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Abstract. In an arbitrage free incomplete market we consider the

problem of maximizing terminal isoelastic utility. The relationship

between the optimal portfolio, the optimal martingale measure in

the dual problem and the optimal value function of the problem is

described by an BSDE. For a totally unhedgeable price for instan-

taneous risk, isoelastic utility of terminal wealth can be maximized

using a portfolio consisting of the locally risk-free bond and a lo-

cally eÆcient fund only. In a markovian market model we �nd a

non-linear PDE for the logarithm of the value function. From the

solution we can construct the optimal portfolio and the solution of

the dual problem.
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Introduction

We study the problem of maximizing expected isoelastic utility of
terminal wealth in an incomplete continuous time market with contin-
uous price process. The isoelastic utility of exponent p 6= 0; 1 is de�ned

as u(p)(x) := sgn(1� p)
jxjp
p

and for p = 0 by u(0)(x) := ln(jxj). The two
cases p < 1 and p > 1 are very di�erent in there economic interpre-
tation, but can be treated to some extend by the same mathematical
methods. Solving the optimization problem for p < 1 is a plausible ap-
proach to �nd portfolios of optimal expected growth. There are several

papers on this topic: See, e.g. Merton (1990), Pliska (1986), He and
Pearson (1991), Karatzas, Lehoczky, Shreve and Xu (1991), Karatzas
and Shreve (1999), Kramkov and Schachermayer (1999).
For p = 2 the problem is related to the mean-variance hedging

problem, see Gourieroux, Laurent and Pham (1998), (GLP98), Pham,
Rheinl�ander and Schweizer (1998) and Laurent and Pham (1999).
The theory of stochastic duality, which goes back to Bismut (1973,

1975), is the central tool for solving these problems. This theory al-

lows to formulate an optimization problem over a set of martingale
measures, being dual to the original optimization problem over a set of
self-�nancing hedging-strategies. Under quite general conditions, the
solution of one of the problems can be transformed into a solution of
the corresponding dual problem.

Another important approach, is to try to solve the optimization prob-
lem locally, i.e. by so-called myopic strategies which maximize in some
sense the expected growth rate of the portfolio at every instant of time.
In some important cases these strategies turn out to be globally op-

timal too. See, e.g., Mossin (1968), Leland (1972), Aase (1984, 1986,
1987, 1988), Foldes (1991), Goll and Kallsen (2000). This approach
is related to the risk-sensitive stochastic control approach, see Bielecki
and Pliska (1999, 2000).

We consider an arbitrage-free (in a sense to be speci�ed later) con-
tinuous time market model with unrestricted trading. We use the
modern equivalent martingale measure approach, see Harrison and
Pliska (1981), Delbaen and Schachermayer (1994). After some techni-
cal preparations in Section 1 and speci�cation of the model in Section

2, we formulate the optimization problem and its corresponding dual
Problem in Section 3. We show a representation property (formula

(3.8)), relating the terminal value V
opt

T
of a portfolio to a martingale

Research supported by the Center of Finance and Econometrics, Project Mathe-

matical Finance.



3

measure Z
opt

T
, to be suÆcient for the optimality of V

opt

T
for the utility

maximization problem and the optimality of Z
opt

T
for the dual problem.

The optimal values of the two problem are related by a simple formula.
In Section 4 we introduce the notion of a totally unhedgeable price for

instantaneous risk. In this situation we can explicitly solve the utility

optimization problem. The optimal portfolio is a locally eÆcient portfo-

lio, a notion we introduce in Section 5. In Section 6 we give an existence
result for the solutions of the two optimization problems. In Section
7 we derive a backward stochastic di�erential equation, (BSDE), such
that from the solution the optimal portfolio, the optimal value function

and the solution of the dual optimization problem can be constructed.
See Yong and Zhou (1999) for an introduction to BSDEs. In Section
8 we consider a markovian market model. We transform the BSDE
into a non-linear PDE for the logarithm of the value function. From

the partial derivatives of the solution, we can construct under addi-
tional assumptions the optimal portfolio and the solution of the dual
optimization problem.

1. Self-financing Hedging Strategies

Let a �ltered probability space 
1 := (
;F ; (Fs)s�0; P ), satisfying
the usual conditions be given. For simplicity we assume F0 to be trivial
up to sets of measure 0 with respect to P and F1� = F1 := F . For
an adapted process X set X0� := X0, Xt� := limh&0Xt�h for t > 0 if
the limit exists and de�ne the processes X� := (Xt�)0�t<1 and �X :=
X �X� if Xt� exists for all t > 0. The components of X are denoted
as X i

; 1 � i � d. For a process X and a map � : 
! �R+ , denote the

stopped process at time � by X� . We will often restrict a semimartin-
gale X on 
1 to an interval [t; T ]; 0 � t � T < 1, resp. to [t;1).
Therefore we introduce the following �ltered probability space (again

satisfying the usual conditions), 
[t;T ] :=

�

;FT ;

�
F [t;T ]
s

�
s�0

; PjFT

�
for all 0 � t � T � 1, t < 1, where F [t;T ]

s := Ft_s^T for 0 � s < 1.

The process X
[t;T ]
s := Xt_s^T is then a semimartingale on 
[t;T ]. How-

ever, on [t; T ] we often write X instead of X [t;T ]. Set 
T := 
[0;T ].
For q > 1 de�ne Lq(
[t;T ]), respectively L

q

t
(
[t;T ]), as the set of FT -

measurable random variables X, such that E[X] <1 a.s., respectively
Et[X] < 1 a.s., where Et[�] := E[�jFt] denotes the generalized condi-
tional expectation. Denote the conditional variance by Vart(�). The
stochastic exponential of a semimartingale X is denoted as E(X) and

we set Et(X) := E(1[t;1)X). As a general references we cite Jacod and
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Shiryaev (1987), (J&S 87), and Jacod (1979). Denote the set of pre-
dictable processes which are locally integrable, resp. locally Riemann-

Stieltjes integrable, with respect to a local martingale M , resp. with
respect to a process A of �nite variation, by L1

loc
(M), resp. by L1

loc
(A).

If the semimartingale X admits a decomposition X = X0 + A +M ,
where M is a local martingale and A is a process of �nite variation

then L1
loc
(X) := L

1
loc
(M) \ L1

loc
(A).

We can now de�ne the market model: Let S = (St)0�t<1 be a Rd -
valued semimartingale. M := (
1; S) = ((
;F ; (Fs)s�0; P ); S) is a
model for a market, where S describes the price processes of d assets.
We will often consider such a market on an interval [t; T ]; 0 � t <

T < 1. This is equivalent to work with the following market model
M[t;T ] de�ned byM[t;T ] :=

�

[t;T ]; S

[t;T ]
�
. SetMT :=M[0;T ]. We want

to model the economic activity of investing money into a portfolio of

assets and changing the number of assets held over time according to a
certain hedging strategy. This is achieved with the following de�nition:

De�nition 1.1. A hedging strategy in the marketM is a H 2 L
1
loc
(S).

The corresponding value process V H of H is de�ned as V H := HS.

The gains process of H is de�ned as the semimartingale GH := H � S.

H is called self-�nancing if V H = V
H

0 + G
H , i.e. HtSt = H0S0 +R

t

0
HsdSs; 8 t � 0. Denote the space of all self-�nancing hedging strate-

gies in M by SF(M).

Note that for H 2 SF(M), we have H [t;T ] 2 SF(M[t;T ]). The idea
of a self-�nancing hedging strategy is that the changes over time of
the corresponding value process are solely caused by the changes of the
value of the assets held in the portfolio and not by withdrawing money

from or adding money to the portfolio.

De�nition 1.2. A semimartingale B such that B and B� are strictly

positive is called a num�eraire for the marketM. The market discounted

with respect to B is then de�ned asMB :=
�

1; SB

�
, where SB := S

B
.
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For 0 � t � T < 1, the market restricted to the interval [t; T ] is

de�ned as MB

[t;T ] :=
�MB

�
[t;T ]

=
�

[t;T ];

�
S
B
�[t;T ]�

.

Note that for a num�eraire B, B�1 is a num�eraire too and S
B is a

semimartingale.
Usually there is in addition to the market M a num�eraire B given

and the market �M := (
1; �S); �S := (S;B) is considered. Often B

is the price process of a locally risk-free bond. If the num�eraire is

traded, i.e. the value process of a portfolio in M, one can try to
extend a hedging strategy inM to a self-�nancing hedging strategy in
�M. De�ne the discounted market �MB = (
1; (SB

; 1)). The idea is to

extend H to a self-�nancing hedging strategy �H = (H; Ĥ) 2 SF( �MB)

by de�ning the process Ĥ := H0S
B

0 +H � SB �HS
B and then to show

that �H is a self-�nancing hedging strategy in �M too, see Geman, El

Karui and Rochet (1995) and Goll and Kallsen (2000). (Note that
H �SB�HSB = (H �SB)�+�(H �SB)�HSB = (H �SB)�+H�SB�
HS

B = (H � SB)� �HS
B

� is predictable, hence �H as well.)

Proposition 1.3. Let B be a num�eraire for the market M. Then

SF(MB) = SF(M) holds.

Proof. Let H 2 SF(MB). Set V B = HS
B. First, we have to show

H 2 L
1
loc
(S). Since S = S

B
B = S0 + S

B

� � B + B� � SB + [SB
; B] this

follows if we show that H 2 L
1
loc
(SB

� �B)\L1
loc
(B� �SB)\L1

loc
([SB

; B]).

Note that HSB

� = H(SB � �SB) = V
B � �(H � SB) = V

B

0 + H �

S
B � �(H � SB) = V

B

0 + (H � SB)� = V
B

� , which is locally bounded.

Since [SB

� �B; SB

� �B] = (SB

� 
S
B

� ) � [B;B] and H(SB

� 
S
B

�)H = (V B

� )2

is locally integrable with respect to [B;B], we �nd H 2 L
1
loc
(SB

� � B).
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That H 2 L
1
loc
(B� � SB) \ L1

loc
([SB

; B]) is easy to see. We calculate

H � S = H � (SB
B) = H � (SB

� �B +B� � SB + [SB
; B])

= (HSB

�) �B + (B�H) � SB + [H � SB
; B]

= V
B

� �B +B� � (H � SB) + [V B
; B]

= V
B
B � V

B

0 B0 = HS
B
B �H0S

B

0 B0

= HS �H0S0:

This implies SF(MB) � SF(M). Now observe that (MB)B
�1

=M,

since B�1 is a num�eraire. This implies the reverse inclusion.

There is an alternative way to construct self-�nancing hedging strate-

gies:

Lemma 1.4. Let H 2 SF(M) be such that V H 6= 0 and V
H

� 6= 0

almost surely. Set ~H := H

V
H

�

. Then ~H 2 L
1
loc
(S), ~HS� = 1 and

V
H = V

H

0 + V
H

� � ( ~H � S) = V
H

0 E( ~H � S);(1.1)

holds. Conversely, let ~H 2 L
1
loc
(S) with ~HS� = 1 be given and set

H := v0E( ~H � S)� ~H for a F0-measurable random variable v0. Then

H 2 SF(M) and V
H = v0E( ~H � S). We call ~H a generator for the

self-�nancing strategy H and de�ne V ( ~H) := V
H.

Proof. Since
�
V

H

�
��1

is locally bounded we have ~H 2 L
1
loc
(S). We have

V
H�V H

0 = G
H = H �S = (V H

� ~H)�S = V
H

� �( ~H �S). The second identity

in (1.1) follows immediately from the uniqueness of the solution to the
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Dol�ean-Dade SDE de�ning the stochastic exponential, see J&S 87, I.4f.

Conversely, we calculate

HS = v0E( ~H � S)� ~HS = v0E( ~H � S)�( ~HS� + ~H�S)

= v0E( ~H � S)�(1 + �( ~H � S))

= v0

�
E( ~H � S)� + E( ~H � S)��( ~H � S)

�
= v0

�
E( ~H � S)� +�

�E( ~H � S)� � ( ~H � S)��
= v0

�
E( ~H � S)� +�

�E( ~H � S)� 1
��

= v0E( ~H � S) = v0 + v0E( ~H � S)� � ( ~H � S)

= v0 + v0E( ~H � S)� ~H � S = V
H

0 +G
H
:

2. Arbitrage-free Markets

So far we did not worry about arbitrage. We consider in this section
the market �M := (
1; �S), where �S := (S;B) is Rd�R-valued and B is
a num�eraire, with B0 = 1, which we assume to be uniformly bounded

and uniformly bounded away from 0 on �nite intervals. For 0 � t �
T � 1; t < 1, denote the set of uniformly integrable, resp. local
martingales, living on 
[t;T ] by Lu(
[t;T ]), resp. by L(
[t;T ]). De�ne
the following sets of local martingale measures:

�D( �M[t;T ]) :=
�
Z 2 L(
[t;T ])jZ1[0;t] = 1; Z � 0; (SB)[t;T ]Z 2 L(
[t;T ])

	
;

(2.1)

D( �M[t;T ]) :=
�
Z 2 L(
[t;T ])jZ1[0;t] = 1; Z > 0; (SB)[t;T ]Z 2 L(
[t;T ])

	
;

(2.2)

Dabs( �M[t;T ]) :=
�
Z 2 �D( �M[t;T ])jZ uniformly integrable martingale

	
;

(2.3)
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and

De( �M[t;T ]) :=
�
Z 2 D( �M[t;T ])jZ uniformly integrable martingale

	
:

(2.4)

We will work with the following No-Arbitrage condition:

De( �MT ) 6= ;; 8 T <1:(2.5)

This condition is known to be equivalent to the NFLVR-condition, see
Delbaen and Schachermayer (1994). It implies that

De( �M[t;T ]) 6= ;; 8 0 � t � T <1:(2.6)

We will often work with the following sets of equivalent, resp. abso-
lutely continuous, local martingale measures, for q > 1:

Dq( �M[0;T ]) :=
�
Z 2 D( �M[0;T ])jZT 2 L

q(
[0;T ])
	
;(2.7)

Dq

t (
�M[t;T ]) :=

�
Zt_�
Zt

jZ 2 Dq( �M[0;T ])

�
;(2.8)

�Dq( �M[0;T ]) :=
�
Z 2 Dabs( �M[0;T ])jZT 2 L

q(
[0;T ])
	
;(2.9)

�Dq

t
( �M[t;T ]) :=

�
Zt_�
Zt

jZ 2 �Dq( �M[0;T ]); Zt > 0

�
:(2.10)

Note that Z 2 Dq

t
( �M[t;T ]) implies ZT 2 L

p

t
(
[t;T ]). For q < 1 set

Dq

t (
�M[t;T ]) := D( �M[t;T ]) and �Dq( �M[t;T ]) := �Dq

t (
�M[t;T ]) := �D( �M[t;T ]).

For Z 2 Dq

t (
�M[t;T ]) and t � t

0 � T
0 � T , we have Z

[t0;T 0]

Z
t0

2 Dq

t0
( �M[t0;T 0]).

Note also that Dq

0(
�M[0;T ]) = D( �M[0;T ]), since F0 was assumed to be

trivial.
p will always denote a real number di�erent from 1. We de�ne q :=

p

p�1 , such that for p 6= 0; 1, p�1 + q
�1 = 1 holds, but for p = 0 we have

q = 0.
Let B � SF( �M[t;T ]). We call a H 2 B an B-arbitrage, if V H

0 = 0,

V
H

T
� 0 and V

H

T
6= 0 almost surely. If there exists no B-arbitrage,

then B is called arbitrage-free. In all probabilistic theories of �nancial
markets allowing to trade at an in�nitely large number of instances of
time one has to exclude certain self-�nancing hedging strategies, e.g.
doubling strategies, in order to avoid arbitrage opportunities. We will

de�ne several arbitrage-free subsets of SF( �M[t;T ]):
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1. For p > 1 and Dq

t
( �M[t;T ]) 6= ;, (see Delbaen and Schachermayer

(1996), (DS96)):

SF p( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H

T
2 L

p(
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 Dq( �M[t;T ])

�
;(2.11)

resp.

SF p

t
( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H

T
2 L

p

t
(
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 Dq

t
( �M[t;T ])

�
:(2.12)

Note that

SFp

t (
�M[t;T ]) =

�
H 2 SF( �M[t;T ])jV H

T
2 L

p

t (
[t;T ]);

V
H

B[t;T ]
Z 2 Lu(
[t;T ]); 8 Z 2 �Dq

t (
�M[t;T ])

�
;(2.13)

since for Z 2 �Dq

t
( �M[t;T ]) we can �nd a �Z 2 �Dq( �M[0;T ]) with Z =

�Zt_�
�Zt

and for Z 0 2 Dq( �M[0;T ]), we have ~Z :=
�Z+Z0

2
2 Dq( �M[0;T ]),

which implies Ẑ :=
~Zt_�
~Zt

2 Dq

t (
�M[t;T ]) and for H 2 SFp

t (
�M[t;T ])

that V
H

B[t;T ]Z = V
H

B[t;T ] (( �Zt + Z
0
t
)Ẑ � Z

0

t_�

Z0
t

) is a uniformly integrable

martingale.
2. For p < 1

SFp( �M[t;T ]) := SFp

t
( �M[t;T ]) :=

�
H 2 SF( �M[t;T ])jV H � 0

	
:(2.14)

3. For p > 1 and �S 2 Sp

loc
(
[t;T ])

Gp( �M[t;T ]) :=
�
H 2 SF( �M[t;T ])jV H 2 Sp(
[t;T ])

	
;(2.15)

where Sp(
[t;T ]) denotes the space of Lp-integrable semimartin-
gales, see Delbaen, Monat, Schachermayer, Schweizer and Stricker
(1997) (DMSSS97) for the case p = 2 and Grandits and Krawczyk

(1998), (GK98), for the general case p > 1.

Lemma 2.1. For p > 1 assume Dq

t
( �M[t;T ]) 6= ; and �S to be contin-

uous. Then Gp( �M[t;T ]) � SFp

t (
�M[t;T ]). In particular Gp( �M[t;T ]) is

arbitrage-free.
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Proof. For H 2 Gp( �M[t;T ]) set �n := inf
n
s � 0

�� ���VH
s

Bs

��� � n

o
, Hn := H

on [0; �n) and
�
0;

V
H
�n

B�n

�
2 R

d � R on [�n; T ]. Then H
n 2 SF p

t
( �M[t;T ]),

since
��� V H

n

B[t;T ]

��� � n. It follows E
h
V
H
n

T

BT

ZT jFs

i
=

V
H
n

s

Bs

Zs for all t �

s � T and all Z 2 Dq

t
( �M[t;T ]). V

H
n

s
converges almost surely to V

H

s

and
���V H

n

T

BT

ZT

��� �
���� supt�s�T (V H

s )
BT

ZT

���� 2 L
1(
[t;T ]), since supt�s�T

�
V
H

s

� 2
L
p(
[t;T ]) by Doob's maximal inequality, hence we �nd E

h
V
H

T

BT

ZT jFs

i
=

V
H
s

Bs

Zs for all t � s � T .

De�ne for Ft-measurable v

A�p
v
( �M[t;T ]) :=

�
V

H

T

BT

��H 2 SF p( �M[t;T ]);
V
H

t

Bt

= v

�
;(2.16)

and

Gp
v
( �M[t;T ]) :=

�
V
H

T

BT

��H 2 Gp( �M[t;T ]);
V

H

t

Bt

= v

�
:(2.17)

For p > 1 and Dq( �M[t;T ]) 6= ;, SFp( �M[t;T ]) has an important prop-

erty: A�p1 (M[t;T ]) is known to be closed, if
�
S

B

�[t;T ]
is locally in Lp(
[t;T ])

in the sense, that there exists a sequence Un; n 2 N of localizing
stopping times increasing to in�nity such that for each n, the fam-

ily fS[t;T ]
� j� stopping time; � � Ung is bounded in Lp(
[t;T ]), see DS96.

This condition certainly holds if �S is continuous. To work with the

spaces Gp( �M[t;T ]) is in some sense more natural, since its de�nition in-
volves only the objective probability measure P and no equivalent mar-
tingale measures. Furthermore Gp( �M[t;T ]) is stable under stopping, a
desirable property from an economic point of view. However, this space

has in general weaker properties than SFp( �M[t;T ]), see DMSSS97 and
GK98.
We will often work with a continuous price process S, resp. �S. In this

case L1
loc
(S) = L

2
loc
(S) holds. The price process admits a representation

S = S0 + � � �+M;(2.18)

where � = (�i)1�i�d is predictable, � is a predictable, increasing, con-
tinuous, locally integrable process such that � is locally integrable with
respect to �. Furthermore, there exists a symmetric non-negative d�d-
matrix-valued predictable process C = (Cij)1�i;j�d, locally integrable
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with respect to �, such that [Si
; S

j] = [M i
;M

j] =< M
i
;M

j
>= C

ij ��.
� can be chosen such that B = E(r � �) for a predictable process r.
In the continuous case, De( �M[0;T ]) 6= ; implies � = rS � C�, d�-

almost surely for a predictable process � 2 L
2
loc
(M) and every Z 2

De( �M[t;T ]) is of the form Z = Et(� � M + N)T , where N is a not
necessarily continuous local martingale orthogonal toM with [M;N ] =

0, see Ansel and Stricker (1992).

3. Optimal Portfolios

Consider the problem of maximizing expected utility from termi-
nal wealth. We follow a stochastic duality approach, which goes back
to Bismut (1973, 1975), see also Karatzas, Lehoczky, Shreve and Xu

(1991), (KLSX91), and Karatzas and Shreve (1999), Kramkov and
Schachermayer (1999) and Schachermayer (2000) for general results.
We have already de�ned the so-called isoelastic utility functions

u
(p)
; p 6= 1, with constant index of relative risk-aversion, see Pratt

(1964) and Arrow (1976). For optimization multiplication of the util-
ity function with a constant factor or adding a constant has no e�ect.
We choose to normalize the utility function such that jU (p)(1)j = 1 for
all p 6= 0; 1 and de�ne for p < 1; p 6= 0

U
(p)(x) := sgn(p)xp; 8 x � 0;(3.1)

U
(p)(x) = �1 for x < 0 and

U
(0)(x) := ln(x); 8 x > 0;(3.2)

U
(0)(x) = �1 for x � 0. For p > 1 set

U
(p)(x) := �jxjp; 8 x 2 R;(3.3)

We have for p < 1; p 6= 0

dU
(p)

dx
(x) = jpjxp�1; 8 x > 0;(3.4)

and

dU
(0)

dx
(x) =

1

x
; 8 x > 0;(3.5)

and set dU
(p)

dx
(0) :=1 for p < 1.

We want to solve the following optimization problem for �xed 0 �
t � T <1 and p 6= 1:

V(p; t; T;B) := ess sup H2B

Ht
�St=1

Et

�
U

(p)
�
V
H

T

��
(3.6)
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where B 2 fSFp

t
( �M[t;T ]); fSFp( �M[t;T ]);Gp( �M[t;T ])g for p > 1, resp.

B = SF p

t
( �M[t;T ]) for p < 1, and the dual problem

W�(q; t; T; C) := ess infZ2C Et

�
�U (q)

�
BtZT

BT

��
;(3.7)

where C 2 fDq

t
( �M[t;T ]); �Dq

t
( �M[t;T ])g. (�U (q) equals the convex dual

to U (p) up to a constant factor, see Rockafellar (1970)). See Karatzas
and Shreve (1999) for the de�nition of ess sup and ess inf. If for H 2 B
with V H

0 = 1 and V(p; t; T;B) = Et

�
U

(p)
�
V

H

T

��
, then we say V H solves

Problem (3.6) for B. If for Z 2 C, W�(q; t; T; C) = Et

h
�U (q)

�
BtZT

BT

�i
,

then we say Z solves the dual Problem (3.7) for C. For the moment
we are interested in the Problem (3.6) for B = SFp

t (
�M[t;T ]) and set

V(p; t; T ) := V(p; t; T;SFp

t
( �M[t;T ])). For p > 1, we set W�(q; t; T ) :=

W�(q; t; T; �Dq

t (
�M[t;T ])), respectively for p < 1, we de�ne W�(q; t; T ) :=

W�(q; t; T;Dq

t (
�M[t;T ])). (It will turn out later, that W�(q; t; T ) =

W�(q; t; T; �Dq

t
(M[t;T ])) for p > 1 and for p < 1 if V(p; 0; T ) <1.)

The following proposition shows the close relation between these two
problems and gives the key idea how to handle the incompleteness of
the market.

Proposition 3.1. Assume that there exists an H 2 SFp

t
( �M[t;T ]) with

V
H

T
� 0 and a Zopt�;q;t;T 2 �Dt( �M[t;T ]) such that for some Ft-measurable

random variable c > 0

Z
opt�;q;t;T
T

= cBT sgn(1� p)
dU

(p)

dx

�
V
H

T

�
;(3.8)

and such that V
H

B[t;T ]Z
opt�;q;t;T is a uniformly integrable martingale. Then

V
opt;p;t;T := V

H

V
H

0

solves Problem (3.6) for SFp

t
( �M[t;T ]) and Z

opt�;q;t;T

solves for p > 1, resp. p < 1, the dual Problem (3.7) for �Dt( �M[t;T ]),

resp. for Dt( �M[t;T ]) and �Dt( �M[t;T ]). There exists at most one such

pair (V opt;p;t;T
; Z

opt�;q;t;T ) with a representation (3.8). For p 6= 0 the
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corresponding optimal values satisfy

jV(p; t; T )jp�1jW�(q; t; T )jq�1

= 1:(3.9)

Proof. Note that for p < 1 (3.8) implies V H

T
> 0. For H 2 SFp

t
( �M[t;T ])

with V H

0 = 1 and since U (p) is concave we have

U
(p)
�
V

H

T

� � U
(p)
�
V
opt;p;t;T

T

�
+
dU

(p)

dx

�
V
opt;p;t;T

T

�
(V H

T
� V

opt;p;t;T

T
):

(3.10)

Taking conditional expectations we �nd

Et

�
U

(p)
�
V

H

T

�� � Et

"
U

(p)
�
V
opt;p;t;T

T

�
+ Z

opt�;q;t;T V
H

T
� V

opt;p;t;T

T

sgn(1� p)cBT

#

� Et

h
U

(p)
�
V
opt;p;t;T

T

�i
;

since Et

h
V
H

T

BT

Z
opt�;q;t;T

i
� V

H

t

Bt

=
V
opt;p;t;T

t

Bt

for p < 1, respectively since

Z
opt�;q;t;T 2 �Dq

t
( �M[t;T ]) for p > 1. Let Q 2 �Dq

t
( �M[t;T ]) and calculate

�U (q)

 
dQT

dPT

BTB
�1
t

!
= �U (q)

0
@Z

opt�;q;t;T
T

+
�
dQT

dPT
� Z

opt�;q;t;T
T

�
BTB

�1
t

1
A

� �U (q)

 
Z
opt�;q;t;T
T

BTB
�1
t

!
� dU

(q)

dx

 
BtZ

opt�;q;t;T
T

BTB
�1
t

!
dQT

dPT
� Z

opt�;q;t;T
T

BTB
�1
t

= �U (q)

 
Z
opt�;q;t;T
T

BTB
�1
t

!
� sgn(1� p)k

V
opt;p;t;T

T

BT

�
dQT

dPT

� Z
opt�;q;t;T
T

�
;

for some Ft-measurable random variable k > 0. Taking conditional

expectations we �nd

Et

"
�U (q)

 
BtZ

opt�;q;t;T
T

BT

!#
� Et

"
�U (q)

 
Bt

dQT

dPT

BT

!#
;(3.11)
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since Et

h
V
opt;p;t;T

T

BT

dQT

dPT

i
� V

opt;p;t;T

t

Bt

for p < 1, resp. since for p > 1

Z
opt�;q;t;T 2 �Dq

t
( �M[t;T ]). The uniqueness of the pair (V

opt;p;t;T

T
; Z

opt�;q;t;T
T

)

follows from the strict concavity of U (p). Since V
opt;p;t;T

B[t;T ] Z
opt�;q;t;T is a

uniformly integrable martingale, it is determined by
V
opt;p;t;T

T

BT

Z
opt�;q;t;T
T

.

Let H 0 2 SFp

t
( �M[t;T ]) with V

H
0

0 = 1 and Z 0 2 Dt( �M[t;T ]) such that

Z
0
T
= c

0
BT sgn(1� p)

dU
(p)

dx

�
V

H
0

T

�
;(3.12)

holds for a Ft-measurable random variable c0 > 0. Then V
opt;p;t;T

T
=

V
H
0

T
, Z

opt�;q;t;T
T

= Z
0
T
and V

opt;p;t;T

B[t;T ] Z
opt�;q;t;T = V

H
0

B[t;T ]Z
0. Assume that

there exists a t � s � T with A := fV H
0

s
> V

opt;p;t;T

s
g 6= ;. In

this case we can change the self-�nancing hedging strategy H
0 on

A � [s; T ] to a H
00 2 SFp

t (
�M[t;T ]) such that V H

00

T
� V

opt;p;t;T

T
and

V
H
00

T
> V

opt;p;t;T

T
on A. From this we conclude the uniqueness of the

pair (V opt;p;t;T
; Z

opt�;q;t;T ). For p 6= 0 we �nd

U
(p)(V

opt;p;t;T

T
) = �sgn(q)

�
V

opt;p;t;T

T

�p
= �sgn(q)

�
V

opt;p;t;T

T

�p�1
V
opt;p;t;T

T

=
Z
opt�;p;t;T
T

cp sgn(1� p)

V
opt;p;t;T

T

BT

;

hence

V(p; t; T ) = Et

h
U

(p)(V
opt;p;t;T

T
)
i
=

1

cp sgn(1� p)Bt

:(3.13)
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For q 6= 0 we �nd

�U (q)

 
BtZ

opt�;p;t;T
T

BT

!
= sgn(p)B

q

t

 
Z
opt�;p;t;T
T

BT

!q

= sgn(p)B
q

t

 
Z
opt�;p;t;T
T

BT

!
q�1

Z
opt�;p;t;T
T

BT

= sgn(p)B
q

t

�
cjpj�V opt;p;t;T

T

�
p�1� 1

p�1 Z
opt�;p;t;T
T

BT

= sgn(p)B
q

t
(cjpj) 1

p�1Z
opt�;p;t;T
T

V
opt;p;t;T

T

BT

;

hence

W�(q; t; T ) = Et

"
�U (q)

 
BtZ

opt�;p;t;T
T

BT

!#
= sgn(p)(Btcjpj)

1
p�1 :(3.14)

(3.13) and (3.14) together imply (3.9).

We call (V opt;p;t;T
; Z

opt�;q;t;T ) the optimal pair for the market �M[t;T ] with

respect to optimization in SFp

t
( �M[t;T ]). We have the following stability

property for optimal pairs:

Proposition 3.2. If the pair (V opt;p;t;T
; Z

opt�;q;t;T ) admits a represen-

tation (3.8) with V opt;p;t;T = V
H for a H 2 SFp

t
( �M[t;T ]) with V

H

0 = 1

and Zopt�;q;t;T 2 Dq

t (
�M[t;T ]), then the optimal pair for the market �M[t0;T ]

exists and is given by

�
V

opt;p;t
0
;T
; Z

opt�;q;t0;T
�
=

 
V

opt;p;t;T

t0_�
V

opt;p;t;T

t0

;
Z
opt�;q;t;T
t0_�

Z
opt�;q;t;T
t0

!
:(3.15)

Proof. Note �rst, that by J&S87, Lemma III.3.6, we have Zopt�;q;t;T
> 0.

For Z 2 �Dq

t0
( �M[t0;T ]) set A :=

�
Et0 [Z

q

T
] < Et0

��
Z
opt�;q;t;T

T

Z
opt�;q;t;T

t0

�q��
. De�ne

~Z := Z
opt�;q;t;T on [t; t0)[Ac�[t0; T ], and ~Z := Z

opt�;q;t;T
t0

Z on A�[t0; T ].
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We calculate

Et

h
~Z
q

T

i
= Et

h
Et0

h
~Z
q

T

ii
= Et

h
1A

�
Z
opt�;q;t;T
t0

�
q

Et0 [Z
q

T
] + 1AcEt0

h�
Z
opt�;q;t;T
T

�
q
ii

� Et

h
Et0

h�
Z
opt�;q;t;T
T

�
q
ii

= Et

h�
Z
opt�;q;t;T
T

�
q
i
;

hence ~Z 2 �Dq

t
( �M[t;T ]), ~ZT = Z

opt�;q;t;T
T

and A = ; and we conclude

Z
opt�;q;t0;T =

Z
opt�;q;t;T

t0_�

Z
opt�;q;t;T

t0

. By assumption we have
V
opt;p;t;T

T

BT

Z
opt�;q;t;T
T

> 0

and since V
opt;p;t;T

B[t;T ] Z
opt�;q;t;T is a non-negative supermartingale we have

V
opt;p;t;T

> 0. Hence
V
opt;p;t;T

T

V
opt;p;t;T

t0

2 L
p

t0
(
[t0;T ]) and

V
opt;p;t;T

t0_�

V
opt;p;t;T

t0

Z is a uniformly

integrable martingale for all Z 2 Dq

t0
( �M[t0;T ]). Since

Z
opt�;q;t0;T
T

= ct0BT sgn(1� p)
dU

(p)

dx

 
V

opt;p;t;T

T

V
opt;p;t;T

t0

!
;(3.16)

where

ct0 :=
c
dU

(p)

dx

�
V
opt;p;t;T

t0

�
Z
opt�;q;t;T
t0

;(3.17)

we can apply Proposition 3.1.

Lemma 3.3. For p > 1, H 2 SF0
t
( �M[t;T ]) with V

H

0 = 1, Zopt�;q;t;T 2
�Dt( �M[t;T ]) and assume (V

H
; Z

opt�;q;t;T ) to admit a representation (3.8).

If V H

T
2 L

p+�
t (
[t;T ]), (or equivalently Z

opt�;q;t;T
T

2 L
q+�
t (
[t;T ])), for

some � > 0, then H 2 SF p

t (
�M[t;T ]) and (V H

; Z
opt�;q;t;T ) is the optimal

pair for the market �M[t0;T ].
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Proof. Observe that
V
H

T

BT

ZT 2 L
1+~�
t

(
[t;T ]) for some ~� > 0 for all Z 2
�Dq

t
( �M[t;T ]). Hence

V
H

T

BT

Z is a uniformly integrable martingale. Now

apply Proposition 3.1.

In the next two sections we look at an example and postpone an
existence result for the optimal pair (V opt;p;t;T

; Z
opt�;q;t;T ) until Section

6.

4. Totally Unhedgeable Price for Instantaneous Risk

Assume �S to be continuous such that we have a representation
(2.18). In this section we seek a suÆcient condition ensuring certain
self-�nancing hedging strategies to be optimal for problem 3.6. See
Karatzas and Shreve (1999), Example 6.7.4 for a similar result and the

notion of totally unhedgeable coeÆcients. This notion describes a mar-
ket model where the uncertainty in the coeÆcients de�ning the model
is in a certain sense orthogonal to the uncertainty of the local martin-
gale M driving the price process, such that we can not hedge against

this risk. Set � :=
p
�C� 2 L

2
loc
(�).

De�nition 4.1. For 0 � t � T <1, �[t;T ] is called the instantaneous

price for risk process, or instantaneous Sharpe-ratio process, for the

market �M[t;T ].

De�nition 4.2. For 0 � t � T < 1, let an Ft-measurable random

variable c > 0 and a not necessarily continuous local martingale N

orthogonal to M , (or equivalently with [N;M ] = 0), be given such

that

1.

Et
��

pr � q
�
2

2

�
� �
�
T

= cEt(N)T :(4.1)
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2. For p < 1, Et(q� �M +N)T is a uniformly integrable martingale.

We then call the instantaneous price for risk �[t;T ] in the market �M[t;T ]

totally p-unhedgeable. resp. strongly totally p-unhedgeable if Et(N)T is

a uniformly integrable martingale.

Remark 4.3. For p = 0 we have q = 0 and we �nd a unique represen-

tation (4.1) with c = 1, N = 0 for any 0 � t � T < 1, thus �[t;T ] is

totally 0-unhedgeable in �M[t;T ]. For p = 0, the optimization problem

(3.6) is also known as maximizing the Kelly-criterion, see Kelly (1956),

Breiman (1960) and Karatzas and Shreve (1999). For general results

see Aase (1986) and Goll and Kallsen (2000).

Lemma 4.4. If �[t;T ] is totally p-unhedgeable in �M[t;T ], then �
[t0;T ] is

totally p-unhedgeable in �M[t0;T ] for all t � t
0 � T .

Proof. For t � t
0 � T set c0 := cEt

�
�
�
pr � q

�
2

2

�
� � +N

�
t0
. This

gives us a representation (4.1) and for p < 1, Et0(q� �M + N)T is a

uniformly integrable martingale.

Proposition 4.5. Assume � [t;T ] to be totally p-unhedgeable in �M[t;T ]

with a representation (4.1), then the optimal pair for the market �M[t0;T ]

for t � t
0 � T is given by

�
V

opt;p;t
0
;T
; Z

opt�;q;t0;T
�
=

 
V

(Hp)
t0_�
V

(Hp)
t0

; Et0(� �M +N)T

!
;(4.2)
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where Hp :=

�
�

p�1 ;
1� �S

p�1

B

�[t;T ]

generates the value process

V
(Hp) := Et

��
r � �

2

p� 1

�
� � +

�

p� 1
�M
�T

:(4.3)

Furthermore, for p 6= 0

V(p; t0; T ) = �sgn(q)
Et0

h
Et0
��
pr � q

�
2

2

�
� �
�
T

i
Et0 [Et0(N)T ]

;(4.4)

resp. if �[t;T ] is strongly totally p-unhedgeable in �M[t;T ],

V(p; t0; T ) = �sgn(q)Et0

�
Et0
��

pr � q
�
2

2

�
� �
�
T

�
;(4.5)

and

W�(p; t0; T ) = sgn(p) (V(p; t0; T )) 1
1�p :(4.6)

Proof. For p 6= 0 calculate

dU
(p)

dx

�
V

(Hp)
T

�
= �p sgn(q) �V (Hp)T

�p�1
= �p sgn(q)Et

��
r � �

2

p� 1

�
� �+

�

p� 1
�M
�p�1

T

= �p sgn(q)Et
��

(p� 1)r � q
�
2

2

�
� � + � �M

�
T

=
sgn(p� 1)jpjcBt

BT

Et (� �M +N)
T
;
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resp. for p = 0

dU
(0)

dx

�
V

(Hp)
T

�
=

�
V

(Hp)T
��1

= Et
��
r + �

2
� � �� � �M��1

T

= Et (�r � � + � �M)
T

=
Bt

BT

Et (� �M)
T
;

and �nd a representation (3.8), since Et (� �M +N)
T
> 0. Set

Z
opt�;q;t;T := Et (� �M +N)

T
:(4.7)

V
(Hp)

B[t;T ]
Z
opt�;q;t;T =

1

Bt

Et
�
� �

2

p� 1
� �+

�

p� 1
�M
�T

Et (� �M +N)
T

=
1

Bt

Et (q� �M +N)
T
;

which is a uniformly integrable martingale on [t; T ] for p < 1 by as-

sumption. For p > 1 and � > 1 observe

�
V

(Hp)
T

��p
= Et

��
r � �

2

p� 1

�
� �+

�

p� 1
�M
��p

T

= Et
��

�pr � �q�
2 +

�
2

2

�
2
p
2 � �p

(p� 1)2

�
� � + �q� �M

�
T

= Et
��

�pr � �q�
2

2

p(2� �)� 1

p� 1

�
� � + �q� �M

�
T

= Et
��

�pr � �q�
2

2
(1� q(�� 1))

�
� � + �q� �M

�
T

;

hence we �nd V
(Hp)
T

2 L
p+~�
t

(
[t;T ]) for some ~� > 0, since (1�q(��1)) > 0

for � close to 1. By Lemma 3.3 we �nd
�
(V (Hp))T ; Et(� �M +N)T

�
to
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be the optimal pair. For p 6= 0 we calculate

U
(p)
�
V

(Hp)
T

�
= �sgn(q)

�
V

(Hp)
T

�
p

= �sgn(q)Et
��

r � �
2

p� 1

�
� � +

�

p� 1
�M
�p

T

= �sgn(q)Et
��

pr � q
�
2

2

�
� � + q� �M

�
T

= �sgn(q)cEt (q� �M +N)
T
:

Since Et (q� �M +N)
T
is a uniformly integrable martingale we �nd

Et

h
U

(p)
�
V

(Hp)
T

�i
= �sgn(q)c = �sgn(q)

Et

h
Et
��
pr � q

�
2

2

�
� �
�
T

i
Et [Et(N)T ]

:

(4.8)

The last equation follows from (3.9).

In the next section we give an interpretation of the portfolios generated
by Hp.

5. Locally Efficient Portfolios

From Lemma 1.4 and � = rS � C�, d�-a.s., we immediately �nd

V
(Ĥ) := Et (H � S)T = Et ((r �HC�) � � +H �M)

T
for a process Ĥ =�

H;
1�HS

B

� 2 L
1
loc
(S). From Cauchy-Schwarz inequality it follows that

jHC�j �
p
�C�

p
HCH = �

p
HCH. We have

[V (Ĥ)
; V

(Ĥ)] =
�
V

(Ĥ)
�2
HCH � �[t;T ]

:

We interpret
p
HCH as a measure for the relative instantaneous risk of

the portfolio generated by Ĥ and Ĥ� = r�HC� as a measure for the

instantaneously expected relative return rate. For � 6= 0 and
p
HCH 6=

0, we �nd for the instantaneous Sharpe-ratio Ĥ��rp
HCH

= �HC�p
HCH

of in-

stantaneously expected relative excess return over the instantaneously
risk-free return rate and relative instantaneous risk, �� � �HC�p

HCH
� �

and �HC�p
HCH

= � i� H 2 k�+Ker(C) for a predictable, strictly negative,

process k 2 L
2
loc
(�), resp. �HC�p

HCH
= �� i� H 2 k� + Ker(C) for a

predictable, strictly positive, process k 2 L
2
loc
(�). We call these hedg-

ing strategies locally eÆcient. We have seen in the last section that in
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the case of a totally p-unhedgeable price for risk the optimal portfolios
generated by Hp are locally eÆcient. See Markowitz (1952, 1987) and

Sharpe (1964, 2000).
De�ne the following quantities for p 6= 0; 1:

R(p;t;T ) :=
1

p

d ln (V(p; t; T ))
dT

;(5.1)

R(p) := lim
T!1

1

pT
ln (V(p; 0; T ))(5.2)

and

R(0;t;T ) :=
dV(0; t; T )

dT
(5.3)

R(0) := lim
T!1

1

T
V(0; 0; T ):(5.4)

Under some regularity conditions, these quantities exist. By Theorem
4.5 we �nd immediately

Proposition 5.1. Under the assumptions, �t = t and pr � q
�
2

2
con-

stant for p 6= 0; 1, resp. r + �
2

2
constant for p = 0, we have

V(p; t; T ) = exp

��
pr � q

�
2

2

�
(T � t)

�
;(5.5)

R(p;t;T ) = R(p) = r +
�
2

2(1� p)
;(5.6)

resp.

V(0; t; T ) =

�
r +

�
2

2

�
(T � t);(5.7)

R(0;t;T ) = R(0) = r +
�
2

2
:(5.8)

See Bielecki and Pliska (1999, 2000) for an interpretation of the quan-

tities R(p) and the risk-sensitive stochastic control approach. R(p;t;T )

can be interpreted as an implied forward growth rate of the expected
utility of wealth under the optimal self-�nancing hedging strategy. As

we will see in Section 7, another related quantity is the right one to
look at: We de�ne

Y(p; t; T ) := ln (jV(p; t; T )j) :(5.9)
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6. Existence of Optimal Portfolios

Let 0 � T < 1 be �xed. In this section we will assume �S to be
continuous and Dq( �M[0;T ]) 6= ; for p > 1, resp. for p < 1, De( �M[0;T ]) 6=
; and V(p; 0; T;SFp( �M[0;T ])) < 1. We assume for simplicity in this
section that B = 1. The results can be generalized to the case of a B
such that B and B�1 are uniformly bounded on [0; T ].

Theorem 6.1. Under the above assumptions, the optimal pair

(V opt;p;0;T
; Z

opt�;q;0;T ), satisfying (3.8) and Zopt�;q;0;T 2 D( �M[0;T ]), exists

for the market �M[0;T ] with respect to optimization in SFp( �M[0;T ]).

Proof. We �rst prove the case p > 1. Since A�p1 ( �M[0;T ]) is closed and

convex and since Lp(
[0;T ]) is reexive there exists an element V
opt;p;0;T

with minimal norm. As in GLP98, Lemma 4.1 and Theorem 4.1, it is

easily shown that V opt;p;0;T � 0. Since U (p) is concave we have for all

Y 2 A�p0 ( �M[0;T ])

U
(p)
�
V

opt;p;0;T
T

+ Y

�
� U

(p)
�
V

opt;p;0;T
T

�
+
dU

(p)

dx

�
V

opt;p;0;T
T

�
Y:(6.1)

It follows from the optimality of V
opt;p;0;T
T

and since dU
(p)

dx

�
V

opt;p;0;T
T

�
2

L
q(
[0;T ]) that

E

�
BT

dU
(p)

dx

�
V

opt;p;0;T
T

�
Y

BT

�
= 0;(6.2)

for all Y 2 A�p0 ( �M[0;T ]). From V
opt;p;0;T
T

2 L
p(
[0;T ]) it follows that

dU
(p)

dx

�
V
opt;p;0;T
T

�
2 L

q(
[0;T ]). Since V
opt;p;0;T
T

2 A�p1 ( �M[0;T ]) we have
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E

��
V

opt;p;0;T
T

�
p�1�

> 0. We therefore �nd

Z
opt�p;0;T :=

E

h
dU

(p)

dx

�
V
opt;p;0;T
T

� ��F�i
E

h
dU(p)

dx

�
V

opt;p;0;T
T

�i 2 �Dq( �M[0;T ]):(6.3)

Optimality follows now from Proposition 3.1. It was shown in GK98,

Lemma 4.4, that Zopt�;q;0;T 2 Dq( �M[0;T ]).

For p < 1 the results of Kramkov and Schachermayer (1999), (KS99),

can be applied. There, existence and uniqueness of an optimal solution

V
opt;p;0;T with V

opt;p;0;T
T

> 0 for problem (3.6) is proved. Furthermore,

the existence and uniqueness of a strictly positive process Zopt, such

that E
��
Z
opt

T

�q�
= infZ2D( �M[0;T ])

E

h�
ZT

BT

�qi
, and with the following

properties is shown: Z
opt

T
= �sgn(q)U (p)(V

opt;p;0;T
T

), V opt;p;0;T
Z
opt is

a uniformly integrable martingale and for an arbitrary self-�nancing

hedging strategy with non-negative value process V , the process V Zopt

is a supermartingale. We will show in the next lemma, that for a con-

tinuous price process Zopt 2 D( �M[0;T ]).

The worrying fact is of course that Zopt is in general only a supermartin-
gale. However, the given example (Example 5.1' in KS99), showing that
Z
opt is in general not a local martingale, involves a non-continuous price

process. We de�ne the following set of semimartingales living on 
[0;T ]

for 0 <1, see KS99:

Y( �M[0;T ]) :=

�
Y � 0jY0 = 1;

V
H

B[0;T ]
Y is a supermartingale

for all H 2 SF0( �M[0;T ])

�
:
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Lemma 6.2. Assume �S to be continuous and let Y 2 Y( �M[0;T ]) with

YT > 0 be given. If there exists a H 0 2 SF0( �M[0;T ]) with V
H
0

0 = 1 and

V
H
0

T
> 0 and such that V H

0

Y is a uniformly integrable martingale, then

Y 2 D( �M[0;T ]).

Proof. Since Y is a non-negative supermartingale, we have by J&S87,

Lemma III.3.6, that Y > 0 and Y� > 0 almost surely and hence Y =

E(Z) for Z := 1
Y�
� Y . Since Y is a supermartingale it is a special

semimartingale and therefore Z too. Z admits a representation Z =

A+L, where A = A
T is a predictable process of �nite variation, L = L

T

is a local martingale and A0 = L0 = 0. By J&S87, Theorem III.4.11,

we �nd a predictable process K 2 L
2
loc
(M) and a local martingale

N orthogonal to all components of M , with [M;N ] = 0, such that

L = K �M +N and the representation Y = E(A+K �M +N).

Since V
H
0 � 0 is a local martingale with respect to any equiva-

lent martingale measure, V H
0

T
> 0 implies V H

0

> 0. By Lemma 1.4

there exists a ~H 0 2 L
2
loc

�
S
T
�
such that

�
~H 0
;
1� ~H0

S

B

�T
generates V H

0

.

By assumption and since M and ~H 0
C� � � are continuous, V

H
0

BT Y =

V
( ~H0)

BT Y = E( ~H 0
C(K � �) � � + A + (K + ~H 0) � M + N)T is a uni-

formly integrable martingale. The Dol�eon-Dade SDE implies that�
V
H
0

BT
Y

�
�
� ( ~H 0

C(K � �) � � + A) = V
H
0

BT
Y �

�
V
H
0

BT
Y

�
�
� ((K + ~H 0) �

M + N)T � 1 is a predictable local martingale of �nite variation on



26

[0; T ], hence constant on [0; T ] almost surely, see J&S87, Corollary

I.3.16. We therefore �nd E( ~H 0
C(K � �) � � + A)T = 1. Now let

H 2 L
2
loc

�
S
T
�
, set �H :=

�
H;

1�HS

B

�
T

and consider the discounted value

process V � := V
( �H)

BT = E(�HC� ��+H �M)T generated by �H. We have

V
�
Y = E(HC(K��)��+A+(K+H)�M+N)T = E((H� ~H 0)C(K��)�

�+(K+H) �M+N)T is a supermartingale for all H 2 L
2
loc

�
S
T
�
by as-

sumption. ForH := K��+ ~H 0 we �nd (V �
Y )��((K��)C(K��)��) =

V
�
Y � (V �

Y )� � ((K +H) �M + N) � 1 to be a non-decreasing local

supermartingale on [0; T ]. Therefore (K � �)C(K � �) = 0, d�-a.s.

and from 1 = E( ~H 0
C(K � �) � � + A)T = E(A)T we conclude A = 0

and Y = E(� �M +N)T 2 D( �M[0;T ]).

In DMSSS97, Theorem A-C, (for p = 2), and GK98, Theorem 3.1 and
Theorem 4.1, (for p > 1), necessary and suÆcient conditions are given
ensuring Gp0( �M[0;T ]) to be closed. These results imply

Proposition 6.3. If Gp0( �M[0;T ]) is closed, then

V(p; 0; T;SFp( �M[0;T ])) = V(p; 0; T;Gp( �M[0;T ]));(6.4)

and V
opt;p;0;T can be obtained by a self-�nancing hedging strategy in

Gp( �M[0;T ]). Furthermore, for 0 � t � T , the optimal pair for the

market �M[t;T ] is given by

 
V
opt;p;0;T
t_�
V
opt;p;0;T
t

;
Z
opt�;q;0;T
t_�

Z
opt�;q;0;T
t

!
2 Gp( �M[t;T ])�Dq( �M[t;T ]):(6.5)
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7. The BSDE Approach

In this section we will put to use Proposition 3.1 in a general setting.
Assume the existence of a continuous local martingale N orthogonal to
M such that (M;N) has the local martingale representation property

and [N;N ] = ~C ��. Since the case p = 0 is already solved (see Remark
4.3) we assume in this section p 6= 0; 1. Let 0 � t � T be �xed.
Consider the following formal calculation for the optimal solution

V
opt;p;t;T for a maximization problem of terminal utility in the market
�M[t;T ] and an arbitrary attainable Y

BT

2 A�p0 (M[t;T ]):

U(V
opt;p;t;T

T
+ Y ) � U(V

opt;p;t;T

T
) + U

0(V opt;p;t;T

T
)Y;(7.1)

implies

Et

�
BTU

0(V opt;p;t;T

T
)
Y

BT

�
= 0;(7.2)

since kY is attainable for all Ft-measurable random variables k. Hence
BTU

0(V opt;p;t;T

T
) should de�ne an absolutely continuous martingale mea-

sure up to normalization. In general this argument breaks down be-

cause of integrability problems. However, for isoelastic utility with
exponent p > 1 this approach works. None the less, we can try the
following ansatz:

ctBTU
0(V opt;p;t;T

T
) = Et(� �M + � �N)T ;(7.3)

respectively

ln

��
ctBTU

0
�
V

opt;p;t;T

T

���1
Et(� �M + � �N)T

�
= 0;(7.4)

where V opt;p;t;T =
�
V

(Ĥ)
�T

for Ĥ =
�
H;

1�HS

B

�[t;T ] 2 L
2
loc
( �S) and � 2

L
2
loc
(N). Ansatz (7.3) leads to a FBSDE. For the isoelastic utility

functions ansatz (7.4) will lead to a BSDE, where (H; �) form part of
the solution. For t � s � T de�ne the adapted process

Y
p;t;T

s
:= ln

 �
ctBs

dU
(p)

dx

�
V

opt;p;t;T

s

���1 Et(� �M + � �N)s

!
:(7.5)
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Applying Itô's formula and by the de�nition of the stochastic exponen-
tial we �nd

Y
p;t;T

T
= Y

p;t;T

t
+

Z
T

t

dY
p;t;T

s

= Y
p;t;T

t
+

Z
T

t

(p� 1)HsCsHs � �s
~Cs�s � �sCs�s

2
d�s

+

Z
T

t

((p� 1)HsCs�s � prs) d�s

+

Z
T

t

(�s � (p� 1)Hs) dMs +

Z
T

t

�sdNs:

Because of Proposition 3.2 and the formulas (3.16) and (3.17) we expect

Y
p;t;T to be independent of t, hence we arrive at the following BSDE

for t � t
0 � T :

Y
(p;T )
t0

= �
Z

T

t0

(p� 1)HsCsHs � �s
~Cs�s � �sCs�s

2
d�s

�
Z

T

t0

((p� 1)HsCs�s � prs) d�s(7.6)

�
Z

T

t0

(�s � (p� 1)Hs) dMs �
Z

T

t0

�sdNs:

Conversely, given an adapted solution (Y (p;T )
; H; �) to the BSDE (7.6)

on [t; T ], we can de�ne a self-�nancing hedging strategy in �M[t;T ] by
using

Ĥ :=

�
H;

1�HS

B

�[t;T ]

(7.7)

as a generator for

V
(Ĥ) := Et ((r �HC�) � � +H �M)

T 2 SF0( �M[t;T ]):(7.8)

We also have

Z
� := Et(� �M + � �N)T 2 D( �M[t;T ]):(7.9)

Lemma 7.1. V
(Ĥ)
T

and Z�

T
satisfy (3.8):

Z
�

T
=

exp
�
�Y (p;T )

t

�
Btjpj

BT sgn(1� p)
dU

(p)

dx

�
V

(Ĥ)
T

�
;(7.10)
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Proof. Observe

1 = exp

 Z
T

t

(p� 1)HsCsHs � �s
~Cs�s � �sCs�s

2
d�s

!

� exp

�Z
T

t

(p� 1)HsCs�s � prsd�s

�

� exp

�
Y

(p;T )
t

+

Z
T

t

�s � (p� 1)HsdMs +

Z
T

t

�sdNs

�
;

which implies

Et(� �M + � �N)T

= exp

�Z
T

t

(1� p)HsCsHs

2
+ (1� p)HsCs�s + prsd�s

�

� exp

�
�Y (p;T )

t
+

Z
T

t

(p� 1)HsdMs

�

=

�
exp

�Z
T

t

rs �HsCs�s � HsCsHs

2
d�s

��p�1

�Et(r � �)T exp
�
�Y (p;T )

t

��
exp

�Z
T

t

HsdMs

��p�1

=
exp

�
�Y (p;T )

t

�
Bt

BTEt ((r �HC�) � � +H �M)
p�1
T

=
exp

�
�Y (p;T )

t

�
Btjpj BT sgn(1� p)

dU
(p)

dx

�
V

(Ĥ)
T

�
:

Proposition 7.2. Assume (Y (p;T )
; (H; �)) to be a solution to the BSDE

(7.6) on [t; T ]. De�ne Ĥ, resp. V (Ĥ), Z� by (7.7), resp. (7.8), (7.9). If

for p < 1, Et ((H + �) �M + � �N)
T
is a uniformly integrable martin-

gale, respectively if for p > 1, V (Ĥ)
Ĥ 2 SF p

t (
�M[t;T ]), then

�
V

(Ĥ)
; Z

�

�
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is the optimal pair for the market �M[t;T ] with respect to optimization

in SFp

t
( �M[t;T ]). Furthermore we have

V(p; t; T ) = �sgn(q) exp(Y (p;T )
t

) = �sgn(q) exp(Y(p; t; T )):(7.11)

Proof. The �rst assertion follows from Proposition 3.1, (7.11) follows

from (3.13).

Conversely, the existence of an optimal pair for the market �M[t;T ] to-
gether with the local martingale representation property of (M;N),

implies the existence of a solution (Y (p;T )
; (H; �)) for the BSDE (7.6)

on [t; T ] satisfying the assumption of Proposition 7.2.

8. Markovian Market Model

As an example, we will transform in this section the BSDE (7.6) for

a (for simplicity time-homogeneous) markovian market model into a
non-linear partial di�erential equation with boundary condition.
Consider the following market model: Assume the existence of a

(m + m
0)-dimensional Brownian motion W = (W 1

;W
2) on 
1 and

assume F to be generated by W . For simplicity, let �̂ = (�; �0) :

R
d+d0 ! R

d+d0 and � : Rd+d0 ! R
(d+d0 )�(m+m0) be smooth uniformly

bounded functions with uniformly bounded derivatives of all orders,

such that for all x 2 R
d+d0 , ���(x) : Rd+d0 ! R

d+d0 is invertible with
uniformly in x bounded inverse. Furthermore, assume ���(x) = C(x)�
C
0(x) : Rd �R

d
0 ! R

d �R
d
0

. Then there exists a Rd+d0 -valued Markov

process X = (S; S 0) solving the SDE for x0 2 R
m+m0

dXt = �̂(Xt)dt+ �(Xt)dWt; X0 = x0:(8.1)

Denote by M the martingale part of S, and by N the martingale part
of S 0. Note that M and N are orthogonal. Assume the interest rate

r to be a bounded function of X, and de�ne Bt := exp
�R

t

0
r(Xs)ds

�
for all t � 0. Set � := C

�1(�� rS) and �2 := �C�. We now interpret
�S := (S;B) as a price process and S 0 as (non-traded) state variables.
Consider the following non-linear PDE for Y : Rd�Rd

0�[0;1)! R,
(p 6= 1):

�@Y
@t

+ L1Y + L2Y = L3Y + L(p)
Y + q

�
2

2
� pr;
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with boundary condition Y (s; s0; 0) = 0; 8 s; s0, where

L1 :=

dX
i=1

�i

@

@si

+
1

2

dX
i;j=1

Ci;j

@
2

@si@sj

L2 :=

d
0X

i=1

�
0
i

@

@s
0
i

+
1

2

d
0X

i;j=1

C
0
i;j

@
2

@s
0
i
@s

0
j

;

and for f 2 C
1;1(Rd � R

d
0 � [0;1)),

L3f := �1

2

d
0X

i;j=1

@f

@s
0
i

C
0
i;j

@f

@s
0
j

L(p)
f :=

1

2(p� 1)

dX
i;j=1

@f

@si

Ci;j

@f

@sj

� q

dX
i;j=1

@f

@si

Ci;j�j:

Assume Y (p) 2 C
2;2;1(Rd � R

d
0 � [0;1)) to be a solution of the PDE

(8.2), satisfying the boundary condition Y (p)(�; �; 0) = 0. Applying Itô's

formula to the process Y
(p;T )
t := Y

(p)(St; S
0
t
; T � t) we �nd�

Y
(p;T )

;
�
H

opt;p;T
; �

opt�;q;T �� :=�
Y

(p;T )
;

�
�(S�;S0�)� @Y

(p)

@s
(S�;S0� ;T��)

p�1 ;
@Y

(p)

@s0
(S�; S 0� ; T � �)

��
;(8.2)

to be a solution for the BSDE (7.6). We give (admittedly quite strong

and not easy to check) conditions, ensuring
�
Y

(p;T )
; (H; �)

�
to be a

useful solution:

Theorem 8.1. If for p > 1, E(� �M + �
opt�;q;T �N)T 2 L

q+�(
[0;T ]) for

an � > 0, resp. if for p < 1; p 6= 0, E �(�+H
opt;p;T ) �M + �

opt�;p;T �N�T
is a uniformly integrable martingale, then for all 0 � t � T

V
opt;p;t;T = Et

��
r �H

opt;p;T
C�
� � � +H

opt;p;T �M�T ;(8.3)

and

Z
opt�;q;t;T = Et(� �M + �

opt�;q;T �N)T :(8.4)
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Proof. The assertion follows directly from Lemma 3.3 and Proposition

7.2.

Remark 8.2. Because of Theorem B in DMSSS97, resp. Theorem 4.1

in GK98, and Theorem 2.15 in DMSSS97, the condition for p > 1 in

the above theorem is more natural than it might appear at the �rst

moment.

Remark 8.3. For constant q
�
2

2
� pr one easily �nds Y

(p)(s; s0; t) :=

�t
�
q
�
2

2
� pr

�
to be a solution of the PDE (8.2) satisfying the con-

ditions of Theorem 8.1. This also proves that in this case the q-

optimal martingale measure equals the minimal martingale measure,

Z
opt�;p;t;T = Et(� �M), see F�ollmer and Schweizer (1990).

Remark 8.4. For p = 2, under the assumption of Theorem 8.1, we

can construct the hedging num�eraire explicitly. In Laurent and Pham

(1999), Section 6, this is achieved under stronger assumptions on �2�

2r. See also Leitner (2000) for an application to the mean-variance

eÆciency problem and the calculation of the intertemporal price for

risk.

9. Conclusions

One of the problems in the probabilistic theory of �nance is, that
one has to make an ansatz for the probability law of the future price

processes. In a constantly changing world it is not at all clear how such
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a law could ever be determined. Without knowing the actual law (it is
even diÆcult to argue that such a law exists, since it is not clear how we

can speak of probabilities in experiments which can not be repeated)
it is diÆcult to de�ne what we mean by an optimal hedging strategy.
In a more pragmatic approach one could try to parameterize a class

of reasonable laws and look for parameters such that the implied prices

�t the observed prices best. If observed and implied prices di�er, or if
the estimated law di�ers from the law an investor believes prices to fol-
low, then the investor should buy underpriced and sell overpriced stocks
until risk aversion, the trust in the used model and the con�dence to be

more clever than the market, are in a balance. In our model this would
involve solving parameterized (F)BSDEs and estimating good param-
eters. In a discrete time model this can be achieved using a backward
iterative algorithm, but would be computational very expensive, since
observed prices have to be compared with implied prices for a large

number of parameter values. For a markovian model as in Section 8,
we would still have to solve a (parameterized) non-linear PDE.
Another problem in the probabilistic theory of �nance is, that when-

ever a new, i.e. non attainable, stock or security is introduced to the

market, then the market data C; �; � and the optimal pairs V opt;p;t;T ,
Z
opt�;p;t;T will change in general.
We have shown, that the problem of maximizing isoelastic utility

from terminal wealth is signi�cantly facilitated if the price for instan-

taneous risk is assumed to be totally unhedgeable. In this situation
optimal portfolios can be constructed from locally eÆcient portfolios
and there holds a two-fund-theorem for all investors maximizing isoe-
lastic utility of terminal wealth. The big advantage of locally eÆcient
portfolios is that they can be determined by estimating the local char-

acteristics of the price process. We only have to assume that prices
follow some probability law (that allows for successful estimation of
local characteristics), but we don't have to decide for a speci�c law.
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