund Future had a maturity of 8.5 years and four contract maturities per year,

March, June, September and December. In the sampling interval prices were

denoted in basis points of face value, thus, one tick was equivalent to a value of

DEM 25.

The data set contains time stamped prices and volumes and consists of 44810

observations, where the overnight durations are omitted. Furthermore, we refrain

from using the �rst 10 minutes of a trading day to avoid the opening phase.

We use a categorization that ensures to derive conditional failure probabilities

based on longer time intervals. Because we want to get insights in the trading

behaviour and learning processes of market participants, it is not reasonable to

regard extremely short inter-trade durations (e.g. � 10 seconds). For this reason

we use a categorization based on 30 second intervals (30,60,: : : ,180) that is large

enough to could be associated with learning processes of traders and reveal market

dynamics up to 3 minutes. Because the distribution of the waiting times is skewed

to the right (see table 1) we use additional categories for lower durations to ensure

satisfactory frequencies of the observations in the categories.
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Several empirical studies (Wood, McInish, and Ord (1985), Engle and Russell

(1995), Engle and Russell (1997), Guillaume, Dacorogna, Dave, M�uller, Olsen,

and Pictet (1996) or Dacorogna, Morgenegg, M�uller, Olsen, Pictet, and Schwarz

(1990)) found evidence for highly signi�cant seasonality patterns in the volatility

of the return series as well as in the trade frequency of the transaction process.

To account for intraday seasonalities we use the exible Fourier form proposed

by Andersen and Bollerslev (1998) based on Gallant (1981) which is given by

s(Æ; t�; P ) = Æ1 � t
� +

PX
p=1

(Æc;p cos(t
�

� 2�p) + Æs;p sin(t
�

� 2�p)) ;(14)

where p is identical with the order of the term, t� 2 [0; 1] is de�ned by

t� =
seconds since 8:40 a.m.

seconds between 8:40 a.m. and 5.15 p.m.
(15)

and Æc;p, Æs;p and Æ denote the corresponding coeÆcients 10.

To check hypothesis H2, concerning the impact of an increase of information

heterogeneity, we de�ne two dummy variables indicating trading after 2:30 p.m.,

the opening of U.S. trading, and indicating the 02/20/95, the 'President's Day',

American holiday. To investigate the further market microstructure hypotheses

we include log-volume and absolute price changes as explanatory variables.

5. Empirical Results

5.1. Persistence and Intraday-Seasonalities. To investigate the autoregres-

sive structures in the data we start our analysis by calculating the autocorrelation

(acf) and partial autocorrelation functions (pacf) of the inter-trade durations.

Table 2 shows the acf and pacf of the data that indicate highly signi�cant auto-

correlations. They depict a slowly decaying rate of dependence, which is typical

for a process with high persistence, a feature of the data that is well documented

in recent literature 11.

To simplify the model selection we �rst run several ARMA models on the raw

and also seasonally adjusted log durations. This amounts to estimating a log ACD

10Within the observation period at the DTB trading took place between 8:30 a.m. and 5.15

p.m.
11See e.g. Jasiak (1999) who accounts for this high persistence by modelling a fractional

integrated ACD-model.
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model as suggested by Bauwens and Giot (1997). The close relationship between

the acf implied by the PHARMA model employed here and the ACD speci�cation

justi�es this procedure. A more detailed discussion of the relationship can be

found in Gerhard and Hautsch (2000). Table 3 shows the results of four ARMA

speci�cations based on the raw data. The high values of the ARMA parameters

indicate a high persistence of the duration-process and are comparable to the

results found by Engle and Russell (1998) who investigated price intensities using

ACD models. Table 4 presents the corresponding results based on seasonally

adjusted durations 12. The fact that ARMA parameters are nearly una�ected

indicates that the persistence is not reduced due to the inclusion of seasonality

parameters.

The model selection is based on the Bayes information criterion (BIC) leading

to an ARMA(2,2) for the raw durations respectively an ARMA(1,1) for the sea-

sonally adjusted waiting times as the best speci�cation. We use these results as

a starting point for the model selection in the PHARMA models and obtain a

PHARMA(1,2) as the best speci�cation, again based on the BIC criterion.

Table 5 shows the estimation results of the PHARMA(1,2) model 13 for three

di�erent speci�cations. Panel A presents the results of a regression without any

explanatory variables, based only on the thresholds and the ARMA coeÆcients,

while panel B and C contain the corresponding results with included seasonal

covariates 14. The similarity of the ARMA parameters to the simple ARMA(1,2)

regressions on the raw respectively the seasonal adjusted log durations (see tables

3 and 4) indicate the robustness of the results. Furthermore, by running several

regressions with di�erent categorizations of the durations we �nd evidence that

the estimates of the ARMA parameters and also the coeÆcients of the covariates

12In this context we regress the log-durations on the variables of an exible Fourier form of

order 4, inclusive two dummies indicating the opening of American trading at 2:30 p.m. and

the American 'President's Day' at 02/20/95, by OLS. Based on these consistent (but ineÆ-

cient) estimates of the covariates, we calculate the residuals and use these as seasonal adjusted

durations.
13The maximum likelihood estimation of the model is performed using the BFGS algorithm

with numerical derivatives in GAUSS.
14We also run regressions by including dummy variables that accounted for day-of-the-week-

e�ects but didn't �nd any signi�cance concerning such e�ects.
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are not e�ected by the choice of the categories. This result is in accordance

with the property of semiparametric proportional hazard models that consistent

estimates of the coeÆcients of the explanatory variables are obtained even when

the form of the baseline hazard is unknown (see Meyer (1990)).

To investigate the impact of intraday-seasonalities we calculate the inuence

of these variables on the probability to survive a inter-trade duration of 5 and

30 seconds. Figure 1 shows the typical intraday seasonality pattern with high

market activities in the morning, a signi�cant dip at the lunch time and the

shortest inter-trade durations after the opening of the American trading at 2:30

p.m.

It is an interesting result that the inclusion of the two dummies indicating

trading after 2:30 p.m. and the American 'President's Day' at 02/20/95 (see

panel C) decreases the signi�cance of most of the trigonometric terms. Hence,

the main impact of the estimated intraday seasonalities seems to be captured by

the 2:30-dummy. The high signi�cance of this dummy indicates that the opening

of the American trading has a strong impact on the speed of market activities

and increases the liquidity according to lower trade-to-trade waiting times.

5.2. Hazard Rates and Survivor Functions. Figure 3 illustrates estimates

of the discrete hazard rate, i.e. the conditional probability for the end of a spell

in the next duration category, given the time it lasted already, conditional on

trading before and after 2:30 p.m. and at the American holiday, given by 15

~�0(�k) =
S0(�k)� S0(�k+1)

S0(�k)
; k = 1; : : : ; K � 1:(16)

These conditional failure probabilities allow us to characterize the duration de-

pendence for longer time intervals that provide us insight into the way traders

infer information from no-trade-time intervals. By virtue of the chosen cate-

gorisation it is straightforward to interpret the conditional failure probabilities

depicted in �gure 3. There we depict the conditional probabilities for a trans-

action to occur within the next 30 seconds, given that we have just observed

15The functions are conditioned on mean values for the explanatory and the dynamic

variables.
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the last transaction and given that the last transaction happened before 30, 60,

90, 120, and 150 seconds. We note that the hazard rate is decreasing, i.e. the

longer the last trade dates back the lower the probability for observing the next

transaction.

This result supports the hypothesis that market participants tend to trade

according to, in our sense, 'technical' trading schemes. Hence traders, account

not only for the amount of information but also for the speed of the information

arrival. This result can be seen as empirical evidence for the fact that the market

is dominated by agents that tend to learn from past market sequences and not

only to adjust their portfolios based on exogenous criteria. This result supports in

some sense the hypothesis that traders associate no-trade-intervals with the lack

of information and, thus, is quite plausible in the light of the seminal contribution

of Easley and O`Hara (1992).

We �nd slight evidence that the shape of the hazard rate attens out for longer

durations (even with a slightly increasing pattern between 90 and 120 seconds)

that may be due to a high base level of liquidity, i.e. the abundance of market

participants with exogenous, in our sense 'fundamental', motivations.

The comparison of the di�erent (discrete) hazard functions conditional on trad-

ing before and after 2:30 p.m. and at the American holiday, provides further in-

sight into the impact of liquidity trading. One could argue that the inow of

additional traders from the U.S. has a particularly high share in noise traders as

the decrease in the conditional probability increases from 7 to 11 to 14 percentage

points comparing the sample after 2:30 p.m. to the sample before 2:30 p.m. and

to the U.S. holiday.

The slight attening of the hazard shape after 2:30 p.m. can be seen as weak

evidence for the hypothesis that the hazard becomes more at the more traders

with di�erent trading behaviours enter the market. Hence, an increase of the

liquidity seems to lead to a attening of the hazard shape.
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Figure 2 shows the estimated baseline survivor functions conditional on trad-

ing before and after 2:30 and at the American holiday 16. The graphs show that

the pattern of the baseline survivor functions change signi�cantly indicating that

the American trading plays an important role for the market dynamics. While

the probability for observing inter-trade time intervals longer than 30 seconds is

approximately 0.37 at U.S. holiday, this probability is approximately 0.09 at 'nor-

mal' days before 2:30 p.m. and nearly zero after 2:30. These signi�cant changes of

the patterns of the survivor function and, thus, the underlying duration distribu-

tion 17, may economically be attributed to an increased heterogeneity in traders'

price signals caused by a major inow of potential traders from the U.S. market

that would con�rm hypothesis H2. While the mean inter-trade duration is at the

U.S. holiday three times as large as an 'normal days' (see Table 1), the transac-

tion volume is nearly una�ected. Hence, liquidity e�ects seem to be caused by

an increase of the trading intensity, not by a change in trading volumes.

5.3. Testing the market microstructure hypotheses. In order to check the

empirical evidence of the market microstructure hypotheses proposed in section 2,

we run two regressions with market microstructure covariates included (see table

6). Since the main impact of deterministic intraday seasonalities is captured by

the 2:30-dummy we omit the trigonometric seasonality terms. Panel D (table

6) presents regression results including a polynomial of log-volume. While the

linear term logvol is insigni�cant, the signi�cant quadratic logvol2 and cubic

term logvol3 indicate a nonlinear impact of volume on the expected time until

the next transaction. To illustrate this result we plot the aggregated impact of

the volume-covariates on the probability to survive 5 respectively 30 seconds (see

�gure 5). The graph depicts a slightly non-monotonic function with a decreasing

pattern for volumes up to approximately 60 and an almost at shape for larger

volumes. Overall, the marginal inuence of volume on the latent variable is very

16The functions are conditioned on mean values for the explanatory and the dynamic

variables.
17This feature is also reected in the descriptive statistics (see Table 1).
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weak and is well approximated by a linear function. Thus, we �nd no empirical

evidence for a strategic behaviour of informed traders.

In order to test our hypothesis H1, we include the �rst lags of the log volume

and the absolute price change dynamically (see panel E, table 6). For both

variables we �nd highly signi�cant negative coeÆcients. Hence, the higher past

volumes and the more volatile the past price sequence the lower the expected

trading intensity which supports hypotheses 1a and 1b. The calculation of the

inuence of past volumes and past absolute price changes on the present trade

frequency depends not only on the coeÆcient of the regressor but also on the

ARMA parameters. We �nd a slowly decaying lag structure with the median lag

at 18 for both regressors. Taking also into account that the mean time between

transactions is about 14 seconds (see Table 1), we can - cum grano salis - invoke

the intuition that the weighted volume and the weighted absolute price changes

of the last 3 minutes before a transaction make up about 50% of these regressors

impact. The coeÆcients of the lag structure are all negative. Thus, these results

can be interpreted as empirical evidence for the hypothesis that investors seem

to increase their preference for immediacy of further transactions if past market

activities provide information to them.

6. Conclusions

In this study we use a proportional hazard ARMA model to estimate hazard

rates of inter-trade durations of the Bund-Future trading at the DTB, Frankfurt.

This analysis provides insight into the duration dependence of failure probabili-

ties, i.e. the probability for observing the next trade conditional on the elapsed

time since the last transaction. The shape of this (discrete) hazard function

provides evidence on the way traders aggregate information.

We estimate the hazard rate by using a PHARMA model that accounts for

serial dependency in inter-trade durations and also allows for a nonparametric

estimation of the underlying baseline hazard. Overall, we �nd a signi�cantly

decreasing hazard rate which attens out slightly for longer durations indicating

a negative duration dependency between the timing of particular trades. This
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result supports the hypothesis that traders tend to trade more 'technical' oriented,

i.e. they account not only for the amount of information but also for the speed

of information arrival. Furthermore, we investigate the impact of an increase of

the heterogeneity of information on the trading intensity by comparing survivor

and hazard functions based on market phases before and after the opening of the

American trading and at a U.S. holiday. We obtain signi�cant changes in market

dynamics indicated by di�erences in the estimated survivor functions, and, thus

the duration distribution.

The inclusion of covariates statically and dynamically allows us to shed some

light on the impact of microstructure variables, indicating the state of the market,

on the hazard function. We investigate whether the timing of trades reects the

decisions of traders which learn from past market activities.

By including past volumes and absolute price changes as dynamic covariates

we �nd evidence for the fact that these variables have a signi�cantly negative

impact on the expected trading intensity. These results are in accordance with

market microstructure hypotheses which imply that the informativeness of past

sequences of market activities is reected in a traders' preference for immediacy

of transactions, i.e. in lower inter-trade durations.
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7. Appendix

7.1. The expectation of the score. For ease of exposition the following proof

is illustrated for an PHARMA(1,0) process without covariates. The latent process is

de�ned as

~�t = �~�t�1 + �t

=

1X
j=1

�
j
�t�j + �t;

where �t is extreme value distributed with density

f(�) = exp(�� exp(�)):

Thus, the score of the latent model is given by

@ logL�

@�
=

TX
t=2

2
4�

1X
j=1

j�
j�1

�t�j + exp(�t)

1X
j=1

j�
j�1

�t�j

3
5 :

Along the lines of the work of Gourieroux, Monfort, Renault, and Trognon (1987)

(lemma 3) the score of the observable model is given by the conditional expectation of

the score of the latent model, given the observable dependent variables ��t,

@ logL

@�
= E

�
@ logL�

@�

���� ��t
�

=
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2
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1X
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j�
j�1E[�t�j j��t] + E

2
4exp(�t)

1X
j=1

j�
j�1

�t�j

������ ��t
3
5
3
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Hence, the expectation of the score of the observable model is given by

E
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=

TX
t=2

2
4�

1X
j=1

j�
j�1E[�t�j ] +

1X
j=1

j�
j�1E[exp(�t)] � E[�t�j ]

3
5(18)

=

TX
t=2

2
4�

1X
j=1

j�
j�1E[�t�j ] (1� E[exp(�t)])

3
5 = 0:

Eq. (17) is based on the law of iterated expectations where (18) uses the assumption

of independence between the latent error terms. It is easily to show that the random

variable exp(�) is exponential distributed, thus E[exp(�)] = 1 and the result follows.
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7.2. Inter-trade hazard rates implied by di�erent trading schemes. In

the following we show that, based on a Poisson process for the arrival of price signals,

'fundamental' and 'technical' trading schemes lead to di�erent hazard rates of the

resulting inter-trade durations.

Proof of Proposition 1: If the trader executes a transaction after every (� + 1)th

price signal the resulting inter-trade durations � are distributed according to the sum

of exponential distributed random variables that follow an Erlang (�)-distribution 18

with hazard function

��(k) =
�0(�0k)

��1
=(�� 1)!

�P
i=1

(�0k)i�1=(i � 1)!

where �0 denotes the parameter of the underlying exponential distribution. It is easy

to show that
@��(k)

@k
> 0 for � > 1.

Proof of Proposition 2: We denote the relevant time horizon of an investor by T

and the duration between the price signals in period t�1 and t by �t; t = 1; : : : ; n. We

assume that a market participant initiates a trade if he observes the last �+ 1 signals

within a time interval T , i.e. the sum of the last � inter-signal waiting times has to be

lower than T . Furthermore, we assume that the last trade occurred in t and denote

the time between t and the next transaction by �t. The proof proceeds as following:

First, we characterize the shape of the inter-trade hazard function for durations

�t � T because for these durations the hazard rate has a signi�cantly di�erent shape

than for waiting times �t > T . By considering a point of time t+ k; 0 < k � T , after

the trade in t, we have to characterize di�erent situations.

In the �rst case we characterize points of time k where the next price signal after the

transaction in t leads to the next transaction, i.e. the inter-trade duration corresponds

to the inter-signal waiting time. The second case concerns points of time where the

next price signal leads with certainty to no further transaction because in these points

of time the last � + 1 signals occurred within a time interval larger than T . In the

third situation we consider points of time where not the �rst but only the second price

signal after t leads to the next transaction, i.e. the inter-trade duration corresponds

to the sum of the following two inter-signal waiting times. All other points of time

0 < k � T are characterized in a similar way. For these di�erent cases we calculate the

corresponding conditional hazard rates.

Second, based on the particular conditional hazard rates, given a certain point of

time k, we calculate the unconditional hazard rate for durations �t � T and show that

the shape of this hazard function is (non-monotonically) decreasing.

Third, we provide the shape of the hazard function for durations �t > T , that is

easily obtained.

By considering an arbitrarily chosen point of time t + k; 0 < k � T we consider the

following cases s:

(s=1) Assume a point of time t+ k with k � �t+1, i.e. the next signal has not occurred

yet but observing it in the next instant of time would lead to the next transaction,

thus, �t = �t+1. The conditioning information for the corresponding inter-signal

18See Johnson, Kotz, and Balakrishnan (1994).
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durations is given by

A1 =

8<
:�t+2��; : : : ; �t

�������t+1 � T �

tX
i=t+2��

�i

9=
; :

The conditional hazard rate, given situation s = 1, is

�1(k) = lim
�!0

1

�
Prob (�t+1 = k +�j�t+1 � k; A1) :

(s=1,a) Assume a point of time t+k equivalent to s = 1 but assume that observing a price

signal in the next instant of time after t + k leads with certainty to no further

transaction because in this point of time the last � + 1 signals occurred within

a time horizon larger than T . The conditioning information for the inter-signal

durations in this situations is given by

A1;a =

8<
:�t+2��; : : : ; �t

�������t+1 > T �

tX
i=t+2��

�i

9=
; :

In this situation the conditional hazard is

�1;a(k) = 0:

(s=2) We consider a point t+ k with �t+1 < k � �t+1 + �t+2, i.e. the next price signal

after t has been observed already. We assume that this price signal has not led

to a trade because in t+ �t+1 the last �+1 signals occurred within a time larger

than T . Furthermore, it is assumed that the next signal has not occurred yet

but observing it in the next instant of time leads to a further trade. Hence, the

conditioning information for the inter-signal durations in these points of time is

A2 =

8<
:�t+2��; : : : ; �t

�������t+2 � T �

t+1X
i=t+3��

�i \ �t+1 > T �

tX
i=t+2��

�i

9=
; :

The conditional hazard rate, given this situation, is

�2(k) = lim
�!0

1

�
Prob(�t+2 = k � �t+1 +�j�t+2 � k � �t+1;A2):

Equivalently, the conditional hazard rates for the situations s = i; i = 3; : : : ;M are

obtained by continuing the induction from case s = i on s = i+1, whereM � � denotes

the number of price signals occurring between the points of time t and t + T . Note,

that the conditional hazard rates, given that in the next instant of time no transaction

will occur (�ia; i = 1; : : : ;M), are zero.

The unconditional hazard rate is obtained by

�(k) =

MX
i=1

[�i(k) � Prob(Ai) + �i;a(k) � Prob(Ai;a)] :

To show that this pattern is (non-monotonically) decreasing we consider two prop-

erties of the hazard rate:

(i)
@�i(k)
@k

< 0 ; i = 1; 2; : : : ;M:

The decreasing shape of the particular conditional hazard rates is caused by the

fact that a price signal only leads to a transaction if it occurs within a certain time

horizon. Hence, the higher k, i.e. the more time is elapsed since the last trans-

action, the more restrictive is the conditioning information. In the extreme case,
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i.e. if k = T , then the probability for observing inter-price signals �t satisfying the

conditioning is zero, leading to a hazard rate that is also zero. Thus, while the

(unconditional) hazard rate of an exponential distribution is constant, the time-

dependence of the conditioning leads to a decreasing shape of the conditional

hazard rate.

(ii) �i(k) � Prob(Ai) > �i+1(k) � Prob(Ai+1); i = 1; : : : ;M:

This feature is obvious from the de�nition of the conditioningsAi, which are more

informative the more price signals (without a trade) have been observed already.

Note that the situation s = i can only be observed when situation s = i � 1

is survived already. Hence, equivalent to the argument in (i) the conditioning

information is more restrictive the more price signals have been observed since

the last trade.

Due to the fact that particular conditional hazard rates are zero, given that in the next

instant of time no transaction will occur, �ia; i = 1; : : : ;M , the unconditional hazard

�(k) can have a non-monotonic (decreasing) shape.

(b) �t > T

For these durations restrictions concerning the elapsed time since the last price signal

are not informative, hence the resulting hazard rate corresponds to the hazard of the

underlying exponential distributed inter-signal durations, leading to a constant hazard

rate.
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7.3. Empirical Results.

7.3.1. Descriptive Statistics.

Table 1. Descriptive statistics of inter-trade durations and volume

per transaction. Based on BUND futures trading at DTB, Frankfurt, from

01/30/95 to 02/24/95. 44810 observations.

A: After 2:30 p.m., no U.S. holiday.

B: Before 2:30 p.m., no U.S. holiday.

C: U.S. holiday, (President's Day (02/20/95)).

D: Overall observations.

A B C D

Inter-trade durations

0.25-quantile 1 3 5 2

0.5-quantile 5 7 17 6

0.75-quantile 12 20 57 16

Mean 10:22 17:68 49:52 14:16

Std. Dev. 17:74 32:07 84:29 26:56

Volume per transaction

0.25-quantile 5 4 3 5

0.5-quantile 11 10 10 10

0.75-quantile 23 20 20 21

Mean 19:77 18:67 16:07 19:19

Std. Dev 25:49 25:85 24:25 25:68

Table 2. acf and pacf functions of inter-trade durations. Based on BUND

futures trading at DTB, Frankfurt, from 01/30/95 to 02/24/95. 44810 obser-

vations.

Column A: Raw durations.

Column B: Seasonal adjusted durations (based on exible Fourier form of order

p = 4, 2:30 p.m- and holiday-dummies).

A B

acf pacf acf pacf

lag1 0.2171 0.2171 0.1539 0.1539

lag2 0.2013 0.1617 0.1368 0.1159

lag3 0.1859 0.1230 0.1203 0.0870

lag4 0.1874 0.1122 0.1216 0.0824

lag5 0.1967 0.1113 0.1317 0.0870

lag6 0.1896 0.0915 0.1240 0.0711

lag7 0.1745 0.0670 0.1076 0.0492

lag8 0.1867 0.0785 0.1209 0.0630

lag9 0.1735 0.0571 0.1065 0.0433

lag10 0.1722 0.0532 0.1052 0.0408

lag11 0.1522 0.0286 0.0836 0.0169

lag12 0.1584 0.0385 0.0904 0.0276

lag13 0.1672 0.0480 0.0999 0.0378

lag14 0.1621 0.0391 0.0944 0.0298

lag15 0.1684 0.0461 0.1016 0.0379
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Table 3. Estimates of ARMA models for raw inter-trade log-durations.

Based on BUND futures trading at DTB, Frankfurt, from 01/30/95 to

02/24/95. 44810 observations. P-values based on asymptotic t-statistics.

ARMA(1,1) ARMA(1,2) ARMA(2,2) ARMA(3,3)

Variable Coe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value

AR1 0:9788 0:0000 0:9823 0:0000 1:7296 0:0000 0:8150 0:0000

AR2 �0:7325 0:0000 0:7754 0:0000

AR3 �0:5973 0:0000

MA1 0:9153 0:0000 0:8899 0:0000 1:6398 0:0000 0:7264 0:0000

MA2 0:0349 0:0000 �0:6542 0:0000 0:7650 0:0021

MA3 �0:5242 0:0000

Mean 1:3551 0:0000 1:3552 0:0000 1:3554 0:0000 1:3554 0:0000

BIC �195150 �195108 �195074 �195090

AR and MA Roots

AR1 1:0215 1:0179 1:3494 1:4371

AR2 1:0115 1:0121

AR3 1:1509

MA1 1:0925 26:5386 1:4580 1:5665

MA2 1:0779 1:0482 1:0510

MA3 1:1584

Table 4. Estimates of ARMA models for seasonal adjusted log inter-trade

durations. Based on BUND futures trading at DTB, Frankfurt, from 01/30/95

to 02/24/95. 44810 observations. P-values based on asymptotic t-statistics.

ARMA(1,1) ARMA(1,2) ARMA(2,2) ARMA(3,3)

Variable Coe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value

AR1 0:9699 0:0000 0:9721 0:0000 0:1026 0:5389 0:9238 0:0000

AR2 0:8404 0:0448 0:6299 0:0069

AR3 �0:5630 0:0000

MA1 0:9127 0:0000 0:8920 0:0000 0:0565 0:7377 0:8651 0:0000

MA2 0:0124 0:0105 0:7941 0:0000 0:6195 0:0068

MA3 �0:5118 0:0000

Mean 0:0000 0:9989 0:0000 0:9989 0:0000 0:9999 0:0000 0:9992

BIC �234966 �234970 �234985 �234970

AR and MA Roots

AR1 1:0310 1:02865 1:1535 1:3703

AR2 1:0314 1:0196

AR3 1:2711

MA1 1:0860 74:3594 1:1583 1:4437

MA2 1:0796 1:0870 1:0523

MA3 1:2857
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7.3.2. Regression Results.

Table 5. Estimates of PHARMA(1,2) models for grouped durations.

Based on BUND futures trading at DTB, Frankfurt, from 01/30/95 to

02/24/95. 44810 observations. P-values based on asymptotic t-statistics.

A B C

Variable Coe�. p-value Coe�. p-value Coe�. p-value

Thresholds

�1 (�t = 1) �4:0915 0:0000 �3:2266 0:0000 �2:8096 0:0000

�2 (�t = 5 �3:0255 0:0000 �2:1591 0:0000 �1:7407 0:0000

�3 (�t = 10) �2:5136 0:0000 �1:6472 0:0000 �1:2282 0:0000

�4 (�t = 30) �1:7431 0:0000 �0:8769 0:0000 �0:4571 0:0001

�5 (�t = 60) �1:2342 0:0000 �0:3671 0:0016 0:0538 0:3346

�6 (�t = 90) �0:9456 0:0000 �0:0772 0:2678 0:3455 0:0030

�7 (�t = 120) �0:7634 0:0000 0:1062 0:1969 0:5308 0:0000

�8 (�t = 150) �0:6038 0:0003 0:2669 0:0160 0:6940 0:0000

�9 (�t = 180) �0:4948 0:0025 0:3766 0:0012 0:8061 0:0000

Intraday Seasonalities

trend 0:2228 0:0000 1:0286 0:0000

Æs;1 0:1946 0:0000 0:0314 0:2759

Æs;2 0:0785 0:0045 0:0348 0:1387

Æs;3 �0:1099 0:0000 �0:0328 0:1035

Æs;4 0:0744 0:0009 0:0275 0:1584

Æc;1 �0:2183 0:0000 �0:0140 0:3886

Æc;2 0:1811 0:0000 0:0676 0:0169

Æc;3 �0:0724 0:0018 �0:0542 0:0081

Æc;4 0:0310 0:0988 0:0767 0:0003

2:30 and Holiday Dummy

After 2:30 �0:8264 0:0000

U.S. Holiday 0:8684 0:0000

ARMA Parameters

AR1 0:9877 0:0000 0:9815 0:0000 0:9779 0:0000

MA1 0:8879 0:0000 0:8836 0:0000 0:8815 0:0000

MA2 0:0443 0:0000 0:0411 0:0000 0:0402 0:0000

BIC and Mean Log Likelihood

Mean Log Likelihood �1:6229 �1:6225 �1:6209

BIC �72786:4101 �72816:6819 �72755:6961
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Table 6. Estimates of PHARMA(1,2) models for grouped durations and

BIC. Based on BUND futures trading at DTB, Frankfurt, from 01/30/95 to

02/24/95. 44810 observations. P-values based on asymptotic t-statistics.

D E

Variable Coe�. p-value Coe�. p-value

Thresholds

�1 (�t = 1) �2:9277 0:0000 �3:2667 0:0000

�2 (�t = 5 �1:8577 0:0000 �2:2166 0:0000

�3 (�t = 10) �1:3441 0:0000 �1:7034 0:0000

�4 (�t = 30) �0:5710 0:0000 �0:9314 0:0000

�5 (�t = 60) �0:0589 0:2397 �0:4212 0:0000

�6 (�t = 90) 0:2332 0:0025 �0:1315 0:1006

�7 (�t = 120) 0:4188 0:0000 0:0510 0:3103

�8 (�t = 150) 0:5827 0:0000 0:2099 0:0212

�9 (�t = 180) 0:6958 0:0000 0:3178 0:0011

Intraday Seasonalities

trend 1:0347 0:0000 1:0532 0:0000

Volume

log vol 0:0241 0:1647

(log vol)2 �0:3863 0:0009

(log vol)3 0:5034 0:0021

Volume, Absolute Price Changes (dynamically)

lvol lag1 �0:0367 0:0000

dp lag1 �0:0301 0:0005

2:30- and Holiday-Dummy

After 2:30 �0:8858 0:0000 �0:8982 0:0000

U.S. Holiday 0:8530 0:0000 1:0171 0:0000

ARMA Parameters

AR1 0:9781 0:0000 0:9800 0:0000

MA1 0:8820 0:0000 0:8845 0:0000

MA2 0:0373 0:0000 0:0422 0:0000

BIC and Mean Log Likelihood

Mean Log Likelihood �1:6191 �1:6229

BIC �72642:9075 �72810:0709



32 F. GERHARD AND N. HAUTSCH

7.4. Figures.
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