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Abstract

Con�dence intervals and tests for the location parameter are considered for time

series generated by FEXP models. Since these tests mainly depend on the unknown

fractional di�erencing parameter d, the distribution of d̂ plays a major role. An exact

closed form expresssion for the asymptotic variance of d̂ is given for FEXP models

with cosine functions. It is shown that the variance increases linearily with the

order p of the model. An alternative FEXP model with orthogonal components is

proposed for which the asymptotic variance of d̂ does not depend on p: Tables of

quantiles of the test statistic are given for both model classes.,

Key words: t-test, long-range dependence, short-range dependence, antipersistence,

location estimation, con�dence interval, FEXP model.

1 Introduction

Let Xt (t = 1; 2; :::) be a second order stationary process with expected

value �; autocovariances 
(k) = cov(Xt; Xt+k) and spectral density f =

(2�)�1
P
1

k=�1 
(k)exp(ik�); � 2 [��; �]: Assume that f is continuous in [��; 0) [
(0; �] and, as �! 0;

f(�) � cf j�j�2d (1)

for some �1

2
< d < 1

2
and 0 < cf <1: Here \ � means that the left divided by the

right hand side converges to one. Consider the problem of constructing 100(1��)%

con�dence intervals for the expected value � = E(Xi); or equivalently, testing Ho :

� = �o at a level of signi�cance � 2 (0; 1): It is well known that standard tests and

con�dence intervals based on the t-statistic T o =
p
n(�x� �o)=s; with �x = n�1

P
xi

and s2 = (n�1)�1
P
(xi� �x)2; and standard normal or tn�1�quantiles are unreliable

in the presence of dependence, in particular if the autocorrelations are not summable

(see e.g. Mandelbrot and Wallis 1969, Beran 1989, 1994) . Asymptotically, the rate

at which var(�x) decays to zero depends on the behaviour of the spectral density

at the origin. Three cases can be distinguished within the framework given by

(1): Short-range dependence with d = 0; f everywhere bounded and continuous

in [��; �]; and lim�!0 f(�) = cf 2 (0;1); long-range dependence with d > 0; f

diverging to in�nity at zero; and antipersistence with d < 0; and f(0) = 0: The

variance of the sample mean is proportional to n2d�1: More speci�cally, we have (see

e.g. Adenstedt 1974, Samarov and Taqqu 1988, Beran 1994):
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Proposition 1 Let

�(d) =
2�(1� 2d) sin(�d)

d(2d+ 1)
(2)

with �(0) = limd!0 �(d) = 2�: Then, under the assumptions above

v = var(�x) = n�1�(d)f(
1

n
) + o(n2d�1) = n2d�1�(d)cf + o(n2d�1): (3)

Thus, the usual n�1 rate of convergence is achieved for d = 0 only, whereas the rate

is slower for long-range dependence and faster under antipersistence. As a result,

con�dence intervals based on T o and the standard normal distribution are too small

(with an asymptotic coverage probability of zero) under long-range dependence,

whereas they are unnecessarily large (with an asymptotic coverage probability of

one) under antipersistence.

Beran (1989) proposed a modi�ed t-test that is valid under long memory and mod-

els in the neighbourhood of fractional Gaussian noise. More generally, the statistic

in Beran (1989) can be adapted to any parametric class of models f(�) = f(�; �)

(see Beran 1994, chapter 8), such as fractional ARIMA (Hosking 1981, Granger and

Joyeux 1980) or fractional exponential models (Beran 1993), in combination with

a consistent model choice criterion (see e.g. Beran et al. 1999). The distribution

of T = (�x� �)=
q
v(�̂) can be approximated by the distribution of Y = Z1n

Z2

p
w=n

where Z1; Z2 are independent standard normal random variables and w is the asymp-

totic variance of
p
n(d̂ � d) (see Beran 1994). Quantiles of Y can be obtained by

simulations. However, in general, w and thus the quantiles of T depend on �̂ so that

simulations need to be done afresh for each data set. This is not the case for FEXP

models, since there the asymptotic distribution of d̂ only depends on the order p of

the model.

In this note, we exploit this property and obtain a simple testing procedure by

considering two FEXP models based on orthogonal functions. Orthogonality makes

it possible to give closed form formulas for the asymptotic variance of d̂: Approximate

distribution free quantiles of the test statistic can then be given and tabulated as

a function of n and p or even as a function of n only. The method is valid under

short-memory, long-memory and antipersistence.

2 FEXP models

FEXP models were introduced in Beran (1993) as a generalization of exponential

models by Bloom�eld (1973; also see Diggle 1990). An FEXP (p) model is a second

3



order stationary process with spectral density

f(�) = exp(
p+1X
j=0

�j log gj(�)) (4)

where p � 0 is an integer, � = (�o; �1; :::; �p+1) 2 Rp+2; �1 < �1 < 1; go(�) = 1;

g1(�)= log j�j ! 1 (as j�j ! 0); and gj(:) 2 C[��; �] (j = 2; :::; p + 1): Here,

the unknown parameter vector � = (�1; :::; �p+2) is equal to � = (�o; :::; �p+1): The

interpretation of the parameters is a follows: �o is the scale parameter; �1 = �2d
models the long memory behaviour (� = 0 for short memory; 0 < � < 1 for

antipersistence; �1 < � < 0 for long memory); �j (j � 2) are parameters that

allow for 
exible modelling of short-range dependence. A typical choice for g1 is

g1(�) = log j1� exp(i�)j: In this case, the spectral density of the FEXP (0) model

is identical with the spectral density of a fractional ARIMA(0,d,0) process (see

Granger and Joyeux 1980, Hosking 1981). A typical choice for gj (j � 2) is gj(�) =

cosf(j � 1)�g: In the following an FEXP model with g1(�) = log j1� exp(i�)j and
gj(�) = cosf(j � 1)�g (j � 2) will be called an FEXPCOS model.

One of the nice features of FEXP models is that Whittle's estimator of � can

be obtained via generalized linear models (see Beran 1993), and, due to the linear

form of log f; the asymptotic covariance matrix � of
p
n(�̂��) does not depend on

� :

� = 4�D�1 with Di;j =

Z �

��
gi(�)gj(�)d� (i; j = 0; 1; :::; p+ 1): (5)

Since Y only depends on w = 1

4
�22; it follows that the distribution of Y is nuisance

parameter free.

3 Inference about � for FEXPCOS models

For an FEXPCOS(p) model, D has zero elements everywhere except in the diag-

onal and in the second row and column. Also, D11 = 2�; D22 = �3=6 and Djj = �

(j � 3): For the remaining elements D1j = Dj1 (j 6=0; 1); we have

Lemma 1 Consider an FEXPCOS(p) model. Then, for j � 3;

D2j(p) = Dj2(p) = ��j�1: (6)

As noted in the previous section, the distribution of Y does not depend on �:

However, the higher the value of p the higher the variance w of d̂ = �1

2
�̂1; and
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thus the larger the con�dence intervals for �: The following proposition gives an

explicit closed form formula for w and shows that w diverges to in�nity linearily, as

p increases:

Proposition 2 Consider FEXPCOS(p) models (p = 0; 1; 2; :::) and the corre-

sponding matrices �(p) de�ned by (5). Let aj = j�1 (j = 1; 2; :::); ao = 0 and

w(p) = 1

4
�22(p): Then

w(p) = (
�2

6
�

pX
j=0

a�2j )�1 (7)

and

p � w(p) � p+ 1 (8)

Figure 1a displays w(p) for p = 0; 1; :::; 100: A linear regression of w(p) against p (see

�gure 1a) yields R2 = 1:00 (rounded to two digits), a slope of one and an intercept

of about 0.5. Thus, w(p) is approximately in the middle between the two bounds

p and p + 1: The plot of the residuals divided by w(p) in Figure 1b shows that the

linear approximation w(p) � p+ 0:5 is almost exact for p � 3:

Since quantiles of Y depend on p only, they can be tabulated as a function of n

and p. Table 1 gives the 95%-quantiles for n = 1; 2; 3; :::; 20 and p = 0; 1; :::; 20: Note

that for high values of p the quantiles are very far from the corresponding standard

normal quantiles, even for n = 2000:

4 Inference about � for FEXPO models

A further simpli�cation can achieved by orthogonalizing D(p) completely so that

w(p) does not depend on p anymore. The distribution of Y is then completely

nuisance parameter free.

A �rst naive approach to orthogonalization is to start with an arbitrary FEXP

model (with functions go; g1; :::; gp+1) and then orthogonalize go; g1; :::; gp+1 sequen-

tially by the Gram-Schmidt method. We would thus obtain an orthogonal basis of

functions, say hj (j = 0; 1; :::; p + 1) and �(p) would be diagonal. The question

must be asked, however, whether every orthogonal basis of functions is statistically

meaningful. The answer is no. For instance, Gram-Schmidt orthogonalization that

starts with ho = 1 and h1 = j1 � exp(i�)j; leads to functions hj (j � 3) that di-

verge to plus or minus in�nity at the origin. In the original de�nition of an FEXP
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model, �1 models long-range dependence whereas �j (j � 2) can be interpreted as

short-memory parameters. This is no longer the case, if all functions (except ho) are

unbounded. Thus, Gram-Schmidt orthogolization destroys the statistically mean-

ingful separation of short and long memory components in the parameter space. We

therefore postulate that, in order to be statistically meaningful, a set of orthogonal

functions hj must be such that hj (j � 3) are bounded in [��; �]: This can be

achieved, for example, by the following

Algorithm 1 Start with functions gj such that go = 1 and
R �
�� go(�)gj(�)d� = 0

(j > 0): De�ne aj = fR g1(�)gj(�)d�g�1 (j � 2); set ho = go; h1 = g1 and carry out

the following steps:

� Step 1: De�ne uj = ajgj � aj+1gj+1 (j � 2);

� Step 2: Apply Gram-Schmidt orthogonalization to uj (j � 2) to obtain orthog-

onal functions h2; :::; hp+1:

De�nition 1 An FEXP model with hj de�ned by Algorithm 1 is called an orthog-

onal FEXP model (or FEXPO model).

For FEXPO models with h1 = j1� exp(i�)j; we have w(p) = 6=�2 for all values of

p: Note that this is equal to the smallest variance achievable by FEXPCOS models.

The quantiles of Y are the same as those for the FEXPCOS(0) model (see table

1, p = 0).

5 Model choice for FEXPO models

For FEXPO(p) models, the distribution of Y does not depend on the chosen order p:

However, for �nite n; the value of the test statistic T and its �nite sample distribution

are in
uenced by p: Therefore, a suitable model choice criterion is needed. As an

alternative to standard criteria (such as the AIC or BIC), the following simple model

selection procedure can be used for FEXPO models:

Algorithm 2 1. De�ne a highest possible order P and a level of signi�cance

0 < � < 1:
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2. Estimate the parameter �(P ) = (�o; �1; :::; �P+1)
t for the full model by Whittle's

approximate maximum likelihood method.

3. Set �̂ = �̂(P ) and calculate, for j = 2; :::; P + 1; the p-values pj for testing

Ho : �
(P )
j = 0 versus Ha : �

(P )
j 6=0: If the pj � �P�1; then set �̂j = 0:

This procedure is justi�ed by the fact that the components of �̂ are asymptotically

orthogonal to each other. The individual level of signi�cance �P�1 corresponds

to an exact Bonferroni correction. The probability of over�tting, i.e. keeping at

least one unnecessary nonzero component, is equal to �: Note that the long-memory

parameter is considered to be a \default" parameter here (otherwise testing with

respect to �2 would also have to be included).

Algorithm 2 has two advantages over other model choice criteria. It is fast,

since estimation has to take place only once, and it is non-hierarchical, in the sense

that a full comparison among all subset models is made. In contrast, most model

choice criteria in time series analysis are applied in a hierarchical manner in that

a comparison is made only among an increasing sequence of nested models. A full

comparison of all possible subset models (as often done in regression) seems to be

computationally infeasible when using the AIC or BIC.

6 Simulations

For n = 400 and d = �0:3; 0 and 0:3; the following Gaussian models were simulated:

1. Model 1: FEXPCOS(0) model with � = (1;�2d) (this is also an FEXPO(0)

model);

2. Model 2: FEXPCOS(1) model with � = (1;�2d;�0:5);

3. Model 3: FEXPCOS(4) model with � = (1;�2d; 0; 0; 0;�0:5);

4. Model 4: FEXPO(1) model with � = (1;�2d; 0:5);

5. Model 5: FEXPO(4) model with � = (1;�2d; 0; 0; 0; 0:5);

The number of simulations was 100. In all cases, � = E(Xi) was equal to zero.

The models with p = 1 and 4 were chosen such that for the same order p the
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spectral densities of the FEXPCOS(p) and FEXPO(p) model are qualitatively

similar. To illustrate this, �gures 2a through d display the spectral densities of

Models 2 to 5 for the case with d = 0:3: For the FEXPCOS models 1, 2 and 3,

95%-con�dence intervals and tests (at a nominal level of 0.05) for � were calculated

for each series using a �tted FEXPCOS(p) model, with p being estimated by the

BIC (Schwarz 1978, Beran et al. 1999). The same was done for models 1, 4 and 5,

using FEXPO(p) models and algorithm 2 (with � = 0:05).

Tables 2 and 3 give simulated rejection probabilities for testing Ho : � = 0

against Ha : �6=0: Table 4 gives summary statistics of the simulated lengths of 95%-

con�dence intervals for model 1. The results in tables 2 and 3 show that rejection

probabilities are approximately correct. For FEXPCOS models there seems to

be a slight tendency to reject too often, in the case of long memory. This may

be due to the fact that model selection plays a role for �nite samples. This is

less the case for FEXPO models. For model 1, a direct comparison between the

performance of FEXPCOS and FEXPO models is possible, since this process is

included in both model classes: Table 4 indicates that in this case, FEXPO models

outperform FEXPCOS models in the sense that con�dence intervals tend to be

shorter when based on an FEXPO �t. In particular, for some simulated series very

large FEXPCOS con�dence intervals occured, in contrast to FEXPO intervals.

Thus, orthogonalization tends to stabilize con�dence intervals for �:

7 Concluding remarks

In this note, a simple test procedure for inference about the location parameter of

FEXPCOS and FEXPO models was discussed. Clearly there are many other

ways of de�ning FEXP models based on orthogonal functions. Which orthogonal

functions are used may in
uence statistical inference, since each orthogonalization

induces an intrinsic hierarchy of the resulting orthogonal functions hj : the higher j

the lower its "statistical priority". The same is true for models with nonorthogonal

functions. The model choice criterion based on Bonferroni-corrected testing avoids

this problem upto a certain degree, except that functions beyond a certain max-

imal order P are ignored. This criterion, however, is only reasonable for FEXP

models with orthogonal functions. Simulations where this criterion was applied to

FEXPCOS models showed a much higher variability in the estimates of � and of

con�dence intervals for �:
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8 Appendix

Proof of Lemma 1: The result follows from Gradshteyn and Ryzhik (1979), for-

mula 4.384.7

Proof of Proposition 1: Since D1j = 0 (j 6=1); we may restrict attention to

the submatrix A = (aij)i;j=1;:::;p+1 with aij = di+1;j+1: Now A�1 = (detA)�1Ct

where C = (cij)i;j=1;:::;p+2; cij = (�1)i+j detA
0

ij and A
0

ij is the p � p submatrix

of A obtained by cancelling the ith row and jth column. Note that A11 = �3=6;

Ajj = � (j � 2), A1j = Aj1 = ��(j � 1)�1 (Lemma 1) and Aij is zero for all

other indices. Then detA
0

11 = �p; detA
0

1j = (�1)j+1(j � 1)�1�p (j � 2); and

detA =
Pp+1

j=1(�1)1+ja1j detA
0

1j = �p+1(�2=6�Pp
j=1 j

�2): Equation (7) then follows

from c11 = �p; �22(p) = 4�[A�1]11 and w(p) = 1

4
�22(p): The lower and upper limits

for w follow from
P
1

j=1 j
�2 = �2=6; and a Riemann approximation to

P
1

j=p+1 j
�2:
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Table 1: 95%, 97%, 99% and 99.5% quantiles for Y = Z1n
Z2

p
w=n for FEXPCOS(p)

models.

95%�quantiles:

n = 100 200 400 1000 2000 1
p = 0 1.84 1.77 1.73 1.68 1.67 1.645

1 2.13 1.97 1.85 1.76 1.71 1.645

2 2.44 2.17 1.98 1.82 1.76 1.645

3 2.76 2.37 2.11 1.90 1.80 1.645

4 3.11 2.59 2.24 1.96 1.84 1.645

5 3.45 2.81 2.37 2.03 1.88 1.645

6 3.81 3.03 2.51 2.10 1.92 1.645

7 4.18 3.26 2.65 2.17 1.96 1.645

8 4.56 3.50 2.79 2.24 2.01 1.645

9 4.97 3.73 2.93 2.31 2.05 1.645

10 5.41 3.97 3.08 2.39 2.09 1.645

11 5.85 4.21 3.23 2.46 2.13 1.645

12 6.31 4.47 3.38 2.53 2.18 1.645

13 6.79 4.73 3.53 2.60 2.22 1.645

14 7.29 5.01 3.67 2.68 2.26 1.645

15 7.81 5.30 3.83 2.75 2.30 1.645

16 8.34 5.60 3.98 2.83 2.35 1.645

17 8.93 5.88 4.14 2.90 2.39 1.645

18 9.52 6.19 4.30 2.98 2.44 1.645

19 10.15 6.50 4.46 3.06 2.48 1.645

20 10.76 6.83 4.62 3.14 2.52 1.645
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(Table 1 continued)

97:5%�quantiles:

p = 0 2.32 2.20 2.11 2.04 2.01 1.96

1 2.87 2.58 2.35 2.17 2.09 1.96

2 3.45 2.94 2.61 2.30 2.17 1.96

3 4.08 3.33 2.84 2.44 2.25 1.96

4 4.74 3.72 3.08 2.57 2.33 1.96

5 5.43 4.16 3.33 2.70 2.41 1.96

6 6.18 4.60 3.58 2.82 2.49 1.96

7 7.01 5.05 3.85 2.95 2.58 1.96

8 7.88 5.52 4.12 3.08 2.65 1.96

9 8.78 6.00 4.41 3.22 2.73 1.96

10 9.73 6.55 4.69 3.35 2.80 1.96

11 10.81 7.10 4.97 3.48 2.88 1.96

12 11.96 7.68 5.28 3.62 2.96 1.96

13 13.19 8.25 5.57 3.75 3.04 1.96

14 14.52 8.86 5.88 3.90 3.11 1.96

15 15.87 9.53 6.22 4.05 3.20 1.96

16 17.30 10.18 6.57 4.20 3.29 1.96

17 18.76 10.91 6.93 4.35 3.36 1.96

18 20.37 11.67 7.29 4.50 3.44 1.96

19 22.11 12.45 7.66 4.65 3.52 1.96

20 23.85 13.26 8.03 4.80 3.61 1.96
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(Table 1 continued)

99%�quantiles:

n = 100 200 400 1000 2000 1
p = 0 2.96 2.76 2.59 2.46 2.39 2.33

1 3.94 3.41 3.01 2.70 2.55 2.33

2 5.04 4.09 3.45 2.93 2.70 2.33

3 6.25 4.81 3.88 3.15 2.83 2.33

4 7.54 5.60 4.34 3.40 2.97 2.33

5 9.03 6.41 4.81 3.63 3.11 2.33

6 10.66 7.26 5.31 3.86 3.26 2.33

7 12.47 8.19 5.82 4.11 3.40 2.33

8 14.54 9.21 6.34 4.34 3.54 2.33

9 16.77 10.30 6.87 4.59 3.68 2.33

10 18.99 11.41 7.46 4.84 3.83 2.33

11 21.60 12.70 8.04 5.11 3.97 2.33

12 24.55 14.04 8.67 5.38 4.12 2.33

13 27.60 15.47 9.33 5.65 4.27 2.33

14 30.81 16.98 10.04 5.93 4.42 2.33

15 34.50 18.39 10.74 6.21 4.56 2.33

16 38.62 20.04 11.47 6.48 4.72 2.33

17 43.07 21.81 12.26 6.76 4.86 2.33

18 47.71 23.74 13.15 7.05 5.02 2.33

19 52.68 25.79 13.99 7.37 5.19 2.33

20 58.19 27.82 14.90 7.67 5.35 2.33
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(Table 1 continued)

99:5%�quantiles:

p = 0 3.49 3.18 2.99 2.80 2.71 2.58

1 4.92 4.10 3.56 3.10 2.92 2.58

2 6.53 5.13 4.16 3.44 3.10 2.58

3 8.37 6.16 4.83 3.76 3.29 2.58

4 10.53 7.35 5.50 4.08 3.51 2.58

5 12.89 8.61 6.17 4.41 3.69 2.58

6 15.62 10.07 6.93 4.79 3.90 2.58

7 18.74 11.57 7.70 5.16 4.09 2.58

8 22.07 13.22 8.52 5.51 4.28 2.58

9 25.94 15.03 9.40 5.85 4.50 2.58

10 30.36 16.98 10.40 6.22 4.72 2.58

11 35.25 19.11 11.35 6.63 4.95 2.58

12 40.28 21.36 12.37 7.05 5.18 2.58

13 46.30 23.76 13.42 7.44 5.39 2.58

14 52.99 26.32 14.61 7.86 5.62 2.58

15 59.83 29.13 15.76 8.29 5.80 2.58

16 67.49 32.27 17.10 8.75 6.02 2.58

17 75.32 35.65 18.41 9.22 6.26 2.58

18 84.57 38.97 19.74 9.70 6.50 2.58

19 95.36 42.62 21.29 10.28 6.76 2.58

20 106.55 46.69 22.67 10.74 7.00 2.58
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Table 2: Rejection probabilities of the test for the location parameter based on FEXPCOS

models. The results are based on 100 simulations of an FEXPCOS model with � =

(1;�2d) (Model 1), � = (1;�2d;�0:5) (Model 2) and � = (1;�2d; 0; 0; 0;�0:5) (Model 3)

respectively.

d = �0:3 d = 0 d = 0:3

Model 1 0.06 0.06 0.03

Model 2 0.01 0.07 0.12

Model 3 0.00 0.03 0.11

Table 3: Rejection probabilities of the test for the location parameter based on FEXPO

models. The results are based on 100 simulations of an FEXPO model with � = (1;�2d)
(Model 1), � = (1;�2d; 0:5) (Model 4) and � = (1;�2d; 0; 0; 0; 0:5) (Model 5) respectively.

d = �0:3 d = 0 d = 0:3

Model 1 0.05 0.06 0.03

Model 2 0.02 0.08 0.08

Model 3 0.02 0.02 0.05

Table 4: Simulated length of con�dence intervals for an FEXPCOS(0) model using

FEXPCOS and FEXPO �ts respectively. Notation: Q1 =lower quartile, Q2 =upper

quartile, M =median.

minimum maximum Q1 Q2 mean M std. dev.

d = �0:3
FEXPCOS 0.15 0.84 0.18 0.24 0.22 0.20 0.09

FEXPO 0.13 0.30 0.17 0.23 0.20 0.19 0.04

d = 0

FEXPCOS 0.37 2.25 0.71 1.00 0.90 0.84 0.32

FEXPO 0.32 1.51 0.71 0.98 0.85 0.84 0.23

d = 0:3

FEXPCOS 2.76 106.77 4.51 7.73 7.51 5.87 10.49

FEXPO 2.60 14.22 4.47 7.18 6.07 5.88 2.15
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Figure 1a: w(p) vs. p
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Figure 1b: residuals divided by w

Figure 1: Asymptotic variance w(p) of
p
n(d̂ � d) as a function of p for

FEXPCOS(p) models (Figure 1a). Figure 1b shows the residuals of the least

squares �t divided by w(p); plotted against p:
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Figure 2a: log(f) for Model 2
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Figure 2b: log(f) for Model 3
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Figure 2c: log(f) for Model 4
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Figure 2d: log(f) for Model 5

Figure 2: Spectral densities (in log-log-coordinates) of Models 2 (Figure 2a), 3

(Figure 2b), 4 (Figure 2c) and 5 (Figure 2d) used in the simulations, for the case

where d = 0:3:
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