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Smoothing ordered sparse contingency tables and

the �2 test

Klaus Abberger, University of Konstanz, Germany

Abstract
To estimate cell probabilities for ordered sparse contingency tables several smooth-
ing techniques have been investigated. It has been recognized that nonparamet-
ric smoothing methods provide estimators of cell probabilities that have better
performance than the pure frequency estimators. With the help of simulation
examples it is shown in this paper that these smoothing techniques may help to
get test which are more powerful than �2 test with raw data. But the distribution
of the �2 statistics after smoothing is unknown. This distribution can also be
estimated by simulation methods.

Keywords: nonparametric estimation, local polynomial smoothers, local
likelihood, sparse contingency tables, �2 test, independence test

1 Introduction

There is a vast literature on nonparametric regression smoothers for continuous
dependent and independent variables. Many di�erent methods for estimation
regression curves have been proposed, including kernel, local polynomial, spline
and wavelet estimators. In this paper smoothing is applied to the estimation of
probabilities in categorical data. In contrast to the situation of continuous data,
where the bene�ts of smoothing (in form of scatterplot smoothers, for example)
are obvious, the applicability of smoothing methods to discrete data is less clear.

For a d-dimensional contingency table with kj ordered cells in the j-th di-
mension (j = 1; 2; :::; d) cell probabilities are usually estimated by frequency
estimators. Tables which have small-to-moderate cell counts are called sparse
tables. Such sparse tables occur when k =

Qd
j=1 kj (the total number of cells)

and n (the total number of observations) are both large. For sparse tables it is
recognized that nonparametric smoothing techniques provide estimators for the
cell probabilities with better performance than frequency estimators (see Aerts
et al. (1997) for discussion).
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Knowing the advantages of smoothing frequencies we are interested in the
consequences of smoothing on statistical inference, in particular in the behaviour
of the �2 test of independence for two dimensional sparse contingency tables. In
the next section two smoothing methods for categorical data recently discussed
in the literature are presented. Section 3 contains the main part of this paper
and shows power simulations for the �2 test of independence.

2 Smoothing methods for ordinal contingency ta-

bles

In this section two nonparametric estimators for ordinal contingency tables are
presented. For a more comprehensive treatise on smoothing methods for discrete
data see Simono� and Tutz (2000).

Using weighted least-squares polynomial �tting is a possibility to smooth con-
tingency tables. This is a well known method for smoothing scatterplots (Fan
and Gijbels, 1996). For example, a local linear estimator �̂ij for the probability

of falling in the (i; j)th cell of an R � C two-dimensional table is �̂0, where �̂ is
the minimizer of
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KhR;hC(i; j; k; l; R; C); (1)

with pkl the relative frequencies and KhR;hC(�) is a two dimensional kernel func-
tion with hR and hC the smoothing parameters for either rows and columns. A
common technique for generating Kd is using the product of univariate kernels:

Kd(u) =
dY

j=1

K1(uj): (2)

A di�culty with local polynomial probability estimates is that while an ar-
bitrary regression function can take on positive or negative values, a probability
vector cannot take on negative values. The problem is that the estimator is based
on the minimization of a local least squares criterion, which is appropriate for
regression data, but not for categorical data.

To overcome these di�culties Simono� (1998) introduced an estimator which
is based on local likelihood, rather than local least squares. The local linear like-
lihood estimator for a two-dimensional table is exp(�̂0), where �̂0 is the constant
term of the minimizer of
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Thus it is guaranteed that the estimates will be nonnegative. For a detailed mo-
tivation and discussion of this estimator see Simono� and Tutz (2000).

Although we prefer the likelihood method proposed by Simono� the simula-
tions in the next section are calculated with the LOESS procedure which grounds
on local polynomial estimation. LOESS is used because of its fast implementa-
tion in S-Plus. For the simulation studies this is very important since for power
simulations a huge amount of repetitions are required.

3 Power simulations for the �2 test

Being aware of the advantages of smoothing frequencies to estimate probabilities
in sparse ordered contingency tables the purpose of this simulation study is to
examine the e�ect of smoothing on the usual �2 test of independence. Does the
improved estimates yield more powerful tests?

In the simulations examples the following data pattern is chosen. The dimen-
sion of the table is 5� 5 and the total number of observations is always n = 100.
For easy control of the dependency structure the underlying random process is
bivariate normal with varying correlations. In the independence situation the
correlation coe�cient is set to zero. The 100 observations are generated from
this bivariate standard normal. The resulting sample is standardized by the span
so that the observed values lie between �1 and 1. This bivariate data set is then
categorized. For the �rst dimension we have 5 categories. The observation falls
in category I, if �1 � xi < �0:3, in category II, if �0:3 � xi < �0:05, in category
III, if �0:05 � xi < 0:05, in category VI, if 0:05 � xi < 0:3, and in category V, if
0:3 � xi � 1. The same categorization is applied to the second dimension. This
procedure yields independent 5 � 5 contingency table. A �typical � data set is
shown in Table 1.

It is possible to use a �2 test to test the independence of this data. Since the
counts are small and even zero some times smoothing the table may be of advan-
tage. As mentioned in the previous section for smoothing the LOESS procedure
is used. The polynomial degree is �xed as one so that we arrive at local linear
smoothing. We chose the in S-Plus implemented default smoothing parameter
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I II III IV V
I 1 1 1 4 0
II 4 10 10 18 2
III 1 10 3 6 0
IV 1 6 4 10 2
V 1 1 2 2 0

100

Table 1: Example of cell counts a of categorized random sample from an uncor-
related bivariate normal distribution

which is span = 2=3, with span the percentage of the total number of points
used in the smoothing. Both the estimation method and the choice of smoothing
parameter can be further improved and calibrated. But as we will see below even
this straightforward but very fast smoothing method leads to appealing results.

The above described data generating algorithm is replicated 10,000 times to
get impressions about the �2 statistic.

Figure 1 shows the estimated densities of �2 statistics once for the raw data
and twice for the smoothed data. For the �2 statistic of the raw data there is
nothing exceptional. Testing for independence with � = 0:05 and 4 � 4 = 16 de-
grees of freedom leads to a simulation based estimate of �̂da = 0:0538. So 538 of
the 10,000 tests are signi�cant. The �xed � is kept very well, although the usual
rule of thumb that all cell counts should have a minimum size of �ve is violated.

Also shown in Figure 1 is the estimated density of �2 statistics after smooth-
ing. Unsurprisingly, the usual �2 behaviour is destroyed. The �2 statistic after
smoothing is not �2 distributed. Especially the scale is completely changed and
quite di�erent from the scale of the usual �2 statistic. So the standard �2 tables
are not applicable to the smoothed �2.

This problem will be discussed further at the end of this section. For the
power simulations the critical value can be estimated from the simulated density
in Figure 1. Since the simulations are done under the null hypothesis of indepen-
dence the 1�� quantile of this density can be used as an estimate of the critical
value. For � = 0:05 the estimated critical value is 4:163184 in comparison with
26:3, which is the critical value of the �2 distribution with 16 degrees of freedom.

After �xing the critical values for both procedures, the correlation coe�-
cient of the data generating bivariate normal process can be varied to study the
power of the two procedures. 10,000 repetitions for the correlation coe�cients
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Figure 1: Monte Carlo estimated densities of �2 statistics for raw and smoothed
data
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Figure 2: Monte Carlo estimated power of the �2 test for raw and smoothed data
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r = 0:05; 0:1; 0:15; 0:2; 0:25; 0:3; 0:4; 0:5; 0:6 are calculated and the fraction of
signi�cant test is used as an estimate of the power.

Figure 2 shows the results of these calculations. The �gure illustrates the
bene�ts of smoothing very clear, because the power function after smoothing the
frequencies is much steeper than the power function of the usual �2 test. Thus
smoothing leads to a considerable improvement of the common �2 test relating
to the power of the procedure.
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Figure 3: Monte Carlo estimated densities of �2 statistics for smoothed data with
independent normal and independent uniform data generating process

The price we have to pay for this improvement is the impossibility of making
use of the �2 distribution table. Instead we have to use more complicated meth-
ods.

Figure 3 shows again the density of the �2 statistic after smoothing indepen-
dent bivariate normal date already included in Figure 1. In addition Figure 3
shows the simulation based estimate of the density of �2 statistics for smoothed
categorized data generated by two independent uniform distributions. The two
densities do not coincide. Thus the density of the �2 statistic and therefore the
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critical value depends on the marginal distributions of the table. The critical
value also depends on the kind of smoothing especially on the chosen bandwidth.
Therefore the suitable critical value depends on the speci�c problem at hand.

A Monte Carlo based estimation method for this critical value of a speci�c
table consists of the following steps: 1. Take the marginal distributions as �xed.
2. Chose smoothing method and smoothing parameter. 3. Draw bivariate ob-
servations from two independent uniform distributions. 4. Discretisize the data
according to the relative marginal frequencies from step 1. 5. Calculate the �2

statistic. Now repeat the steps 1-5 many times to achieve an estimate of the spe-
ci�c distribution of the statistic under the null hypothesis and chose the (1� �)
quantile of this distribution as critical value.

smoothed normal data
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Figure 4: Estimated densities of Monte Carlo based estimates of critical values

Figure 4 illustrates the results of an simulation experiment based on the above
described algorithm. The two data generating processes independent normal and
independent uniform which are already used in Figure 3 are used again. For both
processes we �rst draw one sample of size 100 which is used in step 1. Then the
steps 3-5 are repeated 1,000 times each to generate a density and an estimate
of the critical value. The whole procedure is then repeated 100 times to get an
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estimated density of critical values. These new densities are presented in Figure
4 together with the densities of �2 statistics from Figure 3. From these calcula-
tions one can conclude that the above described algorithm yields quite accurate
estimates of the critical value.

To sum up the various simulations in this section we can state �rst that
smoothing ordered sparse contingency tables may lead to more powerful �2 test
than testing without smoothing. The price we have to pay for this improvement
is an uncertainty about the test distribution and furthermore about the suitable
critical value. The critical value may be determined with simulation methods.
Therefore an algorithm is proposed which seems to give suitable results. Improve-
ments of the whole procedure are especially possible by the estimation method
and the choice of smoothing parameter.
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