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Abstract

Time series in many areas of application often display local or global

trends. Typical models that provide statistical \explanations" of such trends

are, for example, polynomial regression, smooth bounded trends that are es-

timated nonparametrically, and di�erence-stationary processes such as, for

instance, integrated ARIMA processes. In addition, there is a fast growing

literature on stationary processes with long memory which generate spurious

local trends. Visual distinction between the large variety of possible models,

and in particular between deteministic, stochastic and spurious trends, can

be very di�cult. Also, for some time series, several \trend generating" mech-

anisms may occur simulateneously. In this paper, a class of semiparametric

fractional autoregressive models (SEMIFAR) is proposed that includes de-

terministic trends, di�erence stationarity and stationarity with short- and

long-range dependence. Parameters characterizing stochastic dependence

and stochastic trends, including a fractional and an integer di�erencing pa-

rameter, can be estimated by maximum likelihood. Deterministic trends

are estimated by kernel smoothing. In combination with automatic model

and bandwidth selection, the proposed method allows for 
exible modelling

of time series and helps the data analyst to decide whether the observed

process contains a stationary short- or long-memory component, a di�erence

stationary component, and/or a deterministic trend component. Data exam-

ples from various �elds of application illustrate the method. Finite sample

behaviour is studied in a small simulation study.

Key words: trend, di�erencing, long-range dependence, anti-persistence,

di�erence stationarity, fractional ARIMA, Box-Jenkins ARIMA, BIC, kernel

estimation, bandwidth selection, semiparametric models.

1 Introduction

Time series in many �elds of statistical applications exhibit local or global

trends. A large number of methods for dealing with trends under speci�c as-

sumptions are described in the literature (see e.g. standard time series books,

such as Diggle 1990, Priestley 1991 and references therein). Essentially, mod-

els for trends can be classi�ed as either (1) deterministic or (2) stochastic.

A deterministic trend is described by a deterministic function g(t); whereas

a stochastic trend is generated by a purely stochastic nonstationary process

such as random walk, Brownian motion or an integrated ARIMA process.

As a third possibility, local \spurious" trends can be generated by stationary

processes with long-range dependence, such as stationary fractional ARIMA

models (see below for the de�nition). For the practitioner, the large variety
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of possible models can be quite puzzling, and �nding the \right" model is

often di�cult. Some typical examples are displayed in �gures 1a through

d where four simulated series are generated respectively by a nonstation-

ary process whose �rst di�erence is the sum of a deterministic trend plus a

stationary process (Figure 1a), a deterministic trend plus a stationary long-

memory process (Figure 1b), a nonstationary process whose �rst di�erence

is stationary (Figure 1c), and a stationary long-memory process (Figure 1d).

A full description of the models used in �gures 1 a to d is given in section 7.

This paper grew out of the attempt to provide a uni�ed approach that al-

lows for simultaneous modelling of deterministic trends, stochastic trends and

stationary short- and long-memory components. In particular, the approach

helps the data analyst to decide which of these components are present in

the observed data. The proposed model is a semiparametric generalization of

a parametric class of stationary and nonstationary fractional autoregressive

models introduced in Beran (1995). The trend of the process is modelled

nonparametrically whereas the dependence structure of the stochastic com-

ponent is modelled parametrically. The issue of distingushing long memory

and di�erence stationary noise from a deterministic trend has also been ad-

dressed in a recent paper by Deo and Hurvich (1998). There, an alternative

approach is taken in that a parametric (linear) trend is assumed whereas

the fractional di�erencing parameter of the noise process is estimated semi-

or nonparametrically. For testing stationarity with long-range dependence

against trend plus noise also see K�unsch (1986a).

A typical example where a decision between stochastic trend, deterministic

trend or long-memory is essential, is the global temperture data in �gures

2a through c. The foremost question with respect to the global temperature

series is whether there is evidence for `global warming'. Statistically, `global

warming' can be interpreted as an increasing deterministic trend. Fitting

a linear trend, for instance, does indeed lead to a signi�cant positive slope,

even when taking into account the dependence structure in the residuals (see

e.g. Smith 1993, Beran 1994, Deo and Hurvich 1998). It may be argued,

however, that a) the assumption of a linear trend is arbitrary, and other

(more realistic) trend models may not be signi�cant, and b) the observed

`trend' may have been generated by a purely random (trend-free) mechanism,

such as random walk, fractional Brownian motion (at discrete time points)

or a stationary long-memory process. In particular, the second argument

is often used when pointing out that the observational period is very short

and, in the long run, the global temperature may go down again as part

of the natural climatic process. The modeling approach introduced in this

paper (so-called SEMIFAR models) leads, however, to the conclusion that a

signi�cant deterministic trend is found even if the possibilities in a) (arbitrary

deterministic trend) and b) (stochastic `trend' and/or long memory) are not

exculded a priori. Thus, SEMIFAR models yield stronger evidence for

global warming than more restrictive statistical models used in the past.
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The paper is organized as follows. The model is de�ned in section 2.

Results on nonparametric kernel estimation that are needed in the subsequent

sections, are obtained in section 3. The method for estimating the trend and

the parameters characterizing the stochastic component of the process is

discussed in section 4, together with asymptotic results. A simple algorithm

is proposed in section 5. Simulation results are presented in section 6. Several

data examples illustrate the method in section 7. Final remarks are given in

section 8. Proofs are given in the appendix.

2 The model

Recall that a Box-Jenkins ARIMA(p;m; 0) process (Box and Jenkins 1976)

is a Gaussian processes Yi such that

�(B)f(1� B)mYi � �g = �i (1)

holds, where � 2 R; m � 0 is an integer, �i (i = :::;�1; 0; 1; 2; :::) are iid zero

mean normal with �
2
� = var(�i); B denotes the backshift operator such that

BYi = Yi�1; and �(x) =
Pp

j=0 �jx
j is a polynomial with �o = 1 and roots

outside the unit circle. For m > 1; Yi is not stationary, and the integer m is

the number of times Yi has to be di�erenced in order to achieve stationarity.

The mth di�erence (1�B)mYi is a stationary autoregressive process of order

p with expected value �: Throughout the paper, we will focus on the values

of m 2 f0; 1g; and a process Yi will be called di�erence-stationary, if Yi is not

stationary but its �rst di�erence Yi � Yi�1 is stationary in the second order

sense.

On the other hand, Hosking (1981) and Granger and Joyeux (1980) de�ne

a fractional autoregressive process with fractional di�erencing parameter � 2
(�1=2; 1=2) (Granger and Joyeux 1980, Hosking 1981) to be a stationary

process for which

�(B)(1�B)�fYi � �g = �i (2)

holds. Here, the fractional di�erence (1� B)� is de�ned by

(1� B)� =
1X
k=0

bk(�)B
k (3)

with

bk(�) = (�1)k �(� + 1)

�(k + 1)�(� � k + 1)
: (4)

The main motivation for introducing these processes was to model stationary

time series with long-range dependence (or long memory) and to avoid the

problem of overdi�erencing which is often encountered in the usual Box-

Jenkins setting. Here, long-range dependence is de�ned as follows (see, e.g.

Mandelbrot 1983, Cox 1984, Hampel 1987, K�unsch 1986b, and Beran 1994
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and references therein): A stationary process Yi with autocovariances 
(k) =

cov(Yi; Yt+k) is said to have long-range dependence, if the spectral density

f(�) = (2�)�1
P
1

k=�1 exp(ik�)
(k) has a pole at the origin of the form

f(�) � cf j�j�� (j�j ! 0) (5)

for a constant cf > 0 and � 2 (0; 1); where " � " means that the ratio of the

left and right hand side converges to one. In particular, this implies that,

as k ! 1; the autocovariances 
(k) are proportional to k
��1 and hence

their sum is in�nite. The spectral density of Yi de�ned by (2) is proportional

to j�j�2� at the origin so that a fractional AR process has long-memory if

� > 0: In contrast, for (1), the mth di�erence (1 � B)mYi has short-range

dependence (or short memory) in the sense that
P

(k) <1; and (5) holds

with � = 0 (i.e. f(�) converges to a positive constant at the origin). A

uni�ed class of processes that includes (1) and (2) as special cases can be

de�ned as in Beran (1995) by

�(B)(1� B)�f(1� B)mYi � �g = �i: (6)

For � = 0; this reduces to (1), whereas for m = 0; we obtain stationary

fractional autoregressive processes de�ned by (2). This de�nition general-

izes traditional AR models by including an (unknown) fractional di�erencing

parameter � 2 (�0:5; 0:5): On the other hand, (6) generalizes stationary frac-
tional AR processes to nonstationarity by including the (unknown) integer

di�erencing parameter m: The parameters of the process, including m and �;

can be estimated by maximum likelihood (Beran 1995). Note that, since m

is an integer, m and � correspond to one parameter d = m+ � only, through

m = [d+ 0:5] and � = d�m; where [:] denotes the integer part.

With respect to modelling trends, the model class de�ned by (6) includes

stochastic trends (for m > 0) as well as \spurious" trends generated by

long-range dependence (m = 0; � > 0). Moreover, if m = 1 and �6=0;
then a polynomial trend is included. Thus, using (6), data are modelled

either by a stationary process with no trend or an integrated process whose

mth di�erence is stationary and that may also include a polynomial trend

of order m: Excluded are, however, the possibility of a deterministic trend

with stationary errors (m = 0) and other than polynomial trends. Thus, for

instance, �tting (6) to a process that is in fact generated by a deterministic

monotonous trend plus stationary noise will usually lead to the conclusion

that m is equal to one, although in reality the stochastic part of the series is

already stationary.

The idea of the model proposed below is thus to build in a trend component

into (6) in order to include the following four possibilities:

� (a) no deterministic trend + stationary process with short- or long-

range dependence;
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� (b) deterministic trend + stationary process with short- or long-range

dependence;

� (c) no determinisitc trend + di�erence-stationary process, whose �rst

di�erence has short- or long-range dependence;

� (d) deterministic trend + di�erence-stationary process, whose �rst

di�erence has short- or long-range dependence.

Model (6) includes (a) and (c). Moreover, (d) is also included, however with

a polynomial trend only. In contrast, no assumptions on the trend function,

except for general regularity assumptions, will be made in the following.

A number of results on nonparametric estimation of a bounded and su�-

ciently smooth trend function exist in the literature for the cases of short- or

long-range dependent errors (see e.g. Chiu 1989, Altman 1990, Hall and Hart

1990 and Herrmann, Gasser and Kneip 1992 for short-memory errors; Hall

and Hart 1990, Cs�org�o and Mielniczuk 1995, Ray and Tsay 1997 for long-

memory errors). This motivates the following extension: Let g : [0; 1] ! R

be a function such that g is twice di�erentiable. Also, denoting by g
(j) the

jth derivative, assume

sup0<x<1maxj=0;1;2jg(j)(x)j � C1 <1

and

jg00

(x)� g
00

(y)j � C2 � jx� yj�

for all x; y 2 [0; 1]; constants C1; C2 < 1; and some � 2 (2; 3]: Moreover,

assume that for at least one l 2 f0; 1g; g(l+1) does not vanish in [�; 1��] (0 <

� < 0:5) and g
(l) achieves an absolute maximum or minimum in [�; 1��]:

These conditions on g correspond to those in Ray and Tsay (1987) and Hall

and Hart (1990). Also, let �i (i = :::;�1; 0; 1; 2; :::) be a sequence of iid zero

mean normal random variables with �
2
� = var(�i); and �(x) =

Pp
j=0 �jx

j

a polynomial with �o = 1 and roots outside the unit circle. Finally, let

BYi = Yi�1 and use the convention B
j
g(ti) = g(ti�j); where ti = i=n: Then

the following class of models is de�ned.

De�nition 1 A Gaussian process Yi is called a semiparametric fractional

autoregressive model (or SEMIFAR model), if there exists a smallest integer

m 2 f0; 1g such that

�(B)(1� B)�f(1� B)mYi � g(ti)g = �i (7)

where � 2 (�0:5; 0:5):

The following remarks clarify the meaning of this de�ntion:
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1. For g = �; we obtain (6), and thus the cases (a) (if m = 0), (c) (if

� = 0 and m = 1) and (d) with a linear trend (if �6=0 and m = 1).

2. If g is not constant, then we obtain (b) if m = 0 and (d) with a general

smooth trend function if m = 1:

3. Note that for m = 0; Yi = g(ti) + Xi where ti = i=n and Xi is a

stationary fractional autoregressive process. Thus, Yi is generated by a

bounded continuous trend function and stationary noise (with at most

\spurious" trends).

On the other hand, if m = 1 and g 6�0; a trend in Yi is generated simu-

lateneously by a deterministic and a stochastic trend. More speci�cally,

for m = 1; Yi�Yi�1�g(ti) is a stationary fractional autoregressive pro-

cess and

E[Yi � Y1jY1] =
iX

j=2

g(tj) � n

Z ti

o
g(u)du = nG(ti):

Thus, in general, the deterministic trend function in the observed pro-

cess Yi is of the order O(n): Note that the variance var(Yi�Y1jY1) also
increases with n:

4. The restriction of m to the set f0; 1g is not needed theoretically. How-

ever, in practise, m larger than 1 is unlikely to occur. Moreover, for

m = 1; the trend function in the original process can be reconstructed,

upto an additive constant by nG(ti); whereas this is no more possible

for m � 2:

5. The normality assumption on the innovations �i can be relaxed to ob-

tain non-Gaussian SEMIFAR models.

3 Nonparametric kernel estimation

with independent, long-memory or anti-

persistent errors

The problem of estimating g from data given by

Yi = g(ti) +Xi (8)

has been considered by various authors for the case where the error processXt

is stationary with (i) short-range dependence, i.e. (5) holds with � = 0 (see

e.g. Chiu 1989, Altman 1990, Hall and Hart 1990 and Herrmann, Gasser

and Kneip 1992) or (ii) long-range dependence, i.e. 0 < � < 1 (see e.g.

Hall and Hart 1990, Cs�org�o and Mielniczuk 1995 and Ray and Tsay 1997).

For SEMIFAR models de�ned by (7), the cases (i) and (ii) are obtained by
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setting m = 0 and � = �=2 = 0 (case (i)), or m = 0 and � 2 (0; 1=2)

(case (ii)) respectively. For m = 1; the same is true for the �rst di�erence

Yi � Yi�1: (Note, however, that for SEMIFAR models, m 2 f0; 1g is an

unknown parameter.) In addition to cases (i) and (ii), de�nition (7) also

includes the case where � is negative so that the spectral density f of Yi (or

Yi�Yi�1 respectively) converges to zero at the origin. This case is sometimes

called \anti-persistence". The theorem below extends previous results on

kernel estimation to the anti-persistent case, and gives formulas for the mean

squared error and the optimal bandwidth that are valid for the whole range

� 2 (�0:5; 0:5):
Before stating the result, the following de�nitions are needed: For esti-

mating g by kernel smoothing, symmetric polynomial kernels (see e.g. Gasser

and M�uller 1979) will be used, de�ned by

K(x) =
rX

l=0

�lx
2l
; (jxj � 1); (9)

and K(x) = 0 if jxj > 1: Here r 2 f0; 1; 2; :::g and the coe�cients �l are

such that
R 1
�1K(x)dx = 1: Note that considering polynomial kernels is not

a serious restriction, since bandwith choice is known to be more important

than the choice of the kernel and, also, other typical kernel functions can be

approximated with arbitrary accuracy by polynomials. Moreover, at least in

the case of independent errors, optimal kernels in the sense of Gasser and

M�uller (1979) are known to be polynomials.

If (8) holds, then, for a given bandwidth b > 0 and t 2 [0; 1]; the kernel

estimate of g is de�ned by

ĝ(t) = Kb � y(n) = 1

nb

nX
i=1

K(
t� ti

b
)Yi (10)

where y(n) = (Y1; :::; Yn): Furthemore, the following notations will be used:

Vn(�; b) = (nb)�1�2��2l1�2l2
rX

l1;l2=0

�l1�l2

nbX
i;j=�nb

i
2l1j

2l2
(i� j); (11)

I(g
00

) =

Z 1��

�
[g

00

(t)]2dt; (12)

and

I(K) =

Z 1

�1
x
2
K(x)dx: (13)

The following result is obtained under the assumption that (8) holds.

Theorem 1 Let bn > 0 be a sequence of bandwidths such that bn ! 0 and

nbn ! 1: Then, under the stated assumptions and � in (7) in the interval

(-0.5,0.5), we have
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(i) Bias:

E[ĝ(t)� g(t)] = b
2
n

g
00

(t)I(K)

2
+ o(b2n) (14)

uniformly in � < t < 1��;

(ii)

lim
n!1

Vn(�; bn) = V (�) (15)

where 0 < V (�) <1 is a constant;

(iii) Variance:

(nbn)
1�2�

var(ĝ(t)) = V (�) + o(1) (16)

uniformly in � < t < 1��;

(iv) IMSE: The integrated mean squared error in [�; 1��] is given by

Z 1��

�
Ef[ĝ(t)� g(t)]2gdt = IMSEasympt(n; bn) + o(max(b4n; (nbn)

2��1))

= b
4
n

I(g
00

)I2(K)

4
+ (nbn)

2��1
V (�) + o(max(b4n; (nbn)

2��1)) (17)

(v) Optimal bandwidth: The bandwidth that minimizes the asymptotic

IMSE is given by

bopt = Copt n
(2��1)=(5�2�) (18)

where

Copt = Copt(�) = [
(1� 2�)V (�)

I(g
00

)I2(K)
]1=(5�2�): (19)

Similar results can be obtained for kernel estimates of derivatives of g: For

instance, the second derivative can be estimated by ĝ
00

(t) = n
�1
b
�3P

K((tj�
t)=b)Yj where K is a symmetric polynomial kernel such that

R
K(x)dx = 0

and
R
K(x)x2dx = 2: By analogous arguments, the optimal bandwidth is

then of the order O(n(2��1)=(9�2�)):

Simple explicit formulas for V (�) can be given for � = 0 and � > 0 as

follows (see e.g. Hall and Hart 1990):

V (�) = 2�cf

Z 1

�1
K

2(x)dx; (� = 0); (20)

V (�) = 2cf�(1� 2�) sin��

Z 1

�1

Z 1

�1
K(x)K(y)jx� yj2��1dxdy; (� > 0): (21)

These formulas can not be carried over directly to the case � < 0: In par-

ticular, the integral on the right hand side of (21) is in�nite for � < 0: For

speci�c kernels, simple closed form formulas that are valid for the whole

range � 2 (�0:5; 0:5) can be obtained however by explicit calculation. For

instance, for the box-kernel (i.e. r = 0), we obtain

9



Corollary 1 Let K(x) = 1
2
1fx 2 [�1; 1]g: De�ne

�(�) =
22��(1� 2�) sin(��)

�(2� + 1)
(22)

with �(0) = lim�!0 �(�) = �: Then, under the assumptions of theorem 1, we

have

(i) Bias:

E[ĝ(t)� g(t)] = b
2
n

g
00

(t)

6
+ o(b2n); (23)

(ii) Variance:

var(ĝ(t)) = (nbn)
2��1

�(�)cf + o((nbn)
2��1); (24)

(iii) IMSE:

Z 1��

�
Ef[ĝ(t)� g(t)]2gdt = b

4
n

I(g
00

)

36
+ (nbn)

2��1
�(�)cf

+ o(max(b4n; (nbn)
2��1)): (25)

(iv) Optimal bandwidth:

bopt = Copt n
(2��1)=(5�2�) (26)

with

Copt = [
9(1� 2�)�(�)cf

I(g
00

)
]1=(5�2�) (27)

4 Maximum likelihood estimation with esti-

mated trend

Let �o = (�2�;o; d
o
; �

o
1; :::; �

o
p)

t = (�2�;o; �
o)t be the true unknown parameter

vector in (7) where d
o = m

o + �
o
; �1=2 < �

o
< 1=2 and m

o 2 f0; 1g:
For a constant function g = �; maximum likelihood estimation of �o; based

on the autoregressive representation of the process, is considered in Beran

(1995) and generalized to processes with GARCH components in Ling and

Li (1997). This approach can be carried over directly to SEMIFAR models,

since

�(B)(1�B)�
of(1�B)m

o

Yi � g(ti)g =
1X
j=0

aj(�
o)Bj[cj(�

o)Yi � g(ti)]

=
1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)];

10



where the coe�cients aj and ajcj are obtained by matching the powers in B:

Hence, Yi admits an in�nite autoregressive representation

1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)] = �i: (28)

Let bn (n 2 N) be a sequence of positive bandwidths such that bn ! 0 and

nbn !1 and de�ne ĝ(ti) = ĝ(ti;m) by

ĝ(ti; 0) = Kbn � y(n); (29)

and

ĝ(ti; 1) = Kbn �Dy(n); (30)

with Dy(n) = (Y2� Y1; Y3� Y2; :::; Yn� Yn�1): Consider now �i as a function

of �: For a chosen value of � = (�2� ; m + �; �1; :::; �p)
t = (�2� ; �)

t
; denote by

ei(�) =
i�m�2X
j=0

aj(�)[cj(�)Yi�j � ĝ(ti�j;m)] (31)

the (approximate) residuals and by ri(�) = ei(�)=
p
�1 the standadized residu-

als. Assuming that f�i(�o)g are independent zero mean normal with variance

�
2
�;o; an approximate maximum likelihood estimator of �o is obtained by max-

imizing the approximate log-likelihood

l(Y1; :::; Yn; �) = �n
2
log 2� � n

2
log �2� �

1

2
n
�1

nX
i=m+2

r
2
i (32)

with respect to � and hence by solving the equations

_l(Y1; :::; Yn; �) = 0 (33)

where _l is the vector of partial derivatives with respect to �j (j = 1; :::; p+2):

More explicitly, �̂ is obtained by minimizing

Sn(�) =
1

n

nX
i=m+2

e
2
i (�) (34)

with respect to � and setting

�̂
2
� =

1

n

nX
i=m+2

e
2
i (�̂): (35)

Note that the solution of (34) can also be obtained by solving

nX
i=m+2

[
@

@�j
ei(�)]ei(�) = 0; j = 1; :::; p+ 1: (36)

For the case where g is known to be constant, it follows from Beran (1995)

and Ling and Li (1997) that, if the constant g = � is estimated consistently,

then, as n!1; �̂ converges in probability to �o; and
p
n(�̂ � �

o) converges

in distribution to a normal random variable with zero mean vector and co-

variance matrix equal to the inverse Fisher-Information matrix. This result

can be extended to SEMIFAR models:
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Theorem 2 Let �̂ be the solution of (34) and (35); and de�ne �o
�

= (�2�;o; �
o
�

)T

= (�2�;o; �
o
; �

o
2; :::; �

o
p+1)

T
: This means that, �o2 = d = m

o + �
o is replaced by

�
o
2;� = �

o
: Then, as n!1;

(i) �̂ converges in probability to the true value �o;

(ii) n
1

2 (�̂ � �
o) converges in distribution to a normal random vector with

mean zero and covariance matrix

� = 2D�1 (37)

where

Dij = (2�)�1[

Z �

��

@

@�i
log f(x)

@

@�j
log f(x)dx]j�=�o� (38)

Remarks:

1. It should be noted that in theorem 2, both, the fractional di�erencing

parameter � and the integer di�erencing parameter m are estimated

from the data.

2. The asymptotic convariance matrix does not depend on m:

3. Theorem 2 can be generalized to the case where the innovations �i are

not normal, and satisfy suitable moment conditions.

Theorem 2 is derived under the assumption that the order p = po of

the autoregressive polynomial in (7) is known. This can not be assumed

in practise. Thus, po needs to be estimated by applying a suitaible model

choice criterion. In a recent paper, Beran et al. (1998) showed that, for

the case where g is equal to a constant �; consistency properties of model

choice criteria, such as the BIC (Schwarz 1978, Akaike 1979) and the HIC

(Hannan and Quinn 1979), are analogous to the case of stationary short-

memory autoregressive processes, provided that a consistent estimate of � is

used. By analogous arguments, theorem 2 can be extended to the case where

po is estimated:

Theorem 3 Under the assumptions of theorem 2, let po be the true order of

the polynomial � in (7) and de�ne

p̂ = argminfAIC�(p); p = 0; 1; :::; Lg (39)

where L is a �xed integer, AIC�(p) = n log �̂2� (p) + � � p and �̂
2
� (p) is the

maximum likelihood estimate of the innovation variance �2�;o using a SEMI-

FAR model with autoregressive order p: Moreover, de�ne �̂ by (34) and (35)

with p set equal to p̂: Suppose furthermore that � is at least of the order

O(2c log logn) for some c > 1: Then the results of theorem 2 hold.
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Remarks:

1. Under the assumption that the series is generated by a SEMIFAR pro-

cess, the results in theorems 1, 2, 3, and corollary 1, can be used for test-

ing a) whether there is a signi�cant deterministic trend component; b)

whether the random component of the process is stationary or di�erence

stationary (m = 0 or m = 1); and c) whether there is long-memory,

short-memory or antipersistence in the stationarized random compo-

nent (� > 0; � = 0; � < 0). The formal tests (and con�dence intervals)

for b) and c) follow directly from theorems 2 and 3. For the trend com-

ponent, testing is more di�cult, since we are dealing with a function

(instead of a �nite number of parameters). If m̂ = 0; then we test the

null hypothesis Ho : g � constant: If the box-kernel is used, then an

approximate pointwise acceptance region at signi�cance level � is given

by the horizontal lines �y� z�=2(nbn)
�̂� 1

2 [�(�̂)cf (�̂)]
1

2 : If m̂ = 1; then the

null hypothesis is Ho : g � 0 and an approximate pointwise acceptance

region is given by the horizontal lines �z�=2(nbn)�̂� 1

2 [�(�̂)cf(�̂)]
1

2 : One-

sided acceptance regions can be de�ned analogously. Clearly, this test

is only pointwise and can therefore only be used as a guideline. The

construction of simulateneous acceptance bands is more complicated,

and will be treated in detail in a forthcoming paper.

2. The proposed method can also be used in an exploratory way, in par-

ticular to identify the essential shape of a potential trend function g:

Subsequently, a model with a suitable parametric trend can be �tted

and a test for signi�cance of the trend parameters can be performed.

Such a test again has to be taken as a guideline only, because of the

`preselection' of the parametric model by the SEMIFAR �t.

5 Computational aspects

An algorithm for the case where g is assumed to be equal to a constant �

is given in Beran (1995). The algorithm makes use of the fact that d is the

only additional parameter, in addition to the autoregressive parameters, so

that a systematic search with respect to d can be made. This algorithm can

be adapted to the case where g is an unknown function, by replacing �̂ by a

kernel estimate of g: The optimal bandwidth can be estimated by an iterative

plugin method similar to the one in Herrmann, Gasser and Kneip (1992) and

Ray and Tsay (1997). These authors consider the case of stationary errors,

i.e. m is known to be equal to zero. The algorithm in Ray and Tsay (1997) is

as follows: 1. an initial bandwidth is de�ned; 2. a preliminary estimate of g is

computed and subtracted from the observations; 3. the relevant parameters

of the error process are estimated from the residuals; 4. the bandwidth

is updated. Steps 2 to 4 are repeated until the change in the bandwidth
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is below a prede�ned threshold. This algorithm can readily be extended

to �tting SEMIFAR models. A detailed study and comparison of iterative

algorithms for SEMIFAR �tting will be given in a forthcoming paper.

6 Simulations

For n = 200; 500 and d
o 2 f�0:3; 0; 0:3; 0:7; 1; 1:3g; N = 100 series of a

SEMIFARmodel with po = 0; �2� = 1 and g(t) = 0:5(t�0:5)+0:5exp[�100(t�
0:5)2] were generated. For each simulated series, po; g and �

o were estimated

using the BIC (evaluated for p = 0; 1; 2; 3; 4; 5) as described above. The

following quantities in table 1 summarize the results:

1. N1 =number of simulations with m̂ = m
o and p̂ = po;

2. �d =sample mean of simulated estimates d̂;

3. ~d =sample mean of simulated estimates with m̂ = m
o and p̂ = po;

4. theoretical standard deviation of d̂ obtained from the asymptotic for-

mula �asympt =
q
�22=n; where � is the covariance matrix of �̂ de�ned

in theorem 2;

5. s =simulated standard deviation of d̂:

6. ~s =simulated standard deviation of d̂ for simulations with m̂ = m
o and

p̂ = po;

7. theoretical integrated mean squared error IMSEasympt obtained from

the asymptotic formulas (25), (26) and (27);

8. simulated integrated mean squared error IMSEo obtained from the

simulations with m̂ = m
o and p̂ = po:

A comparison of �d; ~d; s and ~s in table 1 shows that misspeci�cation of po
or mo can lead to a serious bias and high variability in d̂: Although asymp-

totically the probability of correctly estimating m
o and po tends to one for

all values of do; po and m
o may be misspeci�ed more often for small sam-

ple sizes, if there is strong long memory in the data. It should be noted at

this point that, when assuming that the di�erencing parameter d 2 (0:5; 1:5)

(and thus m 2 f0; 1g and � 2 (�0:5; 0:5)) and the autoregressive order po are

unknown, a sample size of 200 is rather small. For n = 500; N1 is however

already quite close to 100 even for d = 1:3: Also, for n = 500; the values of
~d and ~s are reasonably close to d

o and �asympt respectively. Note however

that, in the presence of long memory (� = 0:3; i.e. d = 0:3; 1:3), convergence

to the asymptotic results seems to be slower. For n = 200 and � = 0:3;
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the simulated standard deviations are about twice as large as those given by

the asymptotic formula. In constrast, for � = �0:3 the asymptotic formula

appears to be applicable already for n = 200: Similar comments apply to the

mean squared error.

7 Data examples

7.1 Temperature data for the northern hemisphere

Figure 2a displays, for the years 1856-1989 and the northern hemisphere,

yearly averages of monthly deviations of the observed temperature from

monthly averages obtained from the time period 1950-1979. These data

are obtained from spatial averaging of temperatures measured over land and

sea. Figure 2b displays the corresponding series for land mass measurements

only, and �gure 2c for the Atlantic. The series 2a and b seem to exhibit an

increasing trend which is generally interpreted as \global" warming. This

does not seem to be the case for the Atlantic data.

Fitting SEMIFAR models of orders p = 0; 1; 2; 3; 4; 5; the BIC turns out to

have a distinct minimum at p = 0 for the �rst two data sets. The estimated

parameters are: d̂ = 0:33 (95%-con�dence interval [0:19; 0:46]) for land-and-

sea temperatures, and d̂ = 0:21 ([0:08; 0:34]) for land only temperatures.

The good quality of the �t is illustrated by the correlogram and normal

probability plot of the residuals (�gures 2d through g). Moreover, in both

cases (land-and-sea and land data), the trend exceeds the 5% critical bounds.

Thus, the conjecture of global warming is supported. For the land-and-sea

data, a signi�cant trend was also found by Smith (1993) and Deo and Hurvich

(1998). In these papers, a linear trend is �tted and tested for signi�cance. In

contrast, here, no assumptions on the shape of the trend are made. Moreover,

the possibility of a nonstationary noise component with m = 1 is included

whereas Smith (1993) assumes stationary noise a priori. This is an important

extension, since trend like behaviour can also be generated by stochastic

trends. In spite of the more general model used here, global warming for the

land-and-sea and the land data turned out to be signi�cant. This provides

an even stronger argument for the existence of global warming.

Figures 2a and b also show that the signi�cance of the trend is clearer

for the land-only data. A possible reason can be seen by �tting a SEMIFAR

model to the Atlantic series: Here, the smallest values of the BIC are achieved

at p = 1 and p = 0; and in both cases the trend is not signi�cant (at the

5% level). The quality of the �t is essentially the same for both choices of p;

and, for p = 1; the 95%-con�dence interval for �1 ([�1:05;�0:77]) includes
the value -1, which would correspond to a unit root. Therefore, the model
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with p = 0 is a natural choice. The estimated value of d is then equal to

d̂ = 0:54 ([0:40; 0:67]): This means, in particular, that m̂ = [d̂ + 1=2] = 1;

and the 95%-con�dence set for m is f0; 1g: Thus, the Atlantic series may be

nonstationary (in the sense of pure di�erence stationarity without trend), but

the evidence is not signi�cant formally at the 5% level. More importantly,

however, there is no signi�cant deterministic trend.

In conclusion, there is evidence for global warming in land mass tempera-

tures, but no evidence for global warming in Atlantic temperatures. The evi-

dence for global warming is stronger for land only temperatures as compared

to land-and-sea data. The statistical reason is that land-and-sea data are

obtained by spatial averaging of land and Atlantic data. Since the Atlantic

series does not have any trend, the increasing trend in the land mass data is

blurred by adding the Atlantic temperatures. From a climatological point of

view, a smaller or no increase in temperatures over the oceans is plausible,

since air pollution - which mainly takes place over land - is believed to be one

of the main factors responsible for global warming. A further observation is

that the estimated value of d for the land-and-sea data is higher than the

one for the land only data. This is also caused by adding the Atlantic data

which have a much higher value of d:

7.2 Exchange rate between German Mark and US

dollar

Figure 3a displays the logarithm of the daily exchange rate between the

German Mark (DM) and the US dollar, between September 1985 and Au-

gust 1990 (n = 1287). More speci�cally, the logarithm of the value of 100

DM in US dollars, divided by a baseline value, is plotted. There has been

some discussion in the recent literature about possible unit root behaviour

or long memory in foreign exchange rates (see e.g. Cheung 1993, Liu and He

1991, and references therein). Deviations from random walk behaviour may

have major implications for economic theory, since real markets may not be

arbitrage-free (for a discussion, see e.g. Mandelbrot 1971, Rogers 1997). In

view of this, it is interesting to see which hypothesis may be supported by

�tting SEMIFAR models. Using the BIC, we obtain p̂ = 0; with d̂ = 0:96

and a 95%-con�dence interval for d of [0:91; 1:00]: Thus, d appears to be

slightly below 1 though the value of 1 (unit root) is just in the con�dence in-

terval. Moreover, there is an apparent deterministic trend function. For the

di�erence, the estimated function ĝ (see �gure 3b) is almost always positive

and exceeds the acceptance region (for a signi�cance level of 5%), indicating

a predominantly increasing trend in the original series. (The �tted curve is

slightly wiggly, because the box-kernel was used here, and the �rst di�erence

of the data shows high variability.) Almost no, or even a negative, trend

can be observed between about observations 600 to 800. Compared to the
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random variability, the trend in the di�erenced series may appear negligible

(�gure 3b). However, for the original data, it is cumulated so that the deter-

ministic trend function is the dominating component (see �gures 3a). The

good �t of the model is demonstrated by �gures 3c and d where the sample

autocorrelations and the histogram of the residuals are displayed.

In conclusion, for the observed period, the daily DM/US $ exchange rate is

described in good approximation by a process whose �rst di�erence consists of

a deterministic trend plus a fractional autoregressive process with fractional

di�erencing parameter � = �0:04: Since d = m+ � = 1 is just at the border

of the 95%-con�dence interval, a simpler, and perhaps acceptable, model for

the stochastic part of the �rst di�erence may be iid normal observations.

Note that formal tests in Fong and Ouliaris (1995), reject the hypothesis of

random walk (i.e. d = 1 and po = 0) for the DM/US $ exchange rate. Fong

and Ouliaris conjecture that this may be due to long-range dependence. Our

results suggest that rejection of the random walk hypothesis could instead

be caused by the presence of a deterministic trend (which is another type of

long memory) instead of a stochastic long-memory component.

7.3 Boston robberies

Figure 4a displays seasonally adjusted logarithms of monthly numbers of

robberies in Boston between January 1966 - October 1975 (source: McCleary

et al. 1980). A SEMIFAR-�t yields the following solution: p̂ = 0; d̂ = 0:665

([0:52; 0:81]); and a signi�cant upward trend (see �gure 4a). Thus, over the

years there was a signi�cant nonrandom increase in the number of robberies.

The 
uctuations around this trend are nonstationary, but not random walk

(unit root). Instead, the increments of the residual process are antipersistent.

Figures 4c and d, with the sample autocorrelations and the histogram of the

residuals, illustrate that the model �ts the data reasonably well.

7.4 Tree rings

Figure 5a displays 10-year averaged of treering widths of a bristlecone pine

in California between the years 4141 B.C. to 1963 A.D. (source C. W. Fergu-

son, E. Schulman, H.C. Fritts). Long memory in treerings has been reported

by many authors (see in particular Mandelbrot 1983 and references therein).

Some caution is however needed, since treerings may also have trends (e.g.

age trends) that could be confounded with long-range depencence. The

results obtained with the SEMIFAR��t con�rms however that, for this

particular tree, a stationary fractional ARIMA(0,d,0) with 0 < d < 0:5

(i.e. stationarity with long-range dependence) provides a good model. More

speci�cally, the results are: p̂ = 0; d̂ = 0:28 ([0:22; 0:35]); and no signi�cant
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trend. Figures 5b and c with the sample autocorrelations and the histogram

of the residuals con�rm the good �t.

7.5 Simulated examples

The simulated series (n = 200) in �gures 1a through d are:

Figure 1a: Yi�Yi�1 = g(ti)+Xi; where Xi are iid standard normal variables

and g(t) = �0:5(t� 0:5)� 0:5exp[�100(t� 0:5)2]:

Figure 1b: Yi = g(ti) + Xi where Xi is a fractional autoregressive process

of order po = 0 with d
o = 0:3 and g is as above.

Figure 1c: Yi� Yi�1 = Xi where Xi is a fractional autoregressive process of

order po = 0 with d
o = �0:2:

Figure 1d: Yi = Xi where Xi is a fractional autoregressive process of order

po = 1 with d
o = 0:4 and �

o
1 = �0:5:

The \error" series Xi were all generated by the S-Plus function

arima.fracdi�.sim. Since a visual assessment of the time series plots appears

to be di�cult, it is interesting to see in how far the proposed method provides

better information. The estimates p̂ and �̂ = (d; �1; :::; �p) together with 95%-

con�dence intervals, obtained by �tting SEMIFAR models for p = 0; 1; 2; 3; 5

and choosing p based on the BIC, are given in table 2. Also given is the

estimated value of mo = [do + 0:5]:

The values of m̂ and p̂ are correct for all four series. Thus, in particular,

the method yields the correct answer to the question whether di�erencing is

needed, i.e. whether the observed series has a stochastic trend component.

Moreover, the estimates �̂ are very close to the true values and the true values

are always in the con�dence intervals. Similarily, regarding the presence of

a deterministic trend component, the results give correct indications. For

the third and fourth series, the estimated trends turned out to be almost

horizontal and close to zero. For the other two examples, the estimated

trends are reasonably close to the true trend functions, in particular in view

of the small data size of n = 200: Figure 6b displays the �rst di�erence

of series 1a, together with the estimated (full line) and the true (dotted

line) trend function. Figure 6a shows the same for the original (i.e. not

di�erenced) series. Figure 6c shows simulated series 1b together with the

estimated (full line) and the true (dotted line) trend.

18



8 Final remarks

In this paper, we introduced a semiparametric method for time series mod-

elling that incorporates stochastic trends, deterministic trends, long-range

dependence and short-range dependence. The trend function is modelled

nonparametrically. In particular, the method helps the data analyst to an-

swer the question which of these components are present in the observed

series. How well the di�erent components can be distinguished depends on

the speci�c process and, in particular, on the shape of the trend function.

Therefore, in order that the proposed method is e�ective in general, the ob-

served series must not be too short. As any `omnibus method' in statistics,

it is recommended to use the method in conjunction with available subject

speci�c knowledge. In cases where su�cient a priori knowledge about the

type of trend (e.g. linear, exponential etc.) is available, parametric trend

estimation should be used, since is likely to provide more accurate results.

This can be done simply by replacing the general function g in (7) by the

corresponding parametric function.

The most di�cult part of the problem addressed here is the distinction

between stochastic and deterministic trend without any a priori knowledge

(except smoothness). It can, easily be demonstrated by simulations that, for

instance, the sample path of a random walk process over a short time period

very often ressembles the sample path of a monotonous deterministic trend

plus noise. An additional source of uncertainty is long-range dependence

that can generate spurious trends. The method proposed here formalizes

how di�cult it is to separate these components. It is therefore natural that

for relatively short series, results based on SEMIFAR models show a high

variability (see the simulation results above). This is not due to the speci�c

estimation method, but rather re
ects the principal uncertainty about the

decision between stochastic and deterministic trends, and between short and

long memory, in situations where no assumptions can be made about 1. the

existence and shape of a possible deterministic trend and 2. stationarity or

nonstationarity of the stochastic component.

Further re�nements of the method, such as local bandwidth choice (see

e.g. Brockmann 1993), bootstrap con�dence intervals, faster algortihms (see

Gasser et al. 1991) or other smoothing methods, etc., will be worth pursu-

ing in future. A detailed study of several algorithms for �tting SEMIFAR

models, including the one used here, is given in a forthcoming paper. Recent

results on local polynomial smoothing for the case of stationary errors will

be extended to the case where errors may be nonstationary.

Also, various extensions of SEMIFAR models are possible. For instance,

as for classical ARIMA models, stochastic seasonal components can be in-

cluded by multiplying the left hand side of (7) by a polynomial �seas(B) =P
�j;seasB

sj where s 2 N is the seasonal period. For instance, for monthly
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data, s is typically equal to 12. Other extensions, such as inclusion of para-

metric and nonparametric explanatory variables, other seasonal components

and nonlinearities in the stochastic part of the process, are subject of current

research.

Finally, it should be noted that the acceptance regions used here for testing

signi�cance of a trend, are only pointwise regions. The problem of simulta-

neous acceptance bands is subject to current research and will be discussed

elsewhere. At this point, the given acceptance bands can be used as rough

guidelines. Also, the proposed method can be used in an exploratory way. It

can be used in particular to identify the essential shape of a potential trend

function g: Subsequently, a model with a suitable parametric trend may be

used.
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10 Appendix

Proof of theorem 1:

(i) The proof for the bias is standard.

(ii) and (iii): We have K(x) =
Pr

l=0 �lx
2l1fx 2 [�1; 1]g; and

n
1�2�var(ĝ(t)) = (nb)�1�2�

rX
l1;l2=0

�l1�l2

nbX
i;j=�nb

(
i

nb
)2l1(

j

nb
)2l2
(i� j)

= (nb)�1�2�
rX

l1;l2=0

�l1�l2V (l1; l2;nb):

Since r is �xed, it is su�cient to show for each l1; l2 separatly that
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n
�1�2�

V (l1; l2;nb) converges to a �nite value V (l1; l2)6=0: Now,

V (l1; l2;nb) =
2l2X
s=0

 
2l2

s

!
nbX

i=�nb

(
i

nb
)2l1+2l2�s

i+nbX
k=i�nb

(�1)s( k
nb

)s
(k)

=
2l2X
s=0

 
2l2

s

!
Vs(l1; l2;nb):

Again, it is su�cient to show that, for each s; n
�1�2�

Vs(l1; l2;nb)! Vs(l1; l2)

with 0 < jVs(l1; l2)j < 1: Note that, as jkj ! 1; 
(k) � c
jkj2��1 where

c
 > 0 is a constant. For s6=0; we then have

Vs(l1; l2; bn) � c
(nb)
�

nbX
i=�nb

(
i

nb
)2l1+2l2�s

Z i=nb+1

i=nb�1
x
sjxj2��1dx � c
n

2�+1 � const:

Moreover, for s = 0; since
P
1

k=�1 
(k) = 0;

Vs(l1; l2; bn) = �
nbX

i=�nb

(
i

bn
)2l1+2l2 [

1X
k=i+nb+1


(k) +
i�nb�1X
k=�1


(k)]

� �c
n�
nbX

i=�nb

(
i

nb
)2l1+2l2 [

Z
1

i=nb+1
x
2��1

dx�
Z
1

1�i=nb
x
2��1

dx]

� n
2�+1 c


2�

Z 1

�1
x
2l1+2l2 [(1 + x)2� � (1� x)2�]dx:

This concludes the proof of (ii) and (iii).

(iv) follows from (i), (ii) and (iii).

(v) follows from (iv) by maximimzing the asymptotic expression for the IMSE

with respect to b:

Proof of corollary 1:

(i) follows from theorem 1.

(ii) For � � 0; the result follows by evaluating the asymptotic expressions

(20) and (21) respectively.

For � < 0; the result is obtained as follows:

Without loss of generality, we may assume t = io=n for some integer io: Then,

for n large enough, ĝ(t) = (2nb)�1
Pnb

i=�nb Yi and

var(ĝ(t)) =
1

4
(nb)�2

2nb�1X
k=�(2nb�1)

(2nb� jkj)
(k)
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=
1

2
(nb)�1

2nb�1X
k=�(2nb�1)


(k)� 1

4
(nb)�2

2nb�1X
k=�(2nb�1)

jkj
(k):

Recalling that
P
1

k=�1 
(k) = 0 and 
(k) � c
 jkj2��1 where c
 is a constant,

we have

2nb�1X
k=�(2nb�1)


(k) = �2c
(nb)2�
Z
1

2
x
2��1

dx = (nb)2�c
�
�122�:

Moreover,

2nb�1X
k=�(2nb�1)

jkj
(k) � 2c
(nb)
2�+1

Z 2

o
x
2�
dx = (nb)2�+1c
(2� + 1)�122�+2:

Finally, note that c
 = 2cf�(1 � 2�) sin�� (see e.g. Beran 1994, p. 43).

Putting these results together, we obtain

(nb)1�2�var(ĝ(t))! 22��(1� 2�) sin��

�(2� + 1)
cf :

(iii) and (iv) follow directly from (i) and (ii).

Proof of theorem 2:

(i) Let �o = (�2�;o; d
o
; �

o
1; :::; �

o
p)

t be the true parameter vector and, in par-

ticular, mo = [do + 0:5] and �
o = d

o � m
o the true integer and fractional

di�erencing parameter respectively. For the case where m
o is known, con-

sistency of the maximum likelohood estimator of �o
�

= (�2�;o; �
o
; �

o
1; :::; �

o
p)

t

follows directly from the consistency of ĝ and known results on maximum

likelihood estimation for stationary fractional ARIMA processes (see e.g. Fox

and Taqqu 1986, Giraitis and Surgailis 1990, Dahlhaus 1989, Yajima 1985).

In theorem 2, mo is assumed to be unknown. Consistency of �̂ follows, if m̂

can be shown to converge to mo in probability.

We consider the two possible cases, mo = 0 and m
o = 1 separatly:

Case 1 (mo = 0) : Since mo = 0; Yi as well as Yi�Yi�1 are stationary. Hence,

(29) converges in probability to g(ti) and (30) converges to limn!1 g(ti) �
g(ti�1) = 0: Consistency of m̂ and hence of �̂ then follows as in Beran (1995)

and Ling and Li (1997).

Case 2 (mo = 1) : The estimate (30) converges in probability to g(ti) and,

Sn(�) to a �nite value �
2
� (�) which is minimal for � = �

o
: On the other hand,

for trial values of � with m = 0; the variance of (29) does not converge to

zero, and the variance of ei de�ned by (31) and Sn(�) diverge to in�nity, in

probability. Consistency then follows.
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(ii) Since �
o
; and in particular mo

; are estimated consistently, the central

limit theorem follows by Taylor expansion from known results on maximum

likelihood estimation as in Beran (1995) and Ling and Li (1997).

Proof of theorem 3:

For � = O(2c log logn) with c > 1; we have p̂! p in probability. The result

then follows from theorem 2.
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Table 1: Simulated values of N1; �d; ~d; s; ~s; and IMSEo; as de�ned in section 6.

For comparison, also given are the standard deviation �asympt; and the integrated

mean squared error IMSEasympt obtained from the asymptotic formulas. The

results are based on N = 100 simulations of a SEMIFAR model with po = 0 where

g(t) = 0:5(t � 0:5) + 0:5exp[�100(t � 0:5)2]; n = 200; 500; and do = �0:3; 0; 0:3;

0:7; 1 and 1:3 respectively.

do n N1
�d ~d �asympt s ~s IMSEasympt IMSEo

-0.3 200 100 -0.34 -0.34 0.055 0.065 0.065 0.0078 0.0070

-0.3 500 100 -0.32 -0.32 0.035 0.041 0.041 0.0027 0.0027

0 200 96 -0.1 -0.08 0.055 0.121 0.103 0.0262 0.0209

0 500 98 -0.05 -0.05 0.035 0.065 0.056 0.0126 0.0121

0.3 200 83 0.12 0.23 0.055 0.249 0.112 0.2419 0.1574

0.3 500 95 0.26 0.28 0.035 0.142 0.050 0.1733 0.1085

0.7 200 93 0.68 0.71 0.055 0.112 0.058 0.0078 0.0082

0.7 500 99 0.69 0.69 0.035 0.048 0.035 0.0027 0.0026

1 200 95 0.89 0.91 0.055 0.133 0.097 0.0262 0.0203

1 500 96 0.93 0.95 0.035 0.144 0.053 0.0126 0.0103

1.3 200 85 1.08 1.23 0.055 0.421 0.104 0.2419 0.1667

1.3 500 87 1.14 1.26 0.035 0.374 0.054 0.1733 0.1175
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Table 2: Estimates of po; d
o; �o1 (for po = 1), and mo = [do + 0:5] for the four

simulated examples in �gures 1a through d. The true values of po; m
o; do and �o

are given in brackets. Also given are the 95%-con�dence intervals for do and �o1
(if po = 1).

Fig. p̂ (po) m̂ (mo) d̂ (do) 95%-C.I. for do �̂1 (�o1) 95%-C.I. for �o1
Fig. 1a 0 (0) 1 (1) 1.05 (1) [0.94, 1.15] - -

Fig. 1b 0 (0) 0 (0) 0.29 (0.3) [0.18, 0.39] - -

Fig. 1c 0 (0) 1 (1) 0.67 (0.7) [0.56, 0.77] - -

Fig. 1d 1 (1) 0 (0) 0.25 (0.4) [-0.14, 0.64] -0.67 (-0.5) [-1,-0.30]
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