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Abstract

Pricing of cap insurance contracts is considered for political mortgage rates.
A simple stochastic process for mortgage rates is proposed. The process is based
on renewal processes for modelling the length of periods with downward and
upward trend respectively. Prices are calculated by simulation of conditional
future sample paths. Future conditional quantiles can be obtained to assess the
risk of a contract. The method is illustrated by applying it to observed quarterly
mortgage rates of the Swiss Union of Raiffeisenbanks for the years 1970 to 2001.

Key words: cap, cap rate, cap insurance, interest rate, mortgage, premium,
renewal process, Poisson process, prediction.

1 Introduction

In the last few years, several new types of mortgages appeared on the Swiss
market. Typical examples are interest rate cap insurance (cap rate), roll-over
and portfolio of market rates. In particular, the interest rate cap insurance
became quite popular in the retail market. It provides an insurance against the
event that the floating interest rate rises above a certain fixed level, the so-called
cap. Caps are offered for market rates and political mortgage rates. Here, we
consider caps on political mortgage rates.

Pricing of cap rates is based on forecasts of future interest rates. In this pa-
per, a stochastic model is proposed that mimics the main features of observed
interest rates. This allows for maximum likelihood estimation of the parame-
ters, prediction of future interest rates, Monte-Carlo simulation of a fair cap rate
price and risk assessment. In the literature, models used for predicting interest
rates include ARIMA and fractional ARIMA models, heteroskedastic models
such as GARCH, regression models, structural systems of equations, multi-
variate models (e.g. multivariate ARIMA), neural networks, regime switching
models, consensus forecasting, state space models and exponential smoothing.
References can be found, for instance, in a review paper by Fauvel et al. (1999).
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The model proposed here falls into the category of univariate regime switch-
ing models. The purpose is to obtain a simple model that does not require
any knowledge of explanatory variables, but still provides reliable short- and
medium term forecasts.

The outline of the article is as follows. The general pricing equation is given
in section 2. In section 3, statistical properties of mortgage rates are discussed
and a stochastic model with these properties is proposed. Maximum likelihood
estimation is considered in section 4. In section 5, prediction of future interest
rates and estimation of a fair cap price are discussed. The performance of the
proposed pricing strategy is illustrated by applying it to the quarterly mortgage
rates of the Swiss Union of Raiffeisenbanks.

2 Pricing of a cap-mortgage

When a cap on a loan and the loan itself are both provided by the same fi-
nancial institution, then the cost of the option is usually incorporated into the
underlying, such as the interest rate. Denote by K the nominal value of the
mortgage and by Zt the floating mortgage rate at time t (t = to + 1, ..., to + T ,
where T denotes maturity). Given a cap C > 0, the rate paid by the customer
at time t is

Rt = min(Zt, C).

The financial institution’s cash-flow Dt at time t is then

Dt = (Rt − Zt) ·K (to + 1 ≤ t ≤ to + T ).

We assume that, in order to give a credit, the financial institution itself has to
take a loan from another creditor. Also, it is assumed that the last n interest
rates Zto−n+1, ..., Zto are known, the first installment of the interest rate is to
be paid at time t = to + 1, and repayment of the nominal is made at maturity
only. If no additional premium were charged to the customer, then the total
profit (or loss) Y over the term of the contract would be

Y = K

T∑
t=1

[min (Zt, C)− Zt] . (1)

For u ≤ t, let Fu,t be the σ−algebra generated by Zs(u ≤ s ≤ t). A fair total
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price for the contract, given the observations Zs (to − n + 1 ≤ s ≤ to), is

µα = K{αT +
T∑

t=1

[min (Zto+t, C)− Zto+t]} (2)

where
α = − 1

KT
E (Y | Fto−n+1,to) . (3)

Thus, we define a fair cap-interest-rate

Zt,α = Rt + α (4)

where α is the fair premium defined by

α(Fto−n+1,to , C, T ) = − 1
T

T∑
t=1

{E[min(Zto+t, C)|Fto−n+1,to ]−E[Zto+t|Fto−n+1,to ]},
(5)

The premium α depends on the past behaviour of the interest rates Zt, on
the cap-level C, and the maturity T . Note, in particular, that Fto−n+1,to may
contain more information than just the last observed value Zto .

3 A model for mortgage rates based on renewal
processes

3.1 Qualitative features of observed mortgage rates

The definition of the model proposed below is motivated by essential qualitative
properties of observed data, as illustrated by the following example: Figure 1a
shows the quarterly middle rates Zt for new mortgages of the Swiss Union of
Raiffeisenbanks for the period 1970 to 2001 (n = 125). Quarterly data are of
particular importance, since most financial institutions charge the cost of a
cap insurance for interest rates every three months. Moreover, most floating-
rate contracts include the possibility of quarterly adjustments. The following
qualitative features can be observed for this type of data: 1. Zt is a positive
step function, with ∆Zt = Zt − Zt−1 assuming only a finite number of possible
values (multiples of 0.25%); 2. ∆Zt is mostly zero; 3. there are long stretches
where Zt remains constant; 4. time is divided in long periods where Zt is mono-
tonically nondecreasing and in periods where it is monotonically nonincreasing;
5. the conditional distribution of |∆Zt| given {∆Zt ≥ 0} may differ from the
conditional distribution of |∆Zt| given {∆Zt ≤ 0}.
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3.2 Definition of the process

The following assumptions will be used: U is a random variable with P (U =
−1) = P (U = 1) = 1

2 , Wj > 0 are independent random variables with dis-
tribution FW on {w : w = j, j ∈ N} and such that P (0 < Wj < ∞) = 1.

Furthermore So = 0 and

Si =
i∑

j=1

Wj (i = 1, 2, ...). (6)

Also, it is assumed that Wj(j ∈ N) are independent of U. Note that Si (i =
1, 2, ...) is a recurrent periodic renewal process with period 1 and positive waiting
times. Furthermore, define Mt = max{j : Sj ≤ t} and let F1 and F2 be
distribution functions on {0, 1, ..., k} for some fixed k ∈ N and p1(i) = F1(i)−
F1(i − 1), p2(i) = F2(i) − F2(i − 1) the corresponding probabilities. A simple
switching random walk type process can now be defined as follows:

Definition: Let Zo = zo, It = (−1)Mt−1U, define

Zt − Zt−1 = (−1)j−1UAt (7)

where A1, A2, ... is a sequence of random variables, independent of Wj(j ∈ N)
and U, such that

P (At = i|Bt−1∩{SMt−1 = t−1}) = 1{It = 1}p1(i|A > 0)+1{It = −1}p2(i|A > 0)
(8)

and

P (At = i|Bt−1 ∩ {SMt−1 < t− 1}) = 1{It = 1}p1(i) + 1{It = −1}p2(i) (9)

where by Bt the σ−algebra generated by U, Ar (r ≤ t) and Mt, and

Remarks:

1. The process St divides the time axis in periods where Zt is monotonically
nondecreasing or nonincreasing respectively. At a given time point t, Zt is
in the period number Mt = min{j : t ≤ Sj}. The value of It = (−1)Mt−1U

determines which of the two types of periods we are in and WMt = SMt −
SMt−1 determines how long this period is. Note that, since St is a recurrent
periodic renewal process, the asymptotically expected number of changes
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between upward and downward periods in a time interval [s, t] is equal to
(t− s)µ−1

W where µW = E(W ) (see e.g. Cinlar 1975).

2. The definition implies that, for Sj−1 + 1 ≤ t ≤ Sj ,

Zt = zo + U [
j−1∑

i=1

(−1)i−1
Wi∑
r=1

ASi−1+r + (−1)j−1

t−Sj−1∑
s=1

ASj+s]

3. For t = Sj−1 + 1, we have At > 0 with probability one. This condition is
needed in order that Sj (j ∈ N) can be reconstructed uniquely from an
observed series Zt (t ∈ N).

4. The process Zt may become negative. A simple modification that avoids
this problem can be made as follows:

P (At = i|Bt−1 ∩ {SMt−1 = t− 1}) =

1{It = 1}p1(i|A > 0) + 1{It = −1, Zt−1 > 0}p2(i|0 < A ≤ Zt−1)

+1{At = 0, It = −1, Zt−1 = 0}
and

P (At = i|Bt−1 ∩ {SMt−1 < t− 1})
= 1{It = 1}p1(i) + 1{It = −1}p2(i|A ≤ Zt−1).

5. If the observed interest rate changes in steps that are multiples of a fixed
step size d, then Z̃t = d · Zt is used.

6. Observation of the process Zt (t ∈ N) may start an arbitrary time point
which does not necessarilty coincide with the beginning of a period. Simi-
larily, the last observation may not be at the end of a period. This means
that W1 and WMn cannot be reconstructed exactly from the observed
values w1, wMn . Instead, the observed information consists of the events
{W1 ≥ w1} and {WMn ≥ wMn}.

4 Maximum likelihood estimation

4.1 General maximum likelihood equation

Consider Zt in definition 1. Suppose that FW (x) = Fw(x; η), F1(x) = F1(x; τ)
and F2(x) = F2(x; ζ) are characterized by finite dimensional parameter vectors
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η = (η1, ..., ηp), τ = (τ1, ..., τq), and ζ = (ζ1, ..., ζr). For an observed series
Z1, ..., Zn, the unknown parameter vector θ = (η, τ, ζ)t can be estimated by
maximimizing the likelihood function. For simplicity, we assume Z2−Z1 6=0, and
write U = sign(A2). The quantities U, w1, W2, ...,WMn−1, wMn

and A2, ..., An

can be obtained from Z1, ..., Zn by

At = |∆Zt| = |Zt − Zt−1|, U = sign(A2),

w1 = min{t : sign(∆Zt)6=U} − 1,

S∗1 = w1, S
∗
Mn

= n,

Sj = min{t : Sj−1 + 1 ≤ t, sign(∆Zt) 6= (−1)j−1U} (2 ≤ j ≤ Mn − 1),

Wj = Sj − Sj−1 (2 ≤ j ≤ Mn − 1),

wMn = n− S∗Mn−1.

The conditional likelihood function, given Z1 = z1, then follows directly from
definition 1. For instance, if U = 1, the loglikelihood function is equal to

L(θ) = log{1− FW (w1; η)}+ log{1− FW (wMn ; η)} (10)

+
Mn−1∑

j=2

log pW (wj ; η) +
∑

t:It=1

log p1(aj ; τ) +
∑

t:It=−1

log p2(aj ; ζ)

where at are the observed values of At.

Remarks:

1. For the modified model with Xt ≥ 0, p1(at; τ) and p1(at; ζ) have to be
replaced by the corresponding conditional probabilities, unless min{Zt :
It = −1} ≥ k.

2. For n → ∞, the contributions of w1 and wMn are negligible. Note that,
in contrast to censored data as they occur in survival analysis, omitting
the contribution of W1 and WMndoes induce a bias in the estimation of θ.

4.2 Maximum likelihood estimation in the case of a Pois-
son renewal process

Suppose that Wj are iid Poisson distributed with intensity η, p1(i) = τi (i =
1, ..., k), p1(0) = 1 −∑k

i=1 τi and p2(i) = ζi (i = 1, ..., k), p2(0) = 1 −∑k
i=1 ζi.
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Omitting w1 and wMn
yields the following approximate explicit formulae for θ̂ :

η̂ =
∑Mn−1

i=2 wi

Mn − 2
(11)

τ̂i =
1
n1

n∑

It=1

1{|∆Zt| = i}, ζ̂i =
1
n2

n∑

It=−1

1{|∆Zt| = i}, (12)

where n1 =
∑n

t=1 1{It = 1} and n2 = n− n1.

Applying these estimates to the observed series in figure 1a, we obtain η̂ =
19.6, τ̂ = (0.060, 0.140, 0.040, 0.040) and ζ̂ = (0.149, 0.108, 0.0135, 0.0135).

5 Pricing by simulated predictions

5.1 Prediction of future interest rates and conditional
pricing

Given observations Z1, ..., Zn, the premium α is obtained by estimating the
conditional expected values E[min(Zn+t, C)|F1,n] and E[Zn+t|F1,n]. More-
over, in order to assess the risk of the contract, the distribution or at least
certain extreme quantiles of Zt (t = n + 1, ..., n + T ) and of the loss Y =
K

∑T
t=1[min (Zn+t, C)−Zn+t] need to be estimated. This is done in two steps:

1. maximum likelihood estimation of θ; and 2. simulation of future sample
paths Zn+1, ..., Zn+T , conditionally on F1,n. Since only a lower bound for the
length of the last period WMn is known, the conditional distribution of Zn+k is
given by

P (Zn+k = z|F1,n) =
∞∑

i=wMn

P (W = i|W ≥ wMn)P (Zn+k = z|F1,n∩{WMn = i}).

(13)
Note that conditioning on all information is essential in oder to obtain a realistic
assesment of the future distribution of Zt (and Y ). For instance, if Zn−Zn−1 > 0
and WMn is relatively small, then it is quite likely that Zt will increase in the
near future. The reason is that the conditional probability P (W > wMn |W ≥
wMn) is large. This results in a relatively high premium α. In contrast, if
Zn − Zn−1 < 0 and WMn is small, then a lower premium can be charged, since
Zt is unlikely to increase (much) in the near future.
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Figures 1b and c illustrate the performance of the model for the Raiffeisen-
bank mortgage rates. The parameters were estimated from the first 70 obser-
vations. Figure 1b shows observations 71 to 102 (corresponding to a period of
8 years) and 10 sample paths simulated conditionally on the first 70 observa-
tions - after θ has been estimated from the first 70 observations. Note that the
predicted sample paths exhibit a nonlinear behaviour that strongly ressembles
the shape of the actual future observations. Figure 1c shows the predicted me-
dians and the 2.5%- and 97.5%-quantiles obtained from 1000 simulated sample
paths. The actually observed values are all in the 95% prediction interval, with
the exception of a few unexpectedly low values at the beginning. Overall, the
median and quantile curves provide a realistic prediction of the future S-shaped
up and down movement.

5.2 Simulated prices for contracts with fixed cap

To illustrate the proposed pricing method, consider a cap-contract signed at
time to, with T = 12 and a conditional cap defined by C = Zto + x where x is
fixed. For the observed interest rate series (figure 1a), the following calculations
were made:

1. For to = 70, 71, ..., 109, θ is estimated from the last 70 observations Zto−69,

Zto−68, ..., Zto . Thus, we obtain 40 estimates θ̂(to).

2. For each 70 ≤ to ≤ 109, four hundred series
[Z̃to+1{i; θ̂(to)}, ..., Z̃to+T {i; θ̂(to)}] (i = 1, ..., 400) and the corre-
sponding values of Y are simulated, conditionally on Zto−69, ..., Zto , using
θ̂ = θ̂(to). The simulated value of α(to, x) for a contract starting at time
to + 1,

α(to, x) = − 1
400KT

400∑

i=1

Ỹi,

is calculated, where Ỹi = K
∑T

t=1[min
(
Z̃to+t, Cto,x

)
− Z̃to+t], K = 1 and

Cto,x = Zto + x. Moreover, the actually observed loss, if no additional
premium is charged, Y (to, x) =

∑T
t=1 [min (Zto+t, Cto,x)− Zto+t] is calcu-

lated. Figures 2a and 2b display Y (to, x) and α(to, x) respectively, plotted
agains to = 70, ..., 109, for x = 0.25, 0.50, ...., 4.0. In both pictures, the up-
per most line corresponds to x = 0.25 and the lowest to x = 4.0, since
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the observed and expected loss increase with decreasing cap. A direct
comparison of Y (to, x) with α(to, x) is given in figures 2c and d. Figure 2c
displays the loss Y (to, x) − α(to, x) plotted agains time for 0.25 ≤ x ≤ 4.
The overall observed average loss (Figure 2d) due to contracts (with the
pricing policy described here) that started in the period 70 ≤ to ≤ 109 is
negative for all values of x, i.e. the bank would have made a slight profit
with any choice of x.

5.3 Simulated prices for contracts with variable cap

In the first quarter of the period considered in figures 2a to d, the observed loss
rises far above its expected value (figure 2c) but remains zero for the rest of
the time. This is typical for cap contracts with a fixed cap: occasional exreme
losses are compensated by long periods where the interest rate remains below
the cap rate. The reason is that variability and thus uncertainty increases for
longer term forecasts. A financial institution offering longer term contracts with
a fixed cap must have enough reserves in order to survive the possibly extreme
temporary losses. An alternative that avoids extreme losses is to offer contracts
where the cap is adjusted on a regular (e.g. quarterly) basis. In the extreme
case, we have adjustments of α and C at every time point t. The premium α(t) is
then simply a one-step-ahead forecast of min (Zt, Ct)−Zt. The overall expected
loss (per time unit) is then equal to

L(to) =
1
T

to+T∑
t=to+1

α(Fto−n,t−1, Ct) (14)

where n =number of observations and

α(Fto−n,t−1, Ct) = E[min(Zt, Ct)− Zt|Fto−n,t−1]. (15)

An application of this contract is shown in figures 3a and b, with Ct = Ct,x =
Zt + x where x is fixed at the beginning of the contract. Figure 3a displays
estimated values of α(Fto−n,t−1, Ct,x) for t = 71, ..., 122. Note that, since the
new cap rate is adapted at each time point, the largest possible loss is equal to
the maximal possible increase of 1%. Therefore, only the values x = 0.25, 0.5
and 0.75 are meaningful. The observed losses for contracts starting at time
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points 71 ≤ t ≤ 109, and x = 0.25, 0.50 and 0.75 are displayed in figure 3b. In
this period, no losses would have occured for any of the values of x, except for
one slight loss for x = 0.75 at t = 79. This is so, in spite of the small values of
α.

In conclusion, cap pricing can involve considerable risk (occasional large
losses) if the cap is fixed throughout the term of the contract. The more flexible
the adjustment scheme, the less risk is involved and the premium can be kept
relatively low - compared to the current interest rate. This is also illustrated
in figure 4 with boxplots of α for fixed rate contracts (with x = 1, 2, 3) on one
hand and the values of α(Fto−n,t−1, Zt−1 + x) for x = 0.25, 0.5, 0.75.

6 Final Remarks

In this paper, a simple model was introduced to model political mortgage rates
without any additional explanatory information. The model can be used to cal-
culate fair cap interest rates and to assess the risk of cap insurance contracts. In
spite of the simple structure of the model, predictions appear to yield realistic
results when applied to observed interest rates. In particular, future nonlin-
ear behaviour can be predicted. This is in contrast to models that combine
deterministic trends with linear stochastic components in an additive way (see
e.g. Beran and Ocker 1999, Beran and Feng 2002a,b). The model can also
provide an alternative explanation to the long-memory phenomenon in interest
rate series reported in the literature (see e.g. Tkacz 2001; for references on
fractional ARIMA and other long-memory models see also Granger and Joyeux
1980, Hosking 1981, Beran 1994, Beran et al. 1997 and references therein).
The apparent long memory (or fractional integration) may be due to switch-
ing regimes rather than fractional integration. For similar comments on long
memory versus switching regimes see e.g. Mikosch and Starica (2000).

Finally, note that the accuracy of forecasts may be enhanced further by
including additional explanatory variables and by suitable modelling of term
structure. How and which type of information should be included in the model
will need to be looked at in future research.
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Figure 1: Quarterly interest rates for new mortgages by the Swiss Union of
Raiffeisenbanks (1975-2001), predicted sample paths (figure 1b) and predicted
2.5%-, 50%- and 97.5%-quantiles (figure 1c).
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Figure 2: Simulated values of Y (to, x) and α̂(to, x) respectively (figures 2a,b),
plotted agains to = 70, ..., 109, for x = 0.25, 0.50, ...., 4.0, loss Y (to, x)− α̂(to, x)
plotted agains time for 0.25 ≤ x ≤ 4 (figure 2c) and overall observed average
loss (figure 2d) due to contracts that started in the period 70 ≤ to ≤ 109.
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Figure 3: Estimated values of α(Fto−n,t−1, C) for t = 71, ..., 122 (figure 3a),
and observed losses for contracts starting at time points 71 ≤ t ≤ 109, and
x = 0.25, 0.5, 0.75 and 1 (figure 3b).
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Boxplot of alpha for fixed rate and 
variable rate contracts
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Figure 4: Boxplots of α for fixed rate contracts (with x = 1, 2, 3) (left) and the
values of α(Fto−n,t−1, Zt−1 + x) (right) for x = 0.25, 0.5, 0.75.
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