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Abstract

The distinction between stationarity, di�erence stationarity, deterministic trends

as well as between short- and long-range dependence has a major impact on statis-

tical conclusions, such as con�dence intervals for population quantities or point and

interval forecasts. In this paper, recent results on so-called SEMIFAR models intro-

duced by Beran (1999) are summarized and their potential usefulness for economic

time series analysis is illustrated by analyzing several commodities, exchange rates,

the volatility of stock market indices and some simulated series. SEMIFAR models

provide a uni�ed approach that allows for simultaneous modelling of and distinction

between deterministic trends, di�erence stationarity and stationarity with short-

and long-range dependence. An iterative data-driven algorithm combines MLE and

kernel estimation. Predictions combine stochastic prediction of the random part

with functional extrapolation of the deterministic part.

Keywords: SEMIFAR models, trend, long-range dependence, fractional ARIMA,

kernel estimation, bandwidth selection, semiparametric model.
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1 Introduction

Many economic time series exhibit apparent local or global `trends'. A large num-

ber of methods for dealing with trends under speci�c assumptions are described in

the literature (see e.g. standard time series books, such as Diggle, 1990; Priestley,

1981). Essentially, models for trends can be classi�ed as either (1) deterministic or

(2) stochastic. A deterministic trend is described by a deterministic function g(t);

whereas a stochastic trend is generated by a purely stochastic nonstationary process

such as random walk, (fractional) Brownian motion or an integrated ARIMA pro-

cess. As a third possibility, local \spurious" trends can be generated by stationary

processes with long-range dependence, such as stationary fractional ARIMA mod-

els. Statistical inference about population quantities and statistical forecasts are

greatly in
uenced by our decision about the type of the `trend' generating mecha-

nism. For instance, for a stationary series, forecasts of a conditional expected value

converge to the sample mean, with increasing forecasting horizon, and the width of

forecast intervals is asymptotically constant. In contrast, for di�erence stationary

series, forecasts converge to the last observation and the width of forecast inter-

vals diverges to in�nity. Forecasts for time series with a deterministic trend require

reliable trend extrapolation which can usually not be trusted beyond a small fore-

casting horizon. On a �ner scale, the rate at which forecast intervals converge to

the asymptotic width (for stationary processes) or diverge to in�nity (for di�erence

stationary processes) depends on the fractional di�erencing parameter (see section

4).

In practical applications, it is often very di�cult to �nd the \right" model and, in

particular, to decide whether a series is stationary, has a deterministic or stochastic

trend, or whether there may be long-range correlations. In fact, often, a combination

of these may be present. To resolve this problem, Beran (1999) introduced the so-

called SEMIFAR (semiparametric fractional autoregressive) models. These models

provide a uni�ed data-driven semiparametric approach that allows for simultaneous

modelling of and distinction between deterministic trends, stochastic trends and

stationary short- and long-memory components. Within the given framework, the

approach helps the data analyst to decide which components are present in the

observed data. In this paper, recent results on SEMIFAR models (Beran, 1999,

Beran and Ocker, 1999, Beran and Feng, 1999) are summarized and their application
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to economic time series is discussed.

Brie
y speaking, a SEMIFAR model is a fractional stationary or non-stationary

autoregressive model with a nonparametric deterministic trend. This extends Box-

Jenkins ARIMA models (Box and Jenkins, 1976), by using a fractional di�erencing

parameter d > �0:5; and by including a nonparametric trend function g. The

trend function can be estimated, for example, by kernel smoothing. The parameters

may be estimated by an approximate maximum likelihood method introduced in

Beran (1995). Note in particular that, with this method the integer di�erencing

parameter is also estimated from the data. A data-driven algorithm for estimating

SEMIFAR models, which is a mixture of these two approaches, was introduced in

Beran (1999). Clearly, as any statistical method, the analysis by SEMIFAR models

has to be accompanied by appropriate subject-speci�c considerations.

The paper is organized as follows. The model is de�ned in section 2. Estimation

issues are discussed in section 3, especially nonparametric estimation of the trend and

the method for estimating the parameters characterizing the stochastic component

of the process. Forecasting with SEMIFAR models is described in section 4. The

application of SEMIFAR models to economic time series is discussed in section 5. In

particular, we discuss modelling and forecasting commodities and exchange rates,

and modelling the volatility of stock market indices. Also, four simulated series

are analyzed to illustrate the usefulness of the method for cases where the answer

is known. (A broader simulation study is reported in Beran, 1999). Some �nal

remarks are given in section 6.

2 The model

2.1 De�nition

A SEMIFAR model is a Gaussian process Yi with an existing smallest integer m 2

f0; 1g such that

�(B)(1� B)�f(1� B)mYi � g(ti)g = �i; (1)

where ti = (i=n), � 2 (�0:5; 0:5), g is a smooth function on [0; 1], B is the backshift

operator, �(x) = 1 �
Pp

j=1 �x
j is a polynomial with roots outside the unit circle
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and �i (i = :::;�1; 0; 1; 2; :::) are iid zero mean normal with var (�i) = �
2

� . Here, the

fractional di�erence (1 � B)� (Granger and Joyeux 1980, Hosking 1981) is de�ned

by

(1� B)� =
1X
k=0

bk(�)B
k (2)

with

bk(�) = (�1)k
�(� + 1)

�(k + 1)�(� � k + 1)
: (3)

2.2 Intuitive explanation of the de�nition

The motivation for this de�nition can be summarized as follows: We wish to have

a model that may be decomposed into an arbitrary deterministic (possibly zero)

trend and a random component that may be stationary or di�erence stationary.

Moreover, short-range and long-range dependence as well as antipersistence should

be included. Here, long-range dependence is de�ned as follows (see, e.g. Mandelbrot,

1983; Cox, 1984; Hampel, 1987; K�unsch, 1986; Beran, 1994 and references therein):

A stationary process Yi with autocovariances 
(k) = cov(Yi; Yt+k) is said to have

long-range dependence, if the spectral density f(�) = (2�)�1
P
1

k=�1 exp(ik�)
(k)

has a pole at the origin of the form

f(�) � cf j�j�� (j�j ! 0) (4)

for a constant cf > 0 and � 2 (0; 1); where " � " means that the ratio of the left and

right hand sides converges to one. In particular, this implies that, as k ! 1; the

autocovariances 
(k) are proportional to k��1 and hence their sum is in�nite. On the

other hand, a stationary process is called antipersistent, if (4) holds with � 2 (�1; 0):

This implies that the sum of all autocovariances is zero, i.e.
P
1

k=�1 
(k) = 0. Note

that for usual short-memory processes, such as stationary ARMA processes, (4)

holds with � = 0; and the autocovariances sum up to a nonzero �nite value.

The reason for including long-memory and anti-persistence is that for traditional

ARIMA models an extreme choice has to be made between taking no or the �rst

di�erence. The result of this dichotomy is that for many data sets, taking no dif-

ference is not enough (i.e. the series seems nonstationary), but taking the �rst

di�erence leads to overdi�erencing. The latter often results in a large negative lag-

one correlation for the di�erenced data. To avoid this and to model slowly decaying
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correlations, Hosking (1981) and Granger and Joyeux (1980) introduced fractional

ARIMA processes. However, there, the di�erencing parameter d is restricted to the

stationarity region (�1=2; 1=2): In a direct extension, Beran (1995) de�nes an arbi-

trary di�erencing parameter d > �1=2 such that (1�B)mYt is a stationary fractional

ARIMA(p; �; q) process, m = [d+ 1=2] is the integer part of d+ 1=2 and � = d�m:

This corresponds to equation (1) with a constant function g � �: Since the integer

di�erencing parameter m assumes integer values only and the fractional di�erenc-

ing parameter � is in (�1=2; 1=2); both di�erencing parameters can be recovered

uniquely from the `overall di�erencing parameter' d = m + �: If d > 1=2; then we

have a nonstationary fractional ARIMA process. It should be noted, in particular,

that this parameterisation allows for maximum likelihood estimation of d: Thus not

only �; but also m can be estimated from the data and con�dence intervals can be

given for both di�erencing parameters (see Beran 1995).

Finally, SEMIFAR models extend the de�nition of fractional ARIMA models with

arbitrary d by including an arbitrary deterministic trend function g: (For simplicity

only cases with q = 0 (i.e. no moving average terms) are considered. An extension

to q > 0; which may be called `SEMIFARIMA models', is obvious.) The de�nition

of SEMIFAR models includes all the desired cases mentioned above. In particular,

setting � = 0 and g(t) = �; we obtain classical Box-Jenkins ARIMA models. For

g = 0; and m = 0 we have stationary fractional ARIMA models as de�ned in

Hosking (1981) and Granger and Joyeux (1980).

More speci�cally, for SEMIFAR models, Zi = f(1�B)mYi�g(ti)g is a stationary

fractional autoregressive process. Thus, the spectral density of Zi is proportional

to j�j�2� at the origin so that the process f(1� B)mYi � g(ti)g has long-memory if

� > 0; antipersistence if � < 0 and short memory if � = 0: (1) generalizes stationary

fractional AR-processes to the nonstationary case, including di�erence stationarity

and deterministic trend. The following special cases are thus included in (1):

(a) Yt =no deterministic trend + stationary process with short- or long-range

dependence, or antipersistence;

(b) Yt = deterministic trend + stationary process with short- or long-range de-

pendence, or antipersistence;

(c) Yt =no deterministic trend + di�erence-stationary process, whose �rst di�er-
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ence has short- or long-range dependence, or antipersistence;

(d) Yt = deterministic trend + di�erence-stationary process, whose �rst di�erence

has short- or long-range dependence, or antipersistence.

Simulated time series for these special cases are shown in �gure 1, where �gures

1a to 1d correspond to case (a) trough (d), respectively. A full description of the

models used in �gures 1a to d is given in section 5.2.

2.3 Some economic motivation

Since the estimation of the SEMIFAR-model is purely data-driven, there exists a

danger that the estimated model is inconsistent with economic reasoning. If this

happens to be true, then the estimated model and the economic reasoning are called

into question. In the following, we will brie
y discuss some economic models which

can explain short and long-term dependence in time series of prices of commodities

and �nancial securities.

The implications of pricing models necessarily depend on the assumptions made.

Many models assume perfect markets and perfectly rational economic agents. A

basic requirement for any viable model is that it precludes arbitrage. A market

can be arbitrage-free only if all prices for state-contingent claims are positive and

�nite. Let St be the price of some security at date t. For example, consider a stock

whose price may be considered the risk-adjusted present value of future dividends.

Suppose that there exist exogenous shocks at date 0 which increase (reduce) all

future dividends dt, (t = 1; 2; : : :) by �nite amounts. Then, given su�ciently low

discount rates, the stock price would change by an in�nite amount. Hence, the

market would not satisfy the no-arbitrage requirement (Mandelbrot, 1971). As

Mandelbrot points out, fractional Brownian motions, which are typical stochastic

models with long-range dependence or antipersistence (in the increment process),

do not rule out these cases.

Another violation of the no-arbitrage requirement is obtained if the short run-

autocorrelation of price changes is very high or very low. Then an observed price

change would permit an almost riskless forecast of the price change over the next

time period which then could be arbitraged against a risk-free asset. Rogers (1997)
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also proves the existence of arbitrage opportunities in fractional Brownian motions,

but he also shows that a slight modi�cation of the model su�ces to rule out these

opportunities. Note, in particular, that according to Mandelbrot's de�nition, arbi-

trage exists for all long-memory processes whereas this is not the case according to

Rogers' de�nition. Thus, the answer to the question whether arbitrage is possible

depends on which de�nition of arbitrage is used.

Even if arbitrage opportunities do not exist, the economist wonders how any

short or long range dependencies in price series might be explained. Samuelson

(1965) has shown that prices must follow a random walk in a risk neutral world

with a non-random risk-free interest rate. For simplicity, consider an asset with

an exogenously given random price ST at date T . Then in a risk neutral world

with homogeneous expectations of economic agents, the forward price S
f
t of the

asset at date t equals Et[ST ], i.e. the conditional expectation of ST . The forward

price eliminates, by de�nition, the discounting e�ects of the risk-free interest rates.

Since the conditional expectation of ST follows a random walk without drift, any

dependencies in forward price changes are ruled out.

In a risk-averse world with a frictionless complete market, there exists a unique

forward pricing kernel �t;T (ST ) at date t (t < T ), by which the forward price S
f
t

can be derived. We have E[�t;T (ST )] = 1 and S
f
T = Et[�t;T (ST )ST ]. Then there

still exist cases in which dependencies in forward price changes do not exist. Sup-

pose, for example, that Et(ST ) follows a standard geometric Brownian motion with-

out drift. Then ln(S
f
t+1=S

f
t ) follows a standard geometric Brownian motion with

drift if and only if the forward pricing kernel has constant elasticity �t;T , i.e. if

dln�t;T=d lnST = �t;T ; 8t (Franke, Stapleton and Subrahmanyam, 1999). Now sup-

pose that the elasticity depends on ST ; holding the current forward price S
f
0
con-

stant. Suppose that d�t;T=dST < 0 which may be thought of as "declining relative

risk aversion of the market". Then the variance of the forward price S
f
t increases and

the log returns ln(S
f
t+1=S

f
t ) are negatively autocorrelated. In the case of increasing

elasticity of the pricing kernel, the variance of the forward price declines relative to

the constant elasticity case, but autocorrelation of log returns still is negative. The

intuition behind this result is straightforward. Whenever the forward price S
f
t is

higher or lower, relative to the constant elasticity case which implies zero autocorre-

lation, then given S
f
0
and the distribution of ST , a lower return in one period must

be compensated by a higher return in the residual period. This implies short and
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long-range negative autocorrelation. Hence, in this framework, antipersistence may

exist whereas it is di�cult to argue in favor of positive autocorrelation.

Of course, real markets are not perfect. Introducing asymmetric information

broadens the spectrum of return processes. Insiders, for example, attempt to ex-

ploit their information privilege by strategic trading which leads to a gradual price

adjustment and, thus, short range positive autocorrelation of returns. The same

autocorrelation is to be expected in the case of positive feedback trading. Then

agents observe a price increase and place additional buy orders since they expect

a further price increase. Finally, if large investors buy or sell consecutively small

portions of a rather illiquid security, this induces positive autocorrelation.

Mandelbrot (1971) suggests that economic agents have a �nite foresight horizon.

This may imply various dependencies in returns. If agents, for example, ignore ef-

fects of a shock on a corporation's pro�ts beyond some horizon, then these e�ects

will gradually be taken into consideration and generate long-range dependent price

changes. Alternatively, if agents naively extrapolate growth rates of pro�ts over

very long time horizons, this extrapolation error will gradually be corrected with

corresponding gradual price changes. Such behavior might explain the well docu-

mented winner-loser e�ect which states that stocks with high returns over the last

years tend to generate low returns over the next years and vice versa. Also cyclical

macroeconomic factors tend to generate cyclical stock price behavior given either

a short foresight horizon or naive extrapolative behavior. Otherwise it would be

useless to distinguish between cyclical and noncyclical stocks.

Similar considerations apply to commodities for which short and long range-

contracts are traded. The economic analysis of commodity prices becomes more

complicated since durability of commodities and side e�ects of storing commodities

summarized in convenience yields come into play.

Finally, long memory in aggregated indices may be a result of aggregation. As was

shown, for instance, in Granger (1980), adding up a large number of time series can

lead (asymptotically) to a series with long-range dependence, even if the individual

series do not exhibit any long memory.

Yet, adding these real world aspects to purely theoretical models should not be

understood as providing unlimited freedom to all kinds of short and long-range
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dependencies in time series of prices. The ultimate purpose of research is to �nd

out price processes that are observable with su�cient reliability and are grounded

on solid economic reasoning. SEMIFAR models provide a rather general class of

models to do the empirical job. The economists should use the empirical insights

for developing sensible economic models.

3 Estimation of SEMIFAR models - a review

Estimation of SEMIFAR models includes (1) nonparametric estimation of the trend

component and (2) estimation of the parameters characterizing the stochastic com-

ponent. This section summarizes theoretical results on the proposed kernel estimator

of the trend function and approximate maximum likelihood estimator of the param-

eters without proofs. See Beran (1999) and Beran and Feng (1999) for details. A

data-driven algorithm for estimating the whole model is also brie
y described.

3.1 Kernel estimation of the trend function

The problem of estimating g from data given by

Yi = g(ti) +Xi (5)

has been considered by various authors for the case where the error process Xt is

stationary with (i) short-range dependence, i.e. (4) holds with � = 0 (see e.g. Chiu

1989, Altman 1990, Hall and Hart 1990 and Herrmann, Gasser and Kneip 1992) or

(ii) long-range dependence, i.e. 0 < � < 1 (see e.g. Hall and Hart, 1990; Cs�org�o and

Mielniczuk, 1995 and Ray and Tsay, 1997). For SEMIFAR models de�ned by (1),

the cases (i) and (ii) are obtained by setting m = 0 and � = �=2 = 0 (case (i)), or

m = 0 and � 2 (0; 1=2) (case (ii)) respectively. For m = 1; the same is true for the

�rst di�erence Yi � Yi�1: (Note, however, that for SEMIFAR models, m 2 f0; 1g is

an unknown parameter!) In addition to cases (i) and (ii), de�nition 1 also includes

the antipersistent case, i.e. � < 0 so that the spectral density f of Yi (or Yi � Yi�1

respectively) converges to zero at the origin. The theorem below extends previous

results on kernel estimation to the anti-persistent case, and gives formulas for the
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mean squared error and the optimal bandwidth that are valid for the whole range

� 2 (�0:5; 0:5):

For estimating g by kernel smoothing, symmetric polynomial kernels of the form

K(x) = f
Pr

l=0 �lx
2lg1Ifjxj�1g (see e.g. Gasser and M�uller, 1979) will be used. If (5)

holds, then, for a given bandwidth b > 0 and t 2 [0; 1]; the kernel estimate of g is

de�ned by

ĝ(t) = Kb � y(n) =
1

nb

nX
i=1

K(
t� ti

b
)Yi (6)

where y(n) = (Y1; :::; Yn). Let n0 = [nt], n1 = [nb] and 0 < � < 0:5, the following

notations will be used:

Vn(�; b) = (nb)�1�2�
n0+n1X

i;j=n0�n1

K

�
t� ti

b

�
K

�
t� tj

b

�

(i� j); (7)

I(g00) =

Z
1��

�

[g00(t)]2dt (8)

and

I(K) =

Z
1

�1

x
2
K(x)dx: (9)

The following result is obtained under the assumption that (5) holds and that g is

at least twice continuously di�erentiable (see Beran, 1999 for the proof).

Theorem 1 Let bn > 0 be a sequence of bandwidths such that bn ! 0 and nbn !1:

Then, under the stated assumptions and � in (1) in the interval (-0.5,0.5), we have

(i) Bias:

E[ĝ(t)� g(t)] = b
2

n

g
00(t)I(K)

2
+ o(b2n) (10)

uniformly in � < t < 1��;

(ii)

lim
n!1

Vn(�; bn) = V (�) (11)

where 0 < V (�) <1 is a constant;

(iii) Variance:

(nbn)
1�2�

var(ĝ(t)) = V (�) + o(1) (12)

uniformly in � < t < 1��;

10



(iv) IMSE: The integrated mean squared error in [�; 1��] is given by

Z
1��

�

Ef[ĝ(t)� g(t)]2gdt = IMSEasympt(n; bn) + o(max(b4n; (nbn)
2��1))

= b
4

n

I(g00)I2(K)

4
+ (nbn)

2��1
V (�) + o(max(b4n; (nbn)

2��1)) (13)

(v) Optimal bandwidth: The bandwidth that minimizes the asymptotic IMSE is

given by

bopt = Copt n
(2��1)=(5�2�) (14)

where

Copt = Copt(�) =

 
(1� 2�)V (�)

I(g00)I2(K)

!
1=(5�2�)

: (15)

Similar results can be obtained for kernel estimates of derivatives of g: For

instance, the second derivative can be estimated by ĝ
00(t) = n

�1
b
�3
P
K((tj �

t)=b)Yj where K is a symmetric polynomial kernel such that
R
K(x)dx = 0 andR

K(x)x2dx = 2: By analogous arguments, the optimal bandwidth is then of the

order O(n(2��1)=(9�2�)):

Simple explicit formulas for V (�) can be given for � = 0 and � > 0 as follows (see

e.g. Hall and Hart, 1990):

V (�) = 2�cf

Z
1

�1

K
2(x)dx; (� = 0); (16)

V (�) = 2cf�(1� 2�) sin��

Z
1

�1

Z
1

�1

K(x)K(y)jx� yj2��1dxdy; (� > 0): (17)

In order to obtain a similar formula for � < 0, at a point x let K(y) =
Pr

l=0 �l(x)(x�

y)l =: K0(x) + K1(x � y), where K0(x) = �0(x), K1(x � y) =
Pr

l=1 �l(x)(x � y)l.

Then we have (see Beran and Feng, 1999)

V (�) = 2cf�(1� 2�) sin(��)

Z
1

�1

K(x)�(Z
1

�1

K1(x� y)jx� yj2��1dy �
Z
jyj>1

K0(x)jx� yj2��1dy
)
dx (18)

for � < 0. For the box-kernel (i.e. r = 0), formulas (16), (17) and (18) give the same

result

V =
22�cf�(1� 2�) sin(��)

�(2� + 1)
(19)

with V (0) = lim�!0 V (�) = �cf (see corollary 1 in Beran, 1999).
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3.2 Maximum likelihood estimation

The maximum likelihood estimation proposed by Beran (1995) for a constant func-

tion g = � can be carried over directly to SEMIFAR models with time-deterministic

trend functions (see Beran 1999). In particular, from the `overall di�erencing pa-

rameter' d = m + � both, the discrete di�erencing parameter m and the fractional

di�erencing parameter � can be recovered uniquely, since m can take on integer

values only and � is in (�1=2; 1=2). Moreover, this parameterization allows for max-

imum likelihood estimation of d (and thus of � and m) along with the autoregressive

parameters and the trend function. Moreover, inference about the autoregressive

parameters takes into account that m and � were not known a priori.

Let �o = (�2�;o; d
o
; �

o
1
; :::; �

o
p)

T = (�2�;o; �
o)T be the true unknown parameter vector

in (1) where do = m
o + �

o
; �1=2 < �

o
< 1=2 and m

o 2 f0; 1g: Then

�(B)(1� B)�
o

f(1� B)m
o

Yi � g(ti)g =
1X
j=0

aj(�
o)Bj[cj(�

o)Yi � g(ti)]

=
1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)];

where the coe�cients aj and ajcj are obtained by matching the powers in B: Hence,

Yi admits an in�nite autoregressive representation

1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)] = �i: (20)

Let bn (n 2 N) be a sequence of positive bandwidths such that bn ! 0 and nbn !1

and de�ne ĝ(ti) = ĝ(ti;m) by

ĝ(ti; 0) = Kbn � y(n); (21)

and

ĝ(ti; 1) = Kbn �Dy(n); (22)

with Dy(n) = (Y2 � Y1; Y3 � Y2; :::; Yn � Yn�1): Consider now �i as a function of �:

For a chosen value of � = (�2� ; m + �; �1; :::; �p)
T = (�2� ; �)

T
; denote by

ei(�) =
i�m�2X
j=0

aj(�)[cj(�)Yi�j � ĝ(ti�j;m)] (23)

the (approximate) residuals and by ri(�) = ei(�)=
p
�1 the standardized residuals.

Assuming that f�i(�o)g are independent zero mean normal with variance �
2

�;o; an
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approximate maximum likelihood estimator of �o is obtained by maximizing the

approximate log-likelihood

l(Y1; :::; Yn; �) = �
n

2
log 2� �

n

2
log�2� �

1

2
n
�1

nX
i=m+2

r
2

i (24)

with respect to � and hence by solving the equations

_l(Y1; :::; Yn; �) = 0 (25)

where _l is the vector of partial derivatives with respect to �j (j = 1; :::; p+2): More

explicitly, �̂ is obtained by minimizing

Sn(�) =
1

n

nX
i=m+2

e
2

i (�) (26)

with respect to � and setting

�̂
2

� =
1

n

nX
i=m+2

e
2

i (�̂): (27)

The result in Beran (1995) can be extended to SEMIFAR models (Beran 1999):

Theorem 2 Let �̂ be the solution of (26) and (27); and de�ne �
o
�
= (�2�;o; �

o
�
)T =

(�2�;o; �
o
; �

o
2
; :::; �

o
p+1)

T
: This means that, �o

2
= d = m

o + �
o is replaced by �

o
2;� = �

o
:

Then, as n!1;

(i) �̂ converges in probability to the true value �o;

(ii) n
1

2 (�̂� �
o) converges in distribution to a normal random vector with mean zero

and covariance matrix

� = 2D�1 (28)

where

Dij = (2�)�1
"Z �

��

@

@�i
log f(x)

@

@�j
log f(x)dx

#
j�=�o

�

: (29)

It should be noted that in theorem 2, both, the fractional di�erencing parame-

ter � and the integer di�erencing parameter m are estimated from the data. The

asymptotic covariance matrix does not depend on m: Theorem 2 can be generalized

to the case where the innovations �i are not normal, and satisfy suitable moment

conditions.

13



Theorem 2 is derived under the assumption that the order p = po of the au-

toregressive polynomial in (1) is known. In practice po needs to be estimated by

applying a suitable model choice criterion. It can be shown, however, that consis-

tency properties of model choice criteria, such as the BIC (Schwarz, 1978; Akaike,

1979) and the HIC (Hannan and Quinn, 1979), are analogous to the case of station-

ary short-memory autoregressive processes (Beran 1999):

Theorem 3 Under the assumptions of theorem 2, let po be the true order of the

polynomial � in (1) and de�ne

p̂ = arg minfAIC�(p); p = 0; 1; :::; Lg (30)

where L is a �xed integer, AIC�(p) = n log �̂2� (p) + � � p and �̂
2

� (p) is the maximum

likelihood estimate of the innovation variance �
2

�;o using a SEMIFAR model with

autoregressive order p: Moreover, de�ne �̂ by (26) and (27) with p set equal to p̂:

Suppose furthermore that � is at least of the order O(2c log logn) for some c > 1:

Then the results of theorem 2 hold.

Combining Theorems 1 through 3, It is straightforward to obtain from con�dence

intervals for the unknown parameter vector � and the unknown trend function g; as

well as for testing hypotheses about � and g: Note, in particular, that the integer

di�erencing parameter m is also estimated by maximum likelihood (m̂ is equal to

the integer part of d̂+ 1=2).

3.3 Estimation of the whole model

For estimating the whole model one needs a semiparametric data-driven algorithm

combining the two estimation methods described above. An algorithm for the case

where g is assumed to be equal to a constant � is given in Beran (1995). A data-

driven algorithm for estimating the SEMIFAR model with a general trend function g

was proposed by Beran in 1997 in the original, unpublished paper on the SEMIFAR

model. What follows is a brief description of this algorithm.

The algorithm makes use of the fact that d is the only additional parameter, in

addition to the autoregressive parameters, so that a systematic search with respect

14



to d can be made. This algorithm can be adapted to the case where g is an unknown

function, by replacing �̂ by a kernel estimate of g: The optimal bandwidth can be

estimated by an iterative plug-in method similar to the one in Herrmann, Gasser

and Kneip (1992) and Ray and Tsay (1997). These authors consider the case of

stationary errors, i.e. m is known to be equal to zero. The algorithm in Ray and

Tsay (1997) is as follows:

1. an initial bandwidth is de�ned;

2. a preliminary estimate of g is computed and subtracted from the observations;

3. the relevant parameters of the error process are estimated from the residuals;

4. the bandwidth is updated.

Steps 2 to 4 are repeated until the change in the bandwidth is below a prede�ned

threshold. This algorithm has been extended to �tting SEMIFAR models (Beran

1999). A detailed study on the consistency, rates of convergence and comparison

of di�erent iterative algorithms for SEMIFAR �tting will be given in a forthcoming

paper.

4 SEMIFAR forecasting

This section describes out-of-sample predictions of SEMIFAR processes. Let

Y1; :::; Yn be observations generated by a SEMIFAR model of order p with parame-

ter vector � = (�2� ; d; �1; :::; �p)
T (where d = m + �). The aim is to predict a future

observation Yn+k for some k 2 f1; 2; 3; :::g: Denote by Xi a zero mean fractional

AR process of order p with parameter vector �� = (�2� ; �; �2; :::; �p+1)
T
; and de�ne

tn+k = (n+ k)=n = tn + k=n: Then

Yn+k = �(tn+k) + Un+k (31)

with

�(tn+k) = g(tn+k); Un+k = Xn+k (32)

if m = 0; and

�(tn+k) = Yn +
kX

j=1

g(tn+j); Un+k =
kX

j=1

Xn+j (33)
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if m = 1. Thus, to predict Yn+k from Y1; :::; Yn; two problems need to be solved:

1. extrapolation of the function �(t) to t = tn+k;

2. prediction of the stochastic component Un+k:

4.1 Extrapolation of the trend function

Since for SEMIFAR models only general regularity conditions on g are imposed, the

deterministic trend g(t) may behave in an arbitrary way in the future. This is in

contrast to parametric trend models. However, we may obtain the predictions of

ĝ(tn+j) for j 2 f1; 2; :::; kg, for instance by a local constant or a local linear extension

of ĝ(tn). �̂(tn+k) is obtained by inserting ĝ(tn+k) in (32) or ĝ(tn+j) for j 2 f1; 2; :::; kg

in (33) (see Beran and Ocker, 1999).

4.2 Prediction of the stochastic component

Note that Xi = Ui = Yi � g(ti) for m = 0; and Xi = Ui � Ui�1 = Yi � Yi�1 � g(ti)

for m = 1: Let 
(k) = cov(Xi; Xi+k) denote the autocovariances of Xi: Using the

mean square criterion, the best linear predictor of Un+k based on Y1; :::; Yn is de�ned

by Ûn+k = �
T
optX(n) where X(n) = (X1; :::; Xn)

T and the vector �opt = (�1; :::; �n)
T

minimizes the mean squared prediction errorMSE = E[(Un+k�Ûn+k)
2]: The values

of �opt and the corresponding optimal mean squared prediction error MSEopt are

given by (Beran and Ocker, 1999)

Theorem 4 For all integers r; s > 0; de�ne



(s)
r = [
(r + s� 1); 
(r + s� 2); :::; 
(r)]T ; (34)

~

(n)
k =

kX
j=1



(n�1)
j ; (35)

and denote by �n = [
(i � j)]i;j=1;:::;n the covariance matrix of X(n): Then, the

following holds.

i) If m = 0;

�opt = ��1

n 

(n)
k ; (36)
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MSEopt = 
(0)� [

(n)
k ]T��1

n [

(n)
k ]; (37)

ii) If m = 1;

�opt = ��1

n ~

(n)
k ; (38)

MSEopt =
k�1X

s=�(k�1)

(k � jsj)
(s)� [~

(n)
k ]T��1

n [~

(n)
k ]: (39)

Note in particular that, as k ! 1; the MSE tends to a �nite constant in the case

of a stationary stochastic component (m = 0), whereas it diverges to in�nity in the

case of a nonstationary stochastic component (m = 1): More speci�cally we have

(Beran and Ocker, 1999)

Corollary 1 De�ne cf = lim�!0 j�j2�f(�) where f is the spectral density of Xi; and

let

�(�) =
2�(1� 2�) sin��

�(2� + 1)
(40)

for 0 < j�j < 0:5 and �(0) = lim�!0 �(�) = 2�: Then, as k ! 1; the following

holds:

i) If m = 0;

MSEopt ! 
(0) = var(Xi); (41)

ii) If m = 1;

MSEopt � cf�(�)k
1+2�

: (42)

Note in particular that, for m = 1 and � < 0, the MSEopt diverges to in�nity at

a slower rate than in the case of a random walk (with � = 0). Similarly, for m = 1

and � > 0, the MSEopt diverges faster to in�nity.

4.3 Prediction intervals

Results in theorem 4 and corollary 1 can be used to obtain prediction intervals for

Yn+k with k � 1. For known values of g and � a 100(1 � �) percent prediction

interval for Yn+k; is given by

Ŷn+k � z�=2

q
MSEopt (43)
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where Ŷn+k = �(tn+k) + �
T
optX(n) and the values of �opt and MSEopt are obtained

from theorem 1. If g and � are estimated, the quantities in (43) are replaced by the

corresponding estimated quantities.

5 Examples

In this section we provide some insight into the empirical validity of the SEMIFAR

models by analyzing some price series and some index volatility series. Moreover,

some simulation exercises demonstrate the model's capacity to �nd out the true

properties of a time series.

5.1 Commodities and exchange rates

The data (�gure 2) include daily spot prices for copper (between January 2, 1997,

and September 2, 1998, n=421), a monthly price series for cocoa beans (between

January 1971 and September 1996, n=310), and two daily nominal exchange rates

(between September 17, 1997, and August 4, 1998, n=221). The currencies are the

Swiss Franc (chf) and the European Currency Unit (xeu). The data are expressed

in US dollars per unit of the corresponding series. The log-transformation (natural

logarithm) was applied to each series.

First, we �t SEMIFAR models to the observed series. Note in particular that,

instead of continuously compounded returns (�rst di�erence in natural logarithm

of the closing price for consecutive trading days/months), the original series of

observed (log-)prices is considered. Thus, in contrast to the traditional approach,

it is not assumed a priori that the �rst integer di�erence has to be taken to make

the series stationary. Instead, the possibilities of stationarity, di�erence stationarity,

deterministic trend, short memory, long memory and antipersistence are left open.

It is then decided based on the data which combination of these components may

be present.

There has been some discussion in the recent literature about possible unit root

behaviour or long memory in �nancial time series. In view of this, it is interesting

to see which hypothesis may be supported by �tting SEMIFAR models. Table 1
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summarizes the essential features of the �tted models. The corresponding 95%-

con�dence intervals are given in brackets. The models were selected using the BIC.

Table 1: Estimation results

series d̂ 95%-c.i. d �̂1 95%-c.i. �1 signi�cant trend

cocoa .897 [.682,1.112] .394 [.142, .646] no

copper .780 [.705,.855] - - yes

chf .913 [.810,1.016] - no

xeu .870 [.767,.973] - - no

The estimated value of d and the con�dence intervals suggest that all series are

nonstationary (d > 1=2). In addition, the unit roots hypothesis (d = 1) can not

be rejected for cocoa and chf. On the other hand, for copper and the European

Currency Unit, d = 1 is not contained in the 95%-con�dence interval. Thus, for

these data, taking the �rst (integer) di�erence would lead to overerdi�erencing.

Furthermore, there is substantial short-term dependence in the cocoa series in form

of a strong AR(1) term.

Since in all cases the estimated value of m was one, testing the presence/absence

of a deterministic trend can be done by testing Ho : g � 0 against Ha : g 6�0: (Note

that for m = 1; g is the trend function for the �rst di�erence.) The only series

where Ho was rejected (at the 5% level) was copper. As one may expect (at least a

posteriori), for this series, a signi�cant trend is detected due to the relatively long

descent in the middle part of the observed time period. The starting and end point

of the time interval where ĝ exceeded the critical bound are marked in �gure 2b by

two vertical lines. Note in particular that �tting a global linear trend would not be

appropriate here. For the other three series, apparent local trends do not persist

long enough, and can therefore be `explained' as purely stochastic.

The satisfactory �ts of the models are demonstrated by the q-q-plots and correl-

ograms of the residuals in �gures 3 and 4. Slight departure from normality (for the

residuals) can be noticed for the exchange rate data. (Note, however, that normality

of �t is not required for the theoretical results described above to hold.) Also, there is

no strong evidence for ARCH (autoregressive conditional heteroskedasticity) errors
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in the correlograms of the squared residuals (�gures 4e through h).

Second, we explore the reliability of forecasts. The k�steps ahead out-of-sample

forecasts and 95%- and 99%-forecast intervals for k = 1; 2; :::; 20; using constant

extrapolation of g; are displayed in Figure 5. Overall, every future value was inside

the 95% prediction interval. Observe also the weak US dollar in the exchange rate

data during the last quarter of the period under consideration. Despite this sudden

development, the future values were within the 95% prediction intervals. It should

also be noted that, for 1=2 < d̂ < 1; the width of forecast intervals diverges to

in�nity at a slower rate than under the unit root hypothesis d = 1: Thus, shorter

forecast intervals are obtained than with unit-root models, such as a random walk.

For a detailed discussion see Beran and Ocker (1999). Clearly, as always with

forecasting, sudden extreme structural changes in the behaviour of the data that

have not occurred in the past cannot be foreseen (except perhaps with the help of

additional information).

5.2 Volatility of stock market indices

Figure 6a shows daily values of the DAX and the FTSE300 between January 2, 1992

and November 10, 1995 (weekdays only, excluding holidays). The �rst di�erences

are given in �gure 6b. Let It be the original index. To study volatility, we analyze

the transformed absolute di�erences Yt = jIt � It�1j
1

4 : The reason for taking the

fourth root of the increments is that the marginal distribution of the resulting series

is very close to normal (see the normal probability plots in �gures 6c and d). A

similar transformation approach is used, for instance, by Ding, Granger and Engle

(1993), Ding and Granger (1996) and Granger and Ding (1996). Ding and Granger

found long range dependence in several volatility series that were de�ned in a similar

way. The correlograms of Yt in �gures 6e and f do indeed indicate slowly decaying

autocorrelations.

Applying the SEMIFAR method yields p̂ = 0 for both series, d̂ = �0:02

[�0:07; 0:03] for the DAX and d̂ = 0:05 [0:003; 0:100] for the FTSE300. In both

cases, a signi�cant deterministic trend is found. Figure 7 shows the two Yt series

with the �tted trends and upper and lower 5% critical limits for testing signi�cance of
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the trends. The result indicates that there are relatively long periods where volatility

is high/low systematically for both series. This extends and is comparable to results

by Ding and Granger in the following sense. For stationary long-memory processes,

long-term behaviour is determined by the fractional parameter d: SEMIFAR models

include, apart from d; a deterministic (and essentially arbitrary) trend function as

an additional building block that can `explain' long-term 
uctuations. A smooth

deterministic function can be interpreted as an even stronger (and more systematic)

degree of temporal dependence than stationarity with slowly decaying correlations.

The signi�cant trends �tted to the volatility series of DAX and FTSE300 thus indi-

cate that there may be even stronger `long memory' in volatility than suggested by

a stationary model with long-range dependence.

A more sophisticated analysis of volatility may be obtained by applying GARCH-

type extensions of SEMIFAR models to the original series It: The mathematical the-

ory necessary for such extensions is the subject of current research. For fractional

GARCH models that do not include deterministic trend functions see e.g. Bail-

lie, Bollerslev and Mikkelsen (1996), Ding and Granger (1996), Granger and Ding

(1996), Ling and Li (1997). In particular, Ling and Li (1997) extend the maximum

likelihood method of Beran (1995) to fractional GARCH models.

5.3 Simulated examples

In this subsection SEMIFAR models are �tted to some simulated series. The series

(n = 400) are shown in �gures 1a through d, which are:

Figure 1a: Yi = Xi where Xi is a fractional autoregressive process of oder p0 = 0

with d
0 = 0:4.

Figure 1b: Yi = g(t) +Xi where Xi is a fractional autoregressive process of oder

p0 = 0 with d
0 = 0:4 (but not the same realization as in �gure 1a) and

g(t) = 1:75 � (1=(1 + e
4�8t)� sin(2�t)).

Figure 1c: Yi � Yi�1 = Xi where Xi is a fractional autoregressive process of oder

p0 = 0 with d
0 = �0:3.
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Figure 1d: Yi � Yi�1 = g(t) + Xi where Xi is the same fractional autoregressive

process as in �gure 1c and g(t) = 0:2 � (t� 0:5).

All of these simulated series were generated by S-Plus with the \error" series Xi

generated by the function arima.fracdi�.sim. Since a visual assessment of the time

series plots appears to be di�cult, it is interesting to see in how far the proposed

method provides better information. The estimates p̂ and �̂ = d̂ (because of p0 = 0)

together with 95%-con�dence intervals, obtained by �tting SEMIFAR models for

p = 0; 1; 2; 3; 4; 5 and choosing p based on the BIC, are given in table 2. Also given

are the 95%-con�dence intervals for do = [do + 0:5] and the results of the testing

whether there is a signi�cant trend g in the data.

Table 2: Estimates of po, d
o and m

o = [do + 0:5] for the four simulated examples

in �gures 1a through 1d. The true values of po, d
o and m

o are given in brackets.

Also given are the 95%-con�dence intervals for do and the results of the testing on

whether there is a signi�cant trend g in the data.

Figure p̂(po) m̂(mo) d̂(do) 95%-C.I. for do testing on g

Fig. 1a 0(0) 0(0) 0.425(0.4) [0.348, 0.502] not signi�cant

Fig. 1b 0(0) 0(0) 0.329(0.4) [0.252, 0.406] signi�cant

Fig. 1c 0(0) 1(1) 0.764(0.7) [0.687, 0.841] not signi�cant

Fig. 1d 0(0) 1(1) 0.762(0.7) [0.685, 0.839] signi�cant

The values of m̂ and p̂ are correct for all four series. Thus, in particular, the

method yields the correct answer to the question whether di�erencing is needed,

i.e. whether the observed series has a stochastic trend component. Moreover, the

estimates �̂ are very close to the true values and the true values are always in

the con�dence intervals. Similarly, regarding the presence of a deterministic trend

component, the results give correct indications. Hence the proposed models provide

a way to distinguish stochastic trends, deterministic trends, long- and short memory

or mixtures of these. It can be expected that more re�ned smoothing methods, such

as local bandwidth choice (see e.g. Brockmann 1993), may lead to even better

estimates of g: This will be pursued elsewhere.
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5.4 Comparison between SEMIFAR and AR

In this section a brief comparison between the SEMIFAR model and the well

known AR model will be made using the four examples in section 5.1. Using

the S-PLUS function arima.mle and the AIC criterion, an AR(2) model yt =

0:3392yt�1 � 0:0896yt�2 + �t with �̂
2 = 0:00402 was obtained for the cocoa data.

The AR model obtained for the xeu data was yi = �0:1178yt�1 + �t of order 1

with �̂
2 = 0:000027. The other two data sets copper and chf were shown to be

white noises. The ratios between the widths of prediction intervals for the k-step

forecasting obtained be the �tted SEMIFAR model and the AR one are given in

table 3.

Table 3: Ratios of prediction intervals by SEMIFAR model and AR one

k 1 2 3 4 5 6 7 8 9 10 15 20

cocoa 1.00 0.97 0.98 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.94 0.92

copper 0.98 0.88 0.82 0.77 0.74 0.71 0.69 0.67 0.66 0.64 0.59 0.56

chf 1.00 0.96 0.93 0.91 0.89 0.88 0.87 0.86 0.86 0.85 0.82 0.80

xeu 1.00 0.99 0.96 0.94 0.92 0.91 0.89 0.88 0.87 0.86 0.82 0.79

Note in particular that, in 'stationary versus unit root' approaches, a decision

has to be made between d = 0 and d = 1. A wrong decision has an extreme impact

on forecast intervals, since the width of forecast intervals is asymptotically constant

for d = 0 whereas it diverges to in�nity at the rate
p
k for d = 1. In contrast,

for FARIMA models, prediction intervals are of order O(k�=2) with � varying in a

continuous range, including � = 0 and � = 1 as special cases. The value of � =

maxf0; 2d� 1g is estimated from the data by maximum likelihood and the extreme

decision between O(1) and O(k:5) is avoided. As a result, prediction intervals are

better adapted to the observed data, and often shorter if there is antipersistent. This

is, in particular, often the case for foreign exchange rates. Consider for example the

results in Beran and Ocker (1999) on forecasting nominal exchange rates. There,

the most dramatic improvement was achieved for the British Pound. Already for

k = 20, the average interval was shorter by a factor of about 0.7, while the coverage

probability of the interval appeared to be correct. Similar results were obtained in
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a recent PhD. thesis of Ocker (1999), who found, in comparison, shorter prediction

intervals for eight (out of eight) nominal foreign exchange rates. Many of them were

shorter by a factor clearly smaller than 0.9 for k = 20 (see Ocker, 1999). Further

evidence of antipersistence in �nancial time series can also be found in Ocker (1999).

In contrast to foreign exchange rates (and commodities), Ocker (1999) found that

traditional Box-Jenkins ARIMA forecast intervals are typically too optimistic (i.e.

too short) if the degree of persistence is strong, such as for nominal stock market

indices.

6 Final remarks

In this paper, we summarized recent results on so-called SEMIFAR models for time

series that incorporate stochastic trends, deterministic trends, long-range depen-

dence and short-range dependence. The potential usefulness of this model for eco-

nomic time series analysis is illustrated by several data examples. In particular, the

proposed method helps the data analyst to answer the question which of these com-

ponents are present in the observed series. How well the di�erent components can be

distinguished depends on the speci�c process and, in particular, on the shape of the

trend function. Therefore, in order that the proposed method is e�ective in general,

the observed series must not be too short. In cases where one has su�cient a priori

knowledge about the type of trend (e.g. linear, exponential etc.), parametric trend

estimation is likely to provide more accurate results. This can be done simply by

replacing the general function g in De�nition (1) by the corresponding parametric

function.

Further re�nements of the method, such as local polynomial �tting of g, local

bandwidth choice (see e.g. Brockmann, 1993), bootstrap con�dence intervals, faster

algorithms (see Gasser et al., 1991) or other smoothing methods, etc., will be worth

pursuing in future. Also, various extensions of SEMIFAR models are possible. For

instance, as for classical ARIMA models, stochastic seasonal components can be

included by multiplying the left hand side of equation (1) by a polynomial �seas(B) =P
�j;seasB

sj where s 2 N is the seasonal period. Other extensions, such as inclusion

of parametric and nonparametric explanatory variables, other seasonal components

and nonlinearities in the stochastic part of the process, are the subject of current
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research.
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Figure 2d: XEU exchange rate

Figure 2: Monthly prices for cocoa beans (Jan. 1971 - Sept. 1996, n=310),

daily prices for copper (Jan. 2, 1997 - Sept. 2, 1998, n=421), daily nominal ex-

change rates for the Swiss Franc (log(USD/CHF)) and the European Currency Unit

(log(USD/XEU)) (Sept. 17, 1997 - Aug. 4, 1998, n=221).
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Figure 3a: Cocoa price residuals
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Figure 3b: Cocoa price residuals
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Figure 3c: CHF residuals
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Figure 3f: XEU residuals

Figure 3: Normal probability plots of SEMIFAR-residuals for the examples in �gures

2a through d.
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Figure 4a: Cocoa price residuals
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Figure 4b: Cocoa price residuals
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Figure 4c: CHF residuals
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Figure 4d: XEU residuals
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Figure 4e: Cocoa price residuals**2
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Figure 4f: Cocoa price residuals**2
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Figure 4g: CHF residuals**2
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Figure 4h: XEU residuals**2

Figure 4: Autocorrelations of SEMIFAR-residuals (�gures 4a through d) and of the

squared residuals (�gures 4e through h) for the examples in �gures 2a through d.
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Figure 5b: Cocoa forecasts
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Figure 5c: Copper forecasts
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Figure 5d: Copper forecasts
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Figure 5e: CHF forecasts
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Figure 5f: CHF forecasts
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Figure 5g: XEU forecasts
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Figure 5h: XEU forecasts

Figure 5: Observed values with k�step ahead SEMIFAR forecasts and 95%- and

99%-forecast intervals for the examples in �gures 2a through d. Figures 5b, d, f and

h display close-ups of the forecasts and forecast intervals in �gures 1a, c, e and g.
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Figure 6f

Figure 6: Daily DAX and FTSE300 values It (�gures 6a), �rst di�erence (�gures

6b), normal probability plots of Yt = jIt � It�1j
1

4 (�gures 6c,d) and autocorrelations

of Yt (�gures 6e,f).
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Figure 7: Trends �tted by the SEMIFAR method to Yt = jIt � It�1j
1

4 where It =

DAX and FTSE300 respectively. Also given are the 5% rejection limits for testing

where the trend is signi�cant.
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Figure 8c
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Figure 8d

Figure 8: Normal probability plots (�gures 8a,b) and correlogram (�gures 8c,d) for

the residuals obtained from SEMIFAR-�ts to method to Yt = jIt � It�1j
1

4 where

It = DAX and FTSE300 respectively.
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