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Abstract

Asset price processes are completely described by information processes and
investors’ preferences. In this paper we derive the relationship between the
process of investors’ expectations of the terminal stock price and asset prices
in a general continuous time pricing kernel framework. To derive the asset
price process we make use of the modern technique of forward-backward sto-
chastic differential equations. With this approach it is possible to show the
driving factors for stochastic volatility of asset prices and to give theoretical
arguments for empirically well documented facts. We show that stylized facts
that look at first hand like financial market anomalies may be explained by
an information process with stochastic volatility.

JEL classification: G12, C69
Keywords and Phrases: backward stochastic differential equations, informa-
tion processes, pricing kernel



1 Introduction

In the last decades much empirical work has been done on the time series of
asset prices. Many studies report mean reversion in stock returns [see Fama
and French [7]; Poterba, Summers [23]], predictability of the equity premium
and other ”anomalies”. Empirical research on options suggests significant
mispricing compared to theoretical option prices, especially compared to the
Black-Scholes model [see Canina, Figlewski [4]; Ghysels, Harvey, Renault
[10]; Buraschi, Jackwerth [3]]. Most of these well documented facts still lack
a sound theoretical explanation. While the smile effect can be explained with
stochastic volatility models there is, for example, no model which derives
the randomness of volatility. Thus, usually a somewhat arbitrary volatility
process is introduced.

Many theoretical papers have already investigated the viability of stochas-
tic processes for asset prices, i.e. the consistency with an equilibrium. The
usual approach is to start with a stochastic process for stock prices and to
check whether this stochastic process can be an equilibrium process [see Bick
[1]; Bick [2]; He, Leland [11]; Pham, Touzi [22]]. Franke, Stapleton, Subrah-
manyam [9] choose a slightly different approach to investigate the viability of
asset price processes. Instead of starting with the stochastic process of asset
prices, they take the process of investors’ expectations of the terminal asset
price as given. Since an asset price is completely described by the distribution
of its cash flow and by investors’ preferences it is possible to construct any
viable asset price process from the characteristics of information processes
and preferences. By the assumption of rational investors it is possible to im-
pose restrictions on the process representing investors’ expectations, i.e. the
information process. Hence, with the information process the distribution
of the cash flow is given and from the assumptions on investors’ preferences
the characteristics of the pricing kernel are given, too. Thus, the asset price
process can be derived from the underlying assumptions.

In this paper we follow the approach of Franke, Stapleton, Subrahmanyam.
While Franke, Stapleton, Subrahmanyam emphasize the importance of the
utility function or more precisely the elasticity of the pricing kernel our task
is to show the influence of the variations in expectations, i.e. the influence of
the volatility of the information process on the asset price process. We extend
their approach in that we allow for a second risk factor driving the process of
investors’ expectations, i.e. the volatility of the information process may be
stochastic and we give an economic justification for the generalization. We



are arguing that introducing stochastic volatility of the information process is
a sensible assumption. To see this consider a stochastic process with only one
risk factor, e.g. the geometric Brownian motion. In this case, the uncertainty
about the stock price in 7" is an only time dependent deterministic function.
It is sensible to assume, that this uncertainty may also be a stochastic func-
tion since this uncertainty is driven by exogenous shocks. Unexpected news
announcements may be seen as one of these exogenous shocks. We will turn
to this point again in section 3.

With our approach we are able to link explicitly financial markets phe-
nomena to the process of investors’ expectations. We will show that many
properties of asset price processes and especially empirically documented
properties of the risk premia can be explained by the characteristics of the
volatility of the information process. Further, we give an economic justifi-
cation for stochastic volatility asset models and we discuss the justification
of specifications of stochastic volatility by relating them to the process of
investors’ expectations.

The organization of this paper is as follows. The next section gives a short
review on related papers. In section 3 we discuss the viability of information
processes under the assumption of rational expectations. In section 4 we
derive viable asset price processes with the modern technique of forward-
backward stochastic differential equations (FBSDE). In section 5 we give
some characterizations of the pricing kernel. Section 6 summarizes the main
results.

2 A Short Survey on Related Papers

Before the seminal paper of Huang [15] continuous time models in finance
were already prevalent. The usual assumption was that the equilibrium asset
prices can be represented by Ito integrals. Huang was the first to give a
sound theoretical justification for this assumption. One main result in his
paper is that if equilibrium asset prices are adapted to a filtration generated
by a Brownian motion, then equilibrium asset prices are It integrals. Thus
Huang provided a justification for continuous sample paths of equilibrium
asset prices by linking them to the information flow.

The studies in the 90’s on the foundation of equilibrium asset price
processes addressed the question which characteristics of the state price den-
sity can be supported by sensible assumptions on the utility function of a



representative agent. Connected to this was the question, which utility func-
tions are implied by equilibrium asset prices which are governed by specific
stochastic differential equations. Bick [2] characterizes processes as viable by
the "no-trade criteria”, i.e. an asset price process is a possible equilibrium
if there exists a von Neumann-Morgenstern utility function such that it is
optimal for the representative agent to buy the market portfolio in ¢ = 0
and hold it until 7. Bick requires path-independence of the pricing kernel
for viability. Ensuing papers of He, Leland [11], Hodges, Carverhill [13] and
Hodges, Selby [12] generalize this analysis further.

Pham and Touzi [22] tackle the case of stochastic volatility. They provide
utility-theoretic foundations for common assumptions on the risk premia in
stochastic volatility models. Their analysis is similar to the previously men-
tioned, as they start with stochastic differential equations for the asset prices.
The main results of their paper are necessary and sufficient conditions for the
viability of the risk premia. Of special interest may be their analysis of the
classical stochastic volatility model of Hull and White [14] and the concept
of a minimal martingale measure introduced by Follmer and Schweizer [8].
Hull and White were the first to derive an explicit formula for the price of
an European option written on an asset with stochastic volatility. Yet their
result crucially depends on the assumption that the volatility risk premium
is independent of the underlying asset. Since in an incomplete market the
equivalent martingale measure and, thus, the risk premia are not uniquely
determined by arbitrage arguments, some restriction has to be imposed on
the risk premia. The analysis of Pham and Touzi establishes that this kind of
volatility risk premium is consistent with constant relative risk aversion. For
the specification of the equivalent martingale measure in incomplete markets
Follmer and Schweizer [8] propose the concept of a minimal martingale mea-
sure. Loosely stated the minimal martingale measure is defined such that
only traded risk is priced, hence, risk that is uncorrelated with traded assets
has a price of zero. As intuition suggests this kind of equilibrium is supported
by logarithmic preferences.

The analysis of Franke, Stapleton and Subrahmanyam [9] differs in var-
ious ways from the former papers. First, they do not assume the existence
of a representative investor, instead they simply assume that markets do
not admit arbitrage possibilities and hence, a pricing kernel exists. Second,
they do not take the asset price process as given. Their approach is more
fundamental as the basis of the model is a process for conditional expecta-
tions of the exogenously given asset price at some terminal date. From the
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assumption of rational investors they deduce the martingale property of the
process of conditional expectations. With the assumption that the process of
conditional expectations is governed by a geometric Brownian motion with-
out drift their analysis establishes a strong relationship between the process
of conditional expectations and the asset price process. In particular, they
show that the asset price process follows a geometric Brownian motion if
conditional expectations follow a geometric Brownian motion without drift
and the pricing kernel has constant elasticity. They also derive properties of
the price process for a pricing kernel with declining elasticity. In this case
asset returns are autocorrelated and the variance of the asset price is higher
than with constant elasticity of the pricing kernel.

3 Characterization and Viability of Informa-
tion Processes

In the market under consideration we have a given time horizon 7' > 0 and the
two dimensional standard Brownian motion W = {(W/,W}') : t € [0,T]} on
a given probability space (€2, F, F;, P) where (F;), clo.1) 18 the usual filtration
generated by W with F = Fp. We define an information process I; on the
probability space. This process is assumed to represent investors’ expecta-
tions about the exogenously given square integrable random value of an asset
(which may be the market portfolio) at some terminal date T". Since investors
are assumed to act totally rational, I; is the process of conditional expecta-
tions of the value of the asset at date T'. Hence, I; is a P-martingale. Further,
since the value of the asset at any time is strictly positive, the process I; is
strictly positive, too. Hence, I; is a positive P-martingale and admits the
following representation (see for example Karatzas and Shreve [17]).

t
It:10+/ L [olaw!+olVaw)] , 0<t<T. (1)
0

The martingale representation theorem provides that there exist two processes
ol and atI Vv By this theorem one only knows that these processes are adapted

to F; and that P (fOT (01)?ds < oo) =1and P (fOT (61V) ds < oo) = 1.

s

In the following we make the assumption o;"" = 0 for all t € [0,7] and we
require a special characterization of o!. Of course, with these assumptions
we assume a special representation of I;.
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In the remainder of this paper we assume that the volatility o! of the
information process is governed by the following stochastic differential equa-
tion:!

t t
0{206—1—/ b(s,[s,ai)ds—f—/ oV (s, Is,0)dWy , 0<t<T, (2
0 0

where b is the drift and o"" describes the volatility of o! (these two functions
are assumed to be deterministic). Since I; represents investors’ expectations
in ¢ about the value of the asset in 7', the process I; and the price process
of the asset must be equal at time 7. Thus, by definition Fr = I7. Hence,
with the information process I; the distribution of the asset at date T is
given. Equation (1) is a generalization of the information process considered
in Franke, Stapleton, Subrahmanyam [9]. While their information process
is modelled as a geometric Brownian motion, equation (1) admits constant,
time varying, deterministic or stochastic volatility.

In the remainder of this paper o {I,|0 < u < t} represents the filtration
generated by I; which by assumption represents all the information available
to investors in t. We will now turn to the economic meaning of different
volatility models. First take the case of constant volatility, i.e. of = o} for

all t € [0,7]. Hence, the logarithm of Ir is normally distributed with ex-
I

P
o
pectation B [In I7|o {I,]0 <u < t}] =In () — % (T —t) and variance®

var [InIr|o {1,]0 <u <t} = (06)2 (T'—t) for 0 <t < T. Since the price of
the asset in T is equal to I this implies that the uncertainty about the final
value of the asset is a linearly decreasing function of time.

This constant rate of uncertainty resolution over time implies some spe-
cial information flow. The intensity of information arrival must be constant
over time. Deterministic but time varying volatility would allow for periods
with a more intense information flow, but uncertainty resolution is still a
deterministic function of time. Such deterministic time patterns might be
explained by some sort of clustering of the information flow; companies an-
nouncing their results in certain periods, e.g. at the end of a year, many
macroeconomic announcements such as monthly economic information re-
leases occur at certain week-days (see Ederington and Lee [5] for a related

!The special characterization of the volatility relies on the following economic
arguments.
2

2This is equal to ftT (0d)” ds



econometric study). These facts may explain to some degree a deterministic
time pattern of the volatility of the information process. Hence, under the
assumption of time varying volatility the conditional variance of Ir is no
more linear in t. But the volatility and the process of conditional variances
of I can still be perfectly forecasted.

Since the information process is governed by such scheduled information
releases but also by unforeseen information events we consider some ran-
domness in the volatility of the information process to get a more realistic
model for the conditional expectations. First assume that volatility is a borel
function of ¢, I; and o!, hence it is a deterministic function of ¢, I; and o!:

t
a{:ag+/0b(s,fs,o—§)ds, 0<t<T. (3)

This formulation of the volatility is, for example, consistent with a leverage
effect, i.e. volatility increases with decreasing asset value. The easiest way
to model the leverage effect, is to assume a constant elasticity of variance

model (CEV)
szﬁ]{a,Ogth, for some a with 0 < o <1 and @ > 0 constant.

The model [equation (3)] includes all variations of the volatility of the infor-
mation process which can be described by deterministic functions of ¢, I; and
ol. Notice that with our model [equation (3)] 0! is random since it is a func-
tion of I, but it is o {[,| 0 < u < t}-measurable, thus the current volatility
is known. Economically this means that the current (short-term or myopic)
risk is known but the long-term risk evolves stochastically over time.

Even this more general model neglects some kind of uncertainty. Many
news about the economy or politics as well as about markets and companies
are published completely erratically so that stochastic terms have to be con-
sidered explicitly in the volatility process. Therefore to include these facts
in the model, the volatility is governed by a separate stochastic differential
equation with a stochastic term[equation (2)]. It will be obvious from The-
orem 1 that modeling the volatility of the information process by a separate
stochastic differential equation with a stochastic term has an important ef-
fect on the asset price process. With this model, the volatility risk of the
information process is priced, i.e. a risk premium is paid. Hence, all other
variations in the volatility of the information process are not priced.

We can conclude that the volatility of the information process is sto-
chastic and exhibits some time pattern. The quantification of these facts is
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an empirical task and is closely related to the estimation of the volatility
of asset prices. In the next section we show the close relationship between
information processes and asset price processes.

4 Derivation of Asset Price Processes

In this section we derive the forward price process of the asset. Assuming
that the market admits no arbitrage possibilities, it is well known that the
forward price of any asset is given by

Fip=EY (Frp ®rlo{l,J0<u<t}), 0<t<T, (4)

where Fy 1 is the forward price at date ¢ € [0, 7] with delivery at date 7" and
®, 1 is the pricing kernel which is just another representation of the fact that
the absence of arbitrage opportunities implies the existence of a probability
measure P, equivalent to the objective probability measure P, under which
the forward price process is a martingale. Because of the equality of Fpr
and I7 the following relationship holds?

F=EP|Frlo{l|0<u<t)=EP[Ir|o{lJ0<u<tl, 0<t<T.

We assume that the transformation from P to P is given by a Girsanov-
functional. More precisely we assume that there is an adapted R2-valued
process A; = (A}, A?) which defines the martingale’

t t 1 t
b = exp (= [ nawi— [xzawy -3 [npas).
0 0 0

0<t<T,
and the transformed probability measure
P(A) = E[®rl4], Ac Fr.

With this definition P and P are mutually absolutely continuous on Fr and

the process

il I ty1

W) (WA e
wYy WY + [; Aeds

3In the remainder of this paper the second index (T') of the forward price (Fyr) is
omitted for notational convenience.
4|l - || is the euclidean R2-norm.



is a 2-dimensional Brownian motion under P. Hence, we have the represen-
tation for F' under the probability measure P

T T T T
E:IT—/ Aizjds—/ Angds—/ ZsldWSI—/ Z2awyY
t t t t

for 0 <t < T, where Z = (Z',Z?) is the process given by application of
the martingale representation theorem on F'. We assume that A is a smooth
deterministic function that may depend on ¢, I; and of: A (t,1;,0]). The
process A (t,[t, ol ) is the market price of risk (see Musiela and Rutkowski
[20] or Karatzas and Shreve [16]).

In the following theorem we give a formula for the forward price F; in
terms of the information process and the market price of risk A (t, I, ol )

Theorem 1 Assume that the information process I, is governed by the sto-
chastic differential equation

t
It:10+/ Lotdw!, 0<t<T,
0
where the volatility process ol is given by
t t
ol =ol +/ b(s, I,,0l)ds +/ oV (s, I, o)y dWy , 0<t<T,
0 0

with deterministic smooth functions b and ov'. Then the forward price F, of

the asset admits the following representation under the probability measure
P

T T
F,=1Ip —/ M (s, I, 00 Z1ds —/ N(s, I, 00 Z2ds
t t

T T
—/ ZsldWSI—/ Z2dwY,

t t
0<t<T,

Zt1 ItUtI 0 s
Z < 7?2 ) ( 0 oVt I,o) )V u(t, Iy, 00) ,0<t<T,



and
T

Vu(t7 m) - (u:m (tv I)’ Uz (t’ QS))
where u(t, x) is the solution of the partial differential equation for 0 <t < T

0= ut(ta Il:'rQ) + >‘1 (twmla 1'2) T1X2 Ug,y (twrla 1‘2) (6)
+)‘2 (ta x1, ‘/L‘Q) Uv(t7 Iy, x2) Ug, (t7 Iy, 1'2)
2
(ZL'%.T% Uy xq (ty 1'1,1'2) + (O-V(tvxlvl?)) uzgmz(ta xlax2))

+0(t, 21, T2) Ug, (t, 21, 22) (7)
u(T,x) =21

N[ —

+

with indices on the function u indicating partial derivatives.
Moreover Fy is given by

Fy=u(t I;,0l) ,0<t<T.

Proof. We have the following system:

the forward stochastic differential equation (F.'SDE) for the information

process I; and its volatility process of

(i) = G)=GE) [ty )

t 1v2 I
XX 0 dW
s“%s s <t<T
/O ( 0 CTV(S, Xsl, )(82) ) < d”fs\/ ) ) 0 RS t X 1y

J/

v~
g

and the backward stochastic differential equation (BSDFE) for the forward
price F; of the asset

T
F, = Ytzx;—/ (A (s, X2, X2) ZE+ N2 (s, X0, X2) Z2) ds (9)
t

T 1\T I
Z; dw;
S (Z) (g ) oseer
The coupled system (8) and (9) is a forward-backward stochastic differential

equation. We use the Four-Step-Scheme given in Ma, Protter, Yong [18] to
find the solution.’

®More precisely we apply the version given in Ma, Yong [19]. An outstanding overview
on BSDE and FBSDE is given in El Karoui et al. [6].

9



Step 1: We define the function z(t, z,y,w) = o (¢, z,y)w for (t,z,y,w) €
R x R? x R x R?. With this definition we have the 2-dimensional function

(= B T1T2 W1
Z(t7x7y7w> - ( 29 ) <t7x’y7w) o ( O'V(t,xlaxQ) W2 ) .

Step 2: With the function z we solve the partial differential equation
(PDE)"

T
U’(tfx) = l'1+/ )‘1 (5,1131,1'2) 21 (37537“(3’33)7VU(3733))
t

+ )2 (s,21,m2) 22 (8, 2,u(s,x),Vu(s,z))
1 T 0 2 7 "
2 T1T1 T1T2
‘|—§t7“ {( 0 O'V(S,.I) ) ( Upyo,  Usya > (S,J;)}
0 Ug, (S,I)
+<<b(s’x))’(um(s,x))> ds, 0<t<T.

Hence, we have for 0 <t < T

0 = wlt,x) + A (t,2) miwoug, (£, 2) + N2 (L, 2) 0V (t, ) Uy, (t, 2)
+% (m?ajg Ugyay (L, ) + (Jv(t,x))2 Uy (t,x)) + b(t, ) Uy, (t, x)
w(T,x) = x.

We jump directly to Step 4, omitting Step 3: We define Y; = u(t, X;) and
Zy = ol (t, Xy, u(t, Xy)) v u(t, X;), then (X,Y, Z) is an adapted solution of
(8) and (9). [ |

Theorem 1 shows the close relationship between asset price processes
and information processes. Given the information process and the pricing
kernel Theorem 1 establishes the representation of the asset price process
as a function of the information process and the pricing kernel. The drift
of the asset price process is governed by the market price of risk A\; and
the diffusion of the asset price process Z;. The diffusion Z; depends on the
information process I; itself, on the volatility process of I;, i.e. of, and on
the first derivatives of the asset price w.r.t. I; and of. Thus, with Theorem
1 we have an explicit representation of the asset price process in terms of the

OBy tr{-} we denote the trace of a 2 x 2-matrix and by (-,-) the inner product of the
Euclidean space R2.
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information process and the pricing kernel for a 2-dimensional market model.
Theorem 1 is also applicable to n-dimensional market models.

It is obvious from Theorem 1 that the drift of the asset price process
depends on the volatility of the information process. Thus, empirical stud-
ies implicitly assuming non stochastic volatility of the information process
may find unexplainable variations in the drift. Further, neglecting stochastic
volatility of the information process leads to only one risk premium in the
asset price process, i.e. o} = 0 provides Z2 = 0.

To gain some better understanding of the implications of Theorem 1 in
the remainder of this section we discuss the case when all coefficients are
only functions in ¢. Thus, with this assumption equation (6) simplifies to

0 = ut<t,l‘1,l’2) + )‘1 (t) T1T2 UIl(t,l‘l,l’g) (10)
+)‘2 t) Uv(t) Ugy (ta Iy, 132)

w(T,x) = x;

and the solution of equation (10) for u(¢,z) is (see Appendix)
T
u(t,ry,x2) = x1€xp (ZL‘Q / Al(s)ds>
r T
/ (A(r) oV (r) + b(r)) (/ Al(s)ds) dr)
t T
(o¥'(r)°

T4 T 2
exp (/ 3 (r) (/ Al(s)ds) dr) , 0<t<T.
t T
Hence, F; is

F, = Iexp <o—{ /t ' Al(s)ds)
exp ( /t 020 0¥ (1) + b(r) < / : Al(s)ds) dr)

exp



and

Zl ItO'tI 0 I
2= <Z2>_( 0 av(t) vu(t,l,o;) ,0<t<T,

with
1/1
vu(t, I, of) = F < /t ) 0<t<T.

S
Then the forward price of the asset is governed by
dF, = Fof [\/1 N + A1) } dt
+Fof [\/ — p2dW] + p, dW, } , 0<t<T, (11)
EFr = Ir
with
Fof =\ (Z)"+ ()
Zf
(Z1)" + (23)°
p is the instantaneous correlation between the asset price and its volatility.
Equation (11) can then be rewritten in the usual notation” as

Pt =

dF, = FoF [\/1—pt)\1 £) + A2(t) pt]dt—i—FtadetF, 0<t<T, (12)

where W and WV have correlation p.

It is important to notice that even though the information process and its
volatility process are uncorrelated, the asset price process and its volatility
process are correlated. This is in contrast to a usual assumption in stochastic
volatility models (see for example Hull, White [14] or Stein, Stein [24]) and
has already been criticized by Pham and Touzi [22]. Corollary 1 establishes
conditions for p = 0.

Corollary 1 The correlation p is zero if and only if

(i) o =0
or
(i) X' =0 a.s.

"We make use of AW} = \/1 — p?dW/ + p, dW} .
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Condition (7) is trivial since it implies that the volatility of the information
process is not governed by a Brownian motion. Condition (i¢) implies that
the correlation p is zero, if X', the risk premium relative to the source of
uncertainty W7, is zero.

With equation (12) we can give an explanation for the well documented

time pattern of the adjusted driftu—;:
O

w
ﬁ =1 = p2 ANt + N (t)p,, 0<t<T. (13)

This equation shows that the adjusted drift may not be constant even if the
risk premia are constant, i.e. A(t) = const., \*(t) = const. in equation
(13). With risk premia being constant the variation in the adjusted drift
solely stems from the variations of the correlation process p. Neglecting
these effects by assuming a constant correlation p between W¥ and W' may
be one reason for seemingly unexplainable variations of the risk premia.

To illustrate our results we now consider the case of time-dependent
volatility of the information process. Hence, all coefficients depend on time
only and the volatility of the information process is a function of time only,
too.

Example 1 Time-dependent volatility
Let ol depend on time only. Then the volatility of the information process
satisfies

t
afzaé%—/ b(s)ds, 0<t<T.
0

Then, by Theorem 1, the forward price of the asset satisfies the stochastic
differential equation

dF, = EX\' (t) ol dt + Fyof daWwl , 0<t<T.

With this simplified model it is easily seen, that the properties of the volatil-
ity of the information process transfer to the properties of the drift and the
volatility of the asset price process. The drift of the asset price process is equal
to the volatility of the information process multiplied by the market price of
risk. The wvolatility of the information process and the volatility of the as-
set price process are identical. Further simplifying the model by assuming

13



that the wvolatility of the information process is constant, i.e. the informa-
tion process is governed by a geometric Brownian motion and assuming \'

constant, we get
dF, = F\' o' dt + Fo! dWf (14)

From equation (14) it is obvious that the asset price follows a geometric
Brownian motion process if the information process has constant volatility
and the risk premium s constant.

Remark 1 As was shown in Franke, Stapleton, Subrahmanyam [9] equation
(14) implies constant elasticity of the pricing kernel which implies constant
proportional risk aversion in a representative agent economy. We will discuss
this point in the following section.

5 Characterization of the Pricing Kernel and
the Risk Premia

In this section we give some characterizations of the pricing kernel in terms
of the risk premia and volatilities. First notice that the pricing kernel given
in equation (5) is governed by the stochastic differential equation:

ddo; = —PoN'(t, [ ol)dW] — ¢ N(t, Lo} )dW) ,0<t<T,
q)()o = 1.

)

Hence, we can compute the quadratic variation® of In F; and the cross-
variation process of In @y, and In F;

(2)" + (22)°

(nF), = ————,0<t<T,
E,
Nt LoD Z} — N(t, 1,01) 7}
<1n(1)0,.,1nF>t — ( ) t,0t> t ( ) tao-t) t ,0 S t S T.
Fy
Thus, the instantaneous 7 defined as 1, := — (In®_,In F), / (In F), is

N(t, LoD Z} + N(t, Lo} Z}
n, = (7 7t)1t2 (272715) tE,OStST (15)
(2:)" + (Z¢)
8In the following (-), denotes the quadratic variation which in economics is known as
the instantaneous variance, similar for the cross variation (-,-), and the instantaneous
covariance.

t
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1 defined in this way is the beta of a standard linear regression model. Since
7 is the ratio of the relative change of the pricing kernel ® and the relative
change of the asset price F' with respect to different states at the same time
t it is an approximation of the (instantaneous) elasticity of the pricing kernel
with respect to the asset price. From equation (15) it is easily seen, that
n is equal to the instantaneous drift divided by the instantaneous variance.
First, let us turn back to Example 1. In Example 1 we derived the asset price
process for constant volatility of the information process. We concluded, that
the asset price follows a geometric Brownian motion if and only if the risk
premia is constant. In this case 7 is

Mol

n= 1)

. (16)

[\V]

—

Example 1 combined with equation (16) is just another representation of
Theorem 2 in Franke, Stapleton, Subrahmanyam [9].

The elasticity of the pricing kernel can also be derived in a mathematical
way. This will be done under the assumptions of Example 1. It follows from
representative agent models (see for example Bick [2]) that the pricing kernel
® is a smooth function in ¢ and F'. Hence, by the Itd formula (the notation
of the dependency of the processes on ¢t and F' is omitted)

od 09 10°® 0P
dd = (— + —XM'F+-— (JI)QFQ) dt + 8_FUIF dw't.
On the other hand the pricing kernel is governed by d® = —A\'® dIW!, and
from above it is known that W = W¥. Comparing coefficients one derives
the solvable system of differential equations

od 0P I 1 0°® N2 2
E+6—F)\UF+§W(O')F =0 (17)
0o
Mo = —o'F. 1
A T (18)

With equation (18) one easily gets the elasticity of the pricing kernel

Lo®(tF) F M
OF ®(t,F) ol
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6 Conclusions

Different approaches to examine asset price processes exist. On the one hand,
due to the availability of financial markets data, an enormous amount of time
series properties have been well documented by recent empirical studies. On
the other hand many theoretical papers establish necessary characteristics
of asset price processes to be consistent with an equilibrium. Unfortunately
the gap between empirically well documented stylized facts and theoretically
explainable facts is still vast. The purpose of this paper was to show that this
discrepancy between empirical and theoretical findings may result from the
fact that one important source of risk is neglected. In this paper we have con-
sidered this risk, i.e. that even the risk of an asset is unknown and therefore
risky, too. In this case the information process has stochastic volatility. With
this generalization of usual information processes a foundation for stochastic
volatility models of asset prices has been established. Further it has been
shown that the still prevalent assumption of zero correlation between asset
prices and their volatility is not sensible. Finally we have shown the close
relationship between the volatility process of the information process and the
risk premia of an asset. Because of this dependence of the risk premia on the
volatility process a theoretical foundation can be given for financial market
phenomena. Moreover we have pointed out in section 5 that these results
hold even under the assumption of a path-independent pricing kernel, since
path-independence of the pricing kernel has been assumed everywhere.

Our approach offers numerous avenues for future research. More research
should be devoted to the information process and its volatility. Because
of the established coherence between information processes and asset price
processes this is no more a purely theoretical task. Characteristics of in-
formation processes can be deduced from asset price processes. Hence, it is
possible to investigate empirically whether asset price processes are consis-
tent with the strong assumptions usually made on information processes.
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A Appendix
The PDE, with indices on the functions indicating partial derivatives,

0 = w(t,xy,z0) + AL (t, 21, T2) T1T2 Uy, (t, 71, T2)
+ X2 (t, 21, 20) 0V (t, 21, T9) Ug,y (L, 21, T2)
1 2
+§ (x%:z:% U2y (tv Iy, -1.2) + (Uv<t7 Ty, 332)) Ugoxy (ta Iy, xQ))
+b(t7 T, 'IZ) Ugy (t7 Iy, IQ)
uw(T,x) = x1

can be solved for only-time-dependent coefficients.
For notational simplicity define the functions: « := A!, 8 := AoV + b,
vi=0" = %. Hence, the PDE can be written as

0 = w(t,xy,z2) + a(t,x1,22) T122 Uy, (t, 21, 22) + O (t, 21, T2) Ugy (E, 21, T2)
—l—%aﬁx% Uy (B, 1, T2) + %'yz(t, T, T2) Ugyzy (t, T1, T2)
with the boundary condition u (T, x) = x;.

We have to consider the two cases x1 = 0 and x; # 0. If 1 = 0 we have
the trivial solution. Thus, in the following we choose x; # 0.

Assume that the coefficients of the PDE do not depend on x;. Then u can
be separated as follows: u(t, z1, x2) = (a1, x2)Y(t, £2). With the boundary
condition u(T, x1,x2) = x; it follows p(z1, x2)Y (T, x2) = x1 and because of
x1 # 0 : (T, x9) # 0 for all zo. Hence, the following relationship holds:
o(x1,29) = ﬁ
After some computation the partial differential equation can be written as
(without noting the variables of the functions a, # and 7)

- 77Z)x2 (T, I2) 2 ¢22 (T? 1'2) 72 77Z}a:2z2 (T7 :EQ)
0 = ,(t,x2) +(t, z2) <a$2 - p (T, 2) + v @DQ(T, o) 9 (T, 22) >
wag (T7 1’2)

¢(Ta IQ)

without loss of generality choose the boundary condition ¥(7, z3) = 1.
Now assume that all coefficients are only time-dependent.

2
ot (5 )+ Pt
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In the case of constant volatility, that is ¢ = 0 and b = 0 and hence
6 =0 and v = 0, we have the following solution of the PDE

W(t, 2) = exp (xz /t Ta(s)ds) .

With this knowledge, for the general PDE with time-dependent coefficients
we try the ansatz

Wt ) = exp <—x2 /0 ta(s)ds) A().

with A(T") = 1. This leads to an ordinary first-order differential equation for
A which has the solution

A(t) = exp (% /t " o8r) < / Ta(s)ds> +A2(r) ( / Ta(s)ds)2dr) .

Hence, the solution of the PDE for u is

T
u(t,x1,22) = x1exp (xg/ a(s)ds)
t

exp (% /t " o8 ( / Ta(s)ds) ++2(r) ( / Ta(s)ds>2dr>

and in terms of the original coefficients

T
u(t,x1,22) = x1exp (mg/ /\l(s)ds)
t

exp ( /1t ' (N2(r) " (r) + b(r)) ( / ' )\l(s)ds> dr)
exp (/tT % (0" (r)? </T Al(s)ds> 2 dr) :
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