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ABSTRACT. In an arbitrage free incomplete market we consider the
problem of maximizing terminal isoelastic utility. The relationship
between the optimal portfolio, the optimal martingale measure in
the dual problem and the optimal value function of the problem is
described by an BSDE. For a totally unhedgeable price for instan-
taneous risk, isoelastic utility of terminal wealth can be maximized
using a portfolio consisting of the locally risk-free bond and a lo-
cally efficient fund only. In a markovian market model we find a
non-linear PDE for the logarithm of the value function. From the
solution we can construct the optimal portfolio and the solution of

the dual problem.
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INTRODUCTION

We study the problem of maximizing expected isoelastic utility of
terminal wealth in an incomplete continuous time market with contin-
uous price process. The isoelastic utility of exponent p # 0, 1 is defined
as ulP)(x) := sgn(1 —p)% and for p = 0 by v(¥ () := In(|x]). The two
cases p < 1 and p > 1 are very different in there economic interpre-
tation, but can be treated to some extend by the same mathematical
methods. Solving the optimization problem for p < 1 is a plausible ap-
proach to find portfolios of optimal expected growth. There are several
papers on this topic: See, e.g. Merton (1990), Pliska (1986), He and
Pearson (1991), Karatzas, Lehoczky, Shreve and Xu (1991), Karatzas
and Shreve (1999), Kramkov and Schachermayer (1999).

For p = 2 the problem is related to the mean-variance hedging
problem, see Gourieroux, Laurent and Pham (1998), (GLP98), Pham,
Rheinlénder and Schweizer (1998) and Laurent and Pham (1999).

The theory of stochastic duality, which goes back to Bismut (1973,
1975), is the central tool for solving these problems. This theory al-
lows to formulate an optimization problem over a set of martingale
measures, being dual to the original optimization problem over a set of
self-financing hedging-strategies. Under quite general conditions, the
solution of one of the problems can be transformed into a solution of
the corresponding dual problem.

Another important approach, is to try to solve the optimization prob-
lem locally, i.e. by so-called myopic strategies which maximize in some
sense the expected growth rate of the portfolio at every instant of time.
In some important cases these strategies turn out to be globally op-
timal too. See, e.g., Mossin (1968), Leland (1972), Aase (1984, 1986,
1987, 1988), Foldes (1991), Goll and Kallsen (2000). This approach
is related to the risk-sensitive stochastic control approach, see Bielecki
and Pliska (1999, 2000).

We consider an arbitrage-free (in a sense to be specified later) con-
tinuous time market model with unrestricted trading. We use the
modern equivalent martingale measure approach, see Harrison and
Pliska (1981), Delbaen and Schachermayer (1994). After some techni-
cal preparations in Section 1 and specification of the model in Section
2, we formulate the optimization problem and its corresponding dual
Problem in Section 3. We show a representation property (formula
(3.8)), relating the terminal value Vi of a portfolio to a martingale
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measure Z¢*', to be sufficient for the optimality of V2" for the utility
maximization problem and the optimality of Z3* for the dual problem.
The optimal values of the two problem are related by a simple formula.
In Section 4 we introduce the notion of a totally unhedgeable price for
instantaneous risk. In this situation we can explicitly solve the utility
optimization problem. The optimal portfolio is a locally efficient portfo-
lio, a notion we introduce in Section 5. In Section 6 we give an existence
result for the solutions of the two optimization problems. In Section
7 we derive a backward stochastic differential equation, (BSDE), such
that from the solution the optimal portfolio, the optimal value function
and the solution of the dual optimization problem can be constructed.
See Yong and Zhou (1999) for an introduction to BSDEs. In Section
8 we consider a markovian market model. We transform the BSDE
into a non-linear PDE for the logarithm of the value function. From
the partial derivatives of the solution, we can construct under addi-
tional assumptions the optimal portfolio and the solution of the dual
optimization problem.

1. SELF-FINANCING HEDGING STRATEGIES

Let a filtered probability space Qu 1= (Q, F, (Fs)s>0, P), satisfying
the usual conditions be given. For simplicity we assume F; to be trivial
up to sets of measure 0 with respect to P and F_ = F := F. For
an adapted process X set Xo_ := X, X;_ := limy\ o X, for ¢t > 0 if
the limit exists and define the processes X_ := (X;_)o<t<oo and AX :=
X — X_ if X,;_ exists for all # > 0. The components of X are denoted
as X’ 1 <i <d. For a process X and a map 7 : Q — R, denote the
stopped process at time 7 by X7. We will often restrict a semimartin-
gale X on Q4 to an interval [¢,T], 0 <t < T < oo, resp. to [t,00).
Therefore we introduce the following filtered probability space (again

satisfying the usual conditions), Qp 1 = (Q,}"T, (}}[t’T]) ,P}'T>
5>0

forall0 <t <T <o0,t< oo, where ]:,j[t’T} = Frysar for 0 < s < 0.
The process X,Et’T] = Xyt is then a semimartingale on Q7. How-
ever, on [t, T] we often write X instead of X1, Set Qr := Q1.

For ¢ > 1 define L9(Q 1)), respectively L{(Qq.r1), as the set of Fp-
measurable random variables X, such that F[X] < oo a.s., respectively
Ey[X] < o0 a.s., where Ey[-] := E[-|F;] denotes the generalized condi-
tional expectation. Denote the conditional variance by Var,(-). The
stochastic exponential of a semimartingale X is denoted as £(X) and

we set £(X) 1= £(1j00)X). As a general references we cite Jacod and
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Shiryaev (1987), (J&S 87), and Jacod (1979). Denote the set of pre-
dictable processes which are locally integrable, resp. locally Riemann-
Stieltjes integrable, with respect to a local martingale M, resp. with
respect to a process A of finite variation, by Lj,.(M), resp. by L}, .(A).
If the semimartingale X admits a decomposition X = Xy + A + M,
where M is a local martingale and A is a process of finite variation

We can now define the market model: Let S = (S;)o<i<o0 be a R?-
valued semimartingale. M := (Qx,S) = ((Q, F, (Fs)s>0, P), S) is a
model for a market, where S describes the price processes of d assets.
We will often consider such a market on an interval [t,7], 0 < ¢ <
T < oo. This is equivalent to work with the following market model
M) defined by M, 7 = (Q[t,T}, S[t’T}). Set Mg := Mgr. We want
to model the economic activity of investing money into a portfolio of
assets and changing the number of assets held over time according to a

certain hedging strategy. This is achieved with the following definition:

Definition 1.1. A hedging strategy in the market M isa H € L} (95).

loc

The corresponding value process VH of H is defined as V¥ := HS.
The gains process of H is defined as the semimartingale G := H - S.
H is called self-financing if VI = Vi + G", i.e. H;S;, = HySp +
fot H.,dS,, Vt > 0. Denote the space of all self-financing hedging strate-
gies in M by SF(M).

Note that for H € SF(M), we have H"Tl € SF(M 7). The idea
of a self-financing hedging strategy is that the changes over time of
the corresponding value process are solely caused by the changes of the

value of the assets held in the portfolio and not by withdrawing money
from or adding money to the portfolio.

Definition 1.2. A semimartingale B such that B and B_ are strictly

positive is called a numéraire for the market M. The market discounted

with respect to B is then defined as M? := (Qy, S¥), where 5% := 2.
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For 0 <t < T < oo, the market restricted to the interval [t,T] is

defined as M 1y i= (MP) 1 = (e, (57)"7).

Note that for a numéraire B, B! is a numéraire too and S? is a
semimartingale.

Usually there is in addition to the market M a numéraire B given
and the market M := (Qu,S),S := (9, B) is considered. Often B
is the price process of a locally risk-free bond. If the numéraire is
traded, i.e. the value process of a portfolio in M, one can try to
extend a hedging strategy in M to a self-financing hedging strategy in
M. Define the discounted market MP = (Q, (S, 1)). The idea is to
extend H to a self-financing hedging strategy H = (H, H) € SF(MP)
by defining the process H := HySP + H - S — HS? and then to show
that H is a self-financing hedging strategy in M too, see Geman, El
Karui and Rochet (1995) and Goll and Kallsen (2000). (Note that
H-SB—-HSP = (H-SP)_+A(H-SB)—HSP = (H-SP)_+ HAS? —

HSB = (H-SB)_ — HS?B is predictable, hence H as well.)

Proposition 1.3. Let B be a numéraire for the market M. Then

SF(MB) = SF(M) holds.

Proof. Let H € SF(MP). Set VB = HSB. First, we have to show

H e LL,(S). Since S = SBB = Sy + SB. B+ B_-SB + S8, B] this

loc

follows if we show that H € L} (S?-B)NL]

loc loc

(B_-SP)nL,

loc

(1S”, B)).
Note that HS? = H(S? — ASP) = VB - AH-SP) = VP + H -
SB—A(H-SP) =V + (H-SP)_ = VB, which is locally bounded.
Since [SE-B,S2.B] = (SP® SP)-[B,B] and H(S? ® SB)H = (VP)?

is locally integrable with respect to [B, B], we find H € L} (S? - B).

loc
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That H € L}, (B_-SB)N L}

loc loc

([SB, B]) is easy to see. We calculate
H-S = H-(S®*B)=H-(S?-B+B_-5%+[S% D))

= (HS®)-B+ (B H)-S? +[H-S? B

= VB.B+B_.(H-S5%)+[V? B

= VPB-VPBy=HS?’B - HySY B,

= HS — H,S,.

This implies SF(M?P) C SF(M). Now observe that (MB)B™" = M,

since B~! is a numéraire. This implies the reverse inclusion. U

There is an alternative way to construct self-financing hedging strate-
gies:
Lemma 1.4. Let H € SF(M) be such that VZ # 0 and V # 0

almost surely. Set H := Lr. Then HelLL(S), HS_ =1 and

(1.1) VE=—vHELvE. (H.8)=VHEEH-S),

holds. Conversely, let H € L}, (S) with HS_ = 1 be given and set
H = vgé’(ﬁ . S),ﬁ for a Fo-measurable random variable vy. Then
H e SFM) and VI = w,E(H - S). We call H a generator for the

self-financing strategy H and define VH) = yH,

loc

Proof. Since (Vf{)_1 is locally bounded we have H € L}, (S). We have
VIV =G"=H-S= (VIH).S = VHT.(H-S). The second identity

in (1.1) follows immediately from the uniqueness of the solution to the
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Doléan-Dade SDE defining the stochastic exponential, see J&S 87, [.4f.

Conversely, we calculate

HS = v&(H-S)_HS = v,&(H-S)_(HS_ + HAS)
= w&H-S)_(1+A(H-S))
= v (g(ﬁf.S),+5(ﬁ1-5),A(ﬁ1.5))
= (s(ﬁ-g)_+A(s(ﬁ1-5)_-(ﬁI-S)))
= (S(H-S)_+A(S(FI-S)—1))
= wEH-S)=vy+vE(H-S) - (H-S)

= v +vE(H-S) H-S=VH+GH.

2. ARBITRAGE-FREE MARKETS

So far we did not worry about arbitrage. We consider in this section
the market M := (Q, S), where S := (S, B) is R? x R-valued and B is
a numéraire, with By = 1, which we assume to be uniformly bounded
and uniformly bounded away from 0 on finite intervals. For 0 < ¢ <
T < oo,t < 0o, denote the set of uniformly integrable, resp. local
martingales, living on Qg1 by £%(Qp7), resp. by L(Q,r). Define
the following sets of local martingale measures:

(2.1)

D(Myr) = {Z € LQum)|Z10q=1,Z >0,(SYTZ € L(Qu)},

(2.2)
D(Mym) = {Z € L(m)| 2119 =1, Z > 0,(SB)Z € L(Qum)}

(2.3)
D (M) = {Z € D(Mp1)|Z uniformly integrable martingale}
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and

(2.4)
D*(My)) == {Z € D(Mp,))|Z uniformly integrable martingale} .

We will work with the following No-Arbitrage condition:
(2.5) D¢(Mz) # 0, VT < oo.

This condition is known to be equivalent to the NFLVR-condition, see
Delbaen and Schachermayer (1994). It implies that

(2.6) D (M) #0, VO<t<T < oc.

We will often work with the following sets of equivalent, resp. abso-
lutely continuous, local martingale measures, for g > 1:

(2.7) Dq(M[gyT}) = {Z € D(M[()’T}”ZT € Lq(Q[UyT})} ,

_ y/ _
238) DI (M) = { 2212 € D(Ma},
t
(2.9) ﬁq(/\;l[gyﬂ) = {Z € Dabs(M[gyT}”ZT € Lq(Q[O,T])} ,
NI (A, ._ Zy. DI( A,
(2.10) D; (M[t,T}) = 7|Z €D (M[O,T}),Zt >0;.
t

Note that Z € Df(Mypq)) implies Zr € LY (Qur). For ¢ < 1 set

D?(M[t,T]) = 'D(M[t,ﬂ) and 'Dq(/\;l[t,T]) = D?(M[t,ﬂ) = ﬁ(M[t,T}).

For Z € D} (Mym) an t<t< TiS T, we have ZHZI;IT,] € D} (M r1).

Note also that Df(M 1) = D(Mo1), since Fy was assumed to be
trivial.
p will always denote a real number different from 1. We define ¢ :=

—L_ such that for p # 0,1, p~' + ¢~ =1 holds, but for p = 0 we have

SIS

Let B C SF(Myr). We call a H € B an B-arbitrage, if V¥ =0,
VI > 0 and VI # 0 almost surely. If there exists no B-arbitrage,
then B is called arbitrage-free. In all probabilistic theories of financial
markets allowing to trade at an infinitely large number of instances of
time one has to exclude certain self-financing hedging strategies, e.g.
doubling strategies, in order to avoid arbitrage opportunities. We will

define several arbitrage-free subsets of SF (M. 1):
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1. For p > 1 and Df(M11) # 0, (see Delbaen and Schachermayer
(1996), (DS96)):

Sfp(M[t’T}) = {H € Sf(M[t,T}”VI{{ - LP(Q[t,T]),

(2.11) BVT;Z € LQym),VZ € DQ(M@,T])},
resp.
SF{(Mym) = {HGSJ:( e Ve € LY (Qery),
VH
(2.12) BT Z € ﬁu(Q ) VZ e D (M[ })}
Note that

SFU M) = {1 € SFMualVi € LS.

H
BT
since for Z € D{(My, 1)) we can find a Z € DI(Mjoqy) with Z =
Zee and for 7' € DI( M), we have 7 =22 € DY Mo,

which implies Z := %= € Df(M;, ) and for H € SFY(Miz)
that B‘ffT]Z = o T] ((Zt +ZNZ — tZ ) is a uniformly integrable

(21 7 € LQn). ¥ 2 € DY)

martingale.
2. Forp<1
(2.14) SFP (M) := SFU( M) = {H € SF(Myz)|VT >0} .
3. Forp>1land S €& (Q )
(2.15) G" (M) = {H € SFMym) V" € 8" (Qur)},

where SP(€2;,71) denotes the space of LP-integrable semimartin-
gales, see Delbaen, Monat, Schachermayer, Schweizer and Stricker
(1997) (DMSSS97) for the case p = 2 and Grandits and Krawczyk
(1998), (GK98), for the general case p > 1.

Lemma 2.1. For p > 1 assume Df(My1)) # 0 and S to be contin-
wous. Then GP(Myr) C SF(Mymr). In particular GP(Mpym) is

arbitrage-free.
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Proof. For H € GP(My1) set 7, := inf{s > 0‘ ¥

n}, H" .= H

on [0, 7,) and ( ,}‘f’i) € R? x R on [r,,T]. Then H" € SF}(M,.1),

since ‘g[t—H;] < n. It follows E[ ZT|.7:] = ‘%HZS for all ¢t <

s < T and all Z € D}(Mpr). V" converges almost surely to V,

S

su H
and ‘—Z ‘ pt§$(vs)ZT € L' (1), since sup,c,or (V7) €

LP(Qm) by Doob’s maximal inequality, hence we find £ [% ZT|-7:5] =

‘g:Zsforalltgng. 0
Define for F;-measurable v
D (A Vi . Vi
(2.16) AP (M) = B_\H € SF'(Mym), 5~ =v,
T t
and
_ V VH
(2.17) G? (M) = { 2|1 e /(M) S = U}_
t
For p > 1 and DY (M) # 0, SFP (M) has an important prop-

erty: Ay (M) is known to be closed, if (E)[t’ Vis locally in LP (1)
in the sense, that there exists a sequence U,,n € N of localizing
stopping times increasing to infinity such that for each n, the fam-
ily {S’E’T”T stopping time, 7 < U, } is bounded in L?(Q 1), see DS96.
This condition certainly holds if S is continuous. To work with the
spaces GP(M, 1)) is in some sense more natural, since its definition in-
volves only the objective probability measure P and no equivalent mar-
tingale measures. Furthermore Qp(/\;l[t,ﬂ) is stable under stopping, a
desirable property from an economic point of view. However, this space
has in general weaker properties than SF? (M, 1), see DMSSS97 and
GK98.

We will often work with a continuous price process S, resp. S. In this

case L;,.(S) = L2 .(S) holds. The price process admits a representation

(2.18) S=Sy+p-a+ M,

where ;1 = (u")1<i<q is predictable, « is a predictable, increasing, con-
tinuous, locally integrable process such that y is locally integrable with
respect to . Furthermore, there exists a symmetric non-negative d x d-
matrix-valued predictable process C' = (C’ij)lgi,jgd, locally integrable
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with respect to a, such that [S?, S7] = [M*, M’] =< M, M7 >= C%.q.
« can be chosen such that B = &E(r - ) for a predictable process r.

In the continuous case, D°(Mppz)) # 0 implies y = rS — C\, da-
almost surely for a predictable process A € L (M) and every Z €
D*(Myr) is of the form Z = &(XA - M + N)T, where N is a not
necessarily continuous local martingale orthogonal to M with [M, N] =
0, see Ansel and Stricker (1992).

3. OPTIMAL PORTFOLIOS

Consider the problem of maximizing expected utility from termi-
nal wealth. We follow a stochastic duality approach, which goes back
to Bismut (1973, 1975), see also Karatzas, Lehoczky, Shreve and Xu
(1991), (KLSX91), and Karatzas and Shreve (1999), Kramkov and
Schachermayer (1999) and Schachermayer (2000) for general results.

We have already defined the so-called isoelastic utility functions
u® p # 1, with constant index of relative risk-aversion, see Pratt
(1964) and Arrow (1976). For optimization multiplication of the util-
ity function with a constant factor or adding a constant has no effect.
We choose to normalize the utility function such that |[U®)(1)| = 1 for
all p # 0,1 and define for p < 1,p # 0

(3.1) U®P (z) := sgn(p)a?, Yz >0,
UP)(z) = —oo for z < 0 and
(3.2) UO(z) :=In(z), Yz >0,
U (z) = —o0 for # < 0. For p > 1 set
(3.3) UP (z) := —|zP, Yz eR,
We have for p < 1,p #0

(»)
(3.4 @) =l Va0,
and

dU© 1
(3.5) - (x) = = Vo >0,

and set d%—;m(()) := oo for p < 1.

We want to solve the following optimization problem for fixed 0 <
t<T <ooandp#1:
(3.6) V(p,t,T,B) :==esssup nes F; [U(”) (Vf])]

HySi=1
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where B € {SF}(My1), {SF*(M1)),G* (M)} for p > 1, resp.
B = SF} (M) for p < 1, and the dual problem

B,Z
(3.7) W*(q,t,T,C) := essinf,cc E, [—U@ < l; T)] ,
T

where C € {D}(My1),Df(Mym)}. (~U9 equals the convex dual
to U™ up to a constant factor, see Rockafellar (1970)). See Karatzas
and Shreve (1999) for the definition of esssup and essinf. If for H € B
with V7 =1 and V(p,t, T, B) = E, [U® (V#)], then we say V' solves
Problem (3.6) for B. If for Z € C, W*(q,t,T,C) = E, [—U(‘I) <B]§—?)],
then we say Z solves the dual Problem (3.7) for C. For the moment
we are interested in the Problem (3.6) for B = SF}(M.r)) and set
V(p,t,T) := V(p,t,T,SF}(Mp1))). For p > 1, we set W*(q,t,T) :=
W*(q,t, T, Df (M[ 1)), respectively for p < 1, we define W*(q,t,T) :=
W*(q,t,T,D}(Mpmr)). (It will turn out later, that W*(q,¢,T) =
W*(q.t,T, D} (M) for p > 1 and for p < 1 if V(p,0,T) < c0.)

The following proposition shows the close relation between these two

problems and gives the key idea how to handle the incompleteness of
the market.

Proposition 3.1. Assume that there exists an H € SF}(My) with
VA >0 and a ZoP9tT @t(/\;l[t,ﬂ) such that for some Fy-measurable

random variable ¢ > 0

dU®)
(3.8) 2" = eBrsgn(l - p)—— (V') |
and such tha BT 45 g uniformly integrable martingale. Then
yortpbT . — VZ solves Problem (3.6) for SF{ (M) and ZoP=abtT
0

solves for p > 1, resp. p < 1, the dual Problem (3.7) for Dy(Mp1y),
resp. for Dy(Mpr) and Dy(Myr). There exists at most one such

pair (Vortptl  ZzovtatTy with o representation (3.8). For p # 0 the
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corresponding optimal values satisfy

(3.9) Vip,t,T)P W (q,t, T)|7 " =1.

Proof. Note that for p < 1 (3.8) implies V¥ > 0. For H € SF}(M1)

with Vj7 =1 and since U®) is concave we have

(3.10)

dU®)
dx

U® (VTH) < 02 <V79pt,p,t,T> + <ngpt,p,t,T> (VTH . ngpt,p,t,T)‘

Taking conditional expectations we find

tp,t,T
_V0p777
T

VH
® (VTO”t””t’T> 4 govtratT 1T

B ] < B sen(i — )by

< E [U(p) (ngpt,p,t,Tﬂ 7

H opt,p,t, T
Vi Vi

3 V’II‘J optx,q,t, T _ : :
since E;, [B—TZ < % =15 for p < 1, respectively since

zorteatT e DI Myq) for p > 1. Let Q € Df (M, 7)) and calculate

dQ optx,q,t, T (dQ_T - opt*,q,t,T)
U@ (i) — _yU@ r T am —

BrB;* BrB; !

) * aQ opt#,q,t,T
_U@ Z;pt T - dU (@ BtZ;pt 4t T d9r _ Zotea

Zopt*7q7t7T Vopt,p,th dQT
- gz _ 1 — p)k-L _ goptxgtT :
( gt ) ok G T A

for some F;-measurable random variable £ > 0. Taking conditional

dQ
U@ %
Br ’

expectations we find

B Zopt*,q,t,T
3.11 E |-y |22
Gl B ( L

< E,
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opt,p,t, T

since E} [ TBT ‘;QT;

Vopt,p,t,T .
] < for p < 1, resp. since for p > 1

By
Z°rt+atT e DI (M 7). The uniqueness of the pair (Veptp bt goptsa.tT

. . . opt,p,t,T .
follows from the strict concavity of U®. Since ¥ ST ZopteabT g g,

opt,p,t,T
: . : o : g, T
uniformly integrable martingale, it is determined by ~f7— 27" BobE

Let H' S Sff(M[t,T]) with %H’ =1and 7' S Dt(M[t,T}) such that

. B dU®) o
(3.12) Zip = ' Brsgn(1l — p) y Vit ),
T
holds for a F;-measurable random variable ¢ > 0. Then VZ"Ph" =
VTH,, Z;pt*,q,t,T — Z} and V(ZE&;’I;TTZOPt*’q’t’T — B}/[tH;] 7' Assume that

there exists a t < s < T with A = {V/ > VrtptTy £ (. TIn
this case we can change the self-financing hedging strategy H' on
A x [5,T] to a H" € SFY(My,r) such that V" > VPPAT and
VA" > v PPt on A From this we conclude the uniqueness of the

pair (VoPbptl Zovtxa.t,T) For p £ 0 we find

U@ (Ve etTy = _sen(q) (ngpt,p,t,T)p

p—1
_ ] ropt,p,t, T i ropt,p,t, T
= —sgn(q) ( T T

opt*,p,t,T opt,p,t,T
Z. T VT

)

cpsgn(l —p) Br
hence

1
cp sgn(l —p) By’

(3.13) V(p,t,T) = E, U(P)(V;Pt,p,t,T) _



15

For g # 0 we find

B Zopt*7p7t7T Zopt*7p7t7T q
_U(‘I) Zter — BY “r
( By sen(p) Bi | =5

q—1
Zopt*,p,t,T Zopt*,p,t,T
= sgn(p)B} | —* s
! Br Br

T 1 % Zopt*,p,t,T
=
= sgn(p)B! (C|p|(VTOp Dot )P ) TTT

opt,p,t,T
T VT

1 optx
= seu(p) B (elpl) 7 23" —,

hence

(3.14) W*(q,t,T) = E,
By

B ZOpt*,P,taT _1
_y@ (tTi = sgn(p)(Bc|p|) 7.

(3.13) and (3.14) together imply (3.9). O

We call (VortpbT | zoptsatT) the optimal pair for the market M, 7 with

respect to optimization in SF} (My, 11). We have the following stability
property for optimal pairs:

Proposition 3.2. If the pair (VoPLPLT | ZoPabTY g dmits a represen-
tation (3.8) with VoP:»tT = VH for o H € SF}(Mym) with Vi =1
and Z°P+abT ¢ Df(/\;l[t,T]), then the optimal pair for the market /\;l[t,,T]

exists and 1s given by

Vopt,p,th Zopt*7q7t7T
OptapatlzT Opt*7Q7tlaT o t’\/- t’\/'
(3.15) v Z _
’ VoptapatzT ’ Zopt*aqatzT
14 t

Proof. Note first, that by J&S87, Lemma I11.3.6, we have ZPt*¢HT > (),
Zopt*,q,t,T
tl

_ _ optx,q,t,T q
For Z € Dj,(My 1)) set A := {Et, [Z1] < Ey {<L> } } Define

7 = zovotT on [t ) U A [t T), and Z := ZF*5" 7 on Ax [/, T
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We calculate
Et |:Zgw:| = Et -Et’ [Z%:H
= B [ (7Y B (28] + 1B [ (20 ) |

—Et’ [(Z;pt*7q7t7T) q:| :| — Et [ (Z;pbk,q,th) q:| ,

hence Z € D{(My.r), Zr = ZP**" and A = ) and we conclude

IA
=

optx,q t'T Zli/t-*,q,t,T ] ;pt,p,t,T Opt*7q7t7T
ZPenT = —tgwr- By assumption we have —f——Z7 >0
t,
. opt,p,t,T . . .
and since VB[ti,T]Z"pt*’q’t’T is a non-negative supermartingale we have
Lot T Vopt,p,t,T » (?pt,p,t,T . .
Vortpbt > 0. Hence Tomer € Ly (Q,1) and (557 Z is a uniformly
t ¢

integrable martingale for all Z € D, (M ry). Since

, dU(p) Vopt7p7t7T
optx,q,t’ T
(3.16) ZTp 7 = cy Brsgn(1 — p) dx (mj;pt,p,t,T J
where
CdU(p) (V:pt’p’t’T)
dz !
(3.17) cy = T
Ztolp 55ty
we can apply Proposition 3.1. 0

Lemma 3.3. Forp > 1, H € SF)(Mpq) with Vit =1, Zovt=atT ¢
Dy(Myr) and assume (VH, ZP00T) to admit a representation (3.8).
If VI € LVY(Qua), (or equivalently Z3"™*%%T € LI*(Qum)), for
some € > 0, then H € SF} (M) and (VI ZP*04T) s the optimal

pair for the market /\;l[t,,T].
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Proof. Observe that %ZT € L%J’g(Q[t,T]) for some € > 0 for all Z €

D} (Myp7). Hence %Z is a uniformly integrable martingale. Now

apply Proposition 3.1. O

In the next two sections we look at an example and postpone an
existence result for the optimal pair (VoPLPLT | ZoptebTY yntil Section
6.

4. ToTALLY UNHEDGEABLE PRICE FOR INSTANTANEOUS RISK

Assume S to be continuous such that we have a representation
(2.18). In this section we seek a sufficient condition ensuring certain
self-financing hedging strategies to be optimal for problem 3.6. See
Karatzas and Shreve (1999), Example 6.7.4 for a similar result and the
notion of totally unhedgeable coefficients. This notion describes a mar-
ket model where the uncertainty in the coefficients defining the model
is in a certain sense orthogonal to the uncertainty of the local martin-
gale M driving the price process, such that we can not hedge against

this risk. Set 8 := VAC\ € L2 («).

loc

Definition 4.1. For 0 <t < T < oo, &™) is called the instantaneous
price for risk process, or instantaneous Sharpe-ratio process, for the

market M t.1)-

Definition 4.2. For 0 < ¢t < T < oo, let an F;-measurable random
variable ¢ > 0 and a not necessarily continuous local martingale N
orthogonal to M, (or equivalently with [N, M] = 0), be given such

that

e () ) e
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2. For p <1, &(g\- M + N)T is a uniformly integrable martingale.
We then call the instantaneous price for risk 47! in the market ./\;l[t,T]

totally p-unhedgeable. resp. strongly totally p-unhedgeable if £(N)T is

a uniformly integrable martingale.

Remark 4.3. For p = 0 we have ¢ = 0 and we find a unique represen-
tation (4.1) with ¢ =1, N =0 for any 0 < t < T < oo, thus BT is
totally 0-unhedgeable in /\;l[t,T]. For p = 0, the optimization problem
(3.6) is also known as maximizing the Kelly-criterion, see Kelly (1956),
Breiman (1960) and Karatzas and Shreve (1999). For general results

see Aase (1986) and Goll and Kallsen (2000).

Lemma 4.4. If BT s totally p-unhedgeable in My, then BT is

totally p-unhedgeable in /\;l[t,,T] forallt <t' <T.

Proof. For t < t' < T set ¢ = c& (— (pr —q%z) -a+N) . This
tl
gives us a representation (4.1) and for p < 1, Ev(g\ - M + N)T is a

uniformly integrable martingale. O

Proposition 4.5. Assume BT) to be totally p-unhedgeable in /\;l[t,T]
with a representation (4.1), then the optimal pair for the market /\;l[t,,T]

fort <t' <T is given by

(7))
t/

, : v
(42) (Vopt,p,t ,T,Zopt*,q,t ,T) — (va gtl(>\ M + N)T> ,
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1—AS

D . A p—
where HP := <p1, =z

—-

[t,T]
) generates the value process

(4.3) v<f”’>;:gt(<r— £ )-a+L-M>T.

p—1 p—1

Furthermore, for p # 0

b [e (- 0%) o),

(4.4) V(p,t',T) = —sgn(q) o e (V1) ,

resp. if fIBT) is strongly totally p-unhedgeable in ./\;l[t,T],

143) Vot 1) = st & (-4 ) a) |,

and

(4.6) W*(p,t', T) = sgn(p) V(p, ', T)) ™ .

Proof. For p # 0 calculate

® -
e (Vi) = —p sen(q) (V)T

dx
32 A p—1
= — _ . 2 M
psgn(q)&((r P a—i—p_l i

— psen(q)& (((p— l)r—q%2> -a+)\-M>T

sgn(p — 1)|p|cBy
EN-M+N
BT t( + )T’
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resp. for p =0

a0
dz

(

) = e

and find a representation (3.8), since & (A - M + N), > 0. Set

(4.7)

v/ (H?)
BItT]

optx,q,t, T

Zopt*,q,t,T = gt ()\ . M + N)T )

2 T
i& (—pﬁ -a+L-M> E(N-M+N)"

which is a uniformly integrable martingale on [t, T] for p < 1 by as-

sumption. For p > 1 and € > 1 observe

2 €p
(s p——
p—1 p—1 T

2 2,2
& ((epr—quZ—i—ﬁ—u) -a+eq)\-M>
T

()" -

2 (p—1)?

8t<<6p7"—6q52p(2_6)_1> -a+eq)\-M>
T

2 p—1

hence we find VT(HP) € LE*(Qy.)) for some € > 0, since (1—g(e—1)) > 0

for € close to 1. By Lemma 3.3 we find ((VH# )7 &(X- M + N)T) to



21

be the optimal pair. For p # 0 we calculate

U®) (VTW)) — —sen(q )(Vum)p
= e (555 02 ),
((pr_q_).qu.M)T

= —sgn(q)cE (gA- M + N) .

= —sgn(q

Since & (g\ - M + N)T is a uniformly integrable martingale we find

(4.8)
B |6 ((r - d%) -a), |
Ey [E(N)r] '

The last equation follows from (3.9). O

E, [U(”) (VT(HP)H = —sgn(q)c = —sgn(q)

In the next section we give an interpretation of the portfolios generated
by HP.

5. LOCALLY EFFICIENT PORTFOLIOS

Frorn Lemma 1.4 and g = rS — CA, da-a.s., we immediately find
v —St(H ' =& ((r—HCN -a+H- M) for a process H =
(H,=5) € L}, (S). From Cauchy-Schwarz inequality it follows that
|HC>\| < VACMWHCH = 3vVHCH. We have

Uy - (V<ﬁ>>2 HOH - oltT]

We interpret vV HC H as a measure for the relative instantaneous risk of
the portfolio generated by H and Hu = r — HC' A as a measure for the

instantaneously expected relative return rate. For § # 0 and v HCH #

. . EAI,ufr _ —HCM)
0, we find for the 1nstantanfaous Sharpe-ratio ViR = vic
stantaneously expected relative excess return over the 1nstantane0usly

. . . . - < HC’A
risk-free return rate and relative instantaneous risk, —f THcT = <p

and \/gTC?I pift H € kA+Ker(C) for a predictable, strictly negative,

process k € L% (f3), resp. \;gTC?I = - iff H € kA + Ker(C) for a

predictable, strictly positive, process k € L2 (). We call these hedg-
ing strategies locally efficient. We have seen in the last section that in

of in-
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the case of a totally p-unhedgeable price for risk the optimal portfolios
generated by HP are locally efficient. See Markowitz (1952, 1987) and
Sharpe (1964, 2000).

Define the following quantities for p # 0, 1:

1dln(V(p,t,T))

(5.1) RPLT) = ; 0T ,
(5.2) RP .= %ggoz%ln(V(p,o,T))
and

dv(0,t,T
(5.3) rosr - VOLT) il )
(5.4) RO = TLEEO%V(O,O,T).

Under some regularity conditions, these quantities exist. By Theorem
4.5 we find immediately

Proposition 5.1. Under the assumptions, oy = t and pr — q%z con-

stant for p # 0,1, resp. r + ’%2 constant for p =0, we have

(5.5) Vip,t,T) = exp((pr—qﬁ—Q> (T—t)>,

2
2
(5.6) RO — RO —py L ,
2(1-p)
resp.
2
(5.7) V(0,t,T) = (7“ + %) (T — 1),
2
(5.8) ROLD) _ RO _ . % .

See Bielecki and Pliska (1999, 2000) for an interpretation of the quan-
tities R® and the risk-sensitive stochastic control approach. R®HT)
can be interpreted as an implied forward growth rate of the expected
utility of wealth under the optimal self-financing hedging strategy. As
we will see in Section 7, another related quantity is the right one to
look at: We define

(5.9) Y(p,t,T) :=In(V(p,t,T)]).
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6. EXISTENCE OF OPTIMAL PORTFOLIOS

Let 0 < T < oo be fixed. In this section we will assume S to be

continuous and DY (Mg 1) # 0 for p > 1, resp. for p < 1, D4(Mo 7)) #

0 and V(p,0,T,SF?(Mor))) < co. We assume for simplicity in this
section that B = 1. The results can be generalized to the case of a B
such that B and B™! are uniformly bounded on [0, T7.

Theorem 6.1. Under the above assumptions, the optimal pair
(Vortp 0T | Zoptxa 0T “satisfying (5.8) and ZP*40T € D(Mo1), exists

for the market Mo ) with respect to optimization in SFP(Mir).

Proof. We first prove the case p > 1. Since A}"(M 1) is closed and

convex and since LP(Q 1)) is reflexive there exists an element V2407
with minimal norm. As in GLP98, Lemma 4.1 and Theorem 4.1, it is
easily shown that VP4P0T > (. Since U® is concave we have for all

Y € Agp(M[gyT})

dU @)
(6.1) U® (V:,?”t””o’T + Y) <y (ngpt,p,U,T) i gx (ngpt,p,O,T) v

It follows from the optimality of V;****" and since d%—;m (VTO” by ’O’T) €

Lq(Q[UyT}) that

dU(p) opt,p,0,T Y
(6.2) E [BT — (VT )B—T] —0,

for all Y € AP (Mor)). From VPP € [P(Qr) it follows that

d%ff) (VTopt’p’U’T) € L¥(Qo;r). Since VPOt e A" (Mpo,r1) we have
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-1
E {(VTOpt’p’U’T)p ] > 0. We therefore find

E |:dU(P) (Vopt,p,O,T> ‘f]
(63) gmewer L& \T 1 Dot
. ‘ E [dU(P) (Vopt,p,[],T)] [0,77)-
dz T

Optimality follows now from Proposition 3.1. It was shown in GK98,
Lemma 4.4, that Z#*%0T € DI( Mg ).

For p < 1 the results of Kramkov and Schachermayer (1999), (KS99),
can be applied. There, existence and uniqueness of an optimal solution
Vortp0.T with V2P0 > 0 for problem (3.6) is proved. Furthermore,

the existence and uniqueness of a strictly positive process Z°, such

that B [(Z")"] = infsepii,p B [(£)'], and with the following

properties is shown: Z&' = —sgn(q)U® (VP01 yortp 0T zovt g
a uniformly integrable martingale and for an arbitrary self-financing
hedging strategy with non-negative value process V, the process V ZP

is a supermartingale. We will show in the next lemma, that for a con-

tinuous price process Z%" € D(Mi ). O

The worrying fact is of course that Z°?! is in general only a supermartin-
gale. However, the given example (Example 5.17 in KS99), showing that
Z°P! is in general not a local martingale, involves a non-continuous price
process. We define the following set of semimartingales living on Qo 7y
for 0 < oo, see KS99:

H

_ 1% ' '
V(M) = {Y > 0|Yy =1, WY is a supermartingale

for all H € SF° (M[O,T])}.
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Lemma 6.2. Assume S to be continuous and let Y € Y (Mo 1) with

Yr > 0 be given. If there exists a H' € SF* (M) with V' =1 and

V:,H' > 0 and such that V'Y is a uniformly integrable martingale, then

Y € D(M[O,T})

Proof. Since Y is a non-negative supermartingale, we have by J&S87,
Lemma II1.3.6, that ¥ > 0 and Y_ > 0 almost surely and hence ¥ =

E(Z) for Z := ¢~ -Y. Since Y is a supermartingale it is a special

semimartingale and therefore Z too. Z admits a representation 7 =
A+L, where A = A" is a predictable process of finite variation, L = L”

is a local martingale and Ay = Ly = 0. By J&S87, Theorem I11.4.11,

2

2 (M) and a local martingale

we find a predictable process K € L
N orthogonal to all components of M, with [M, N] = 0, such that
L =K -M+ N and the representation Y = E(A+ K - M + N).
Since V' > 0 is a local martingale with respect to any equiva-
lent martingale measure, V' > 0 implies VZ' > 0. By Lemma 1.4
there exists a H' € L7, (ST) such that (I:I’, %)T generates V7',
By assumption and since M and H'C)\ - o are continuous, %Y =
VY = EHC(K =\ -a+ A+ (K + H) - M+ N)T is a uni-
formly integrable martingale. The Doléon-Dade SDE implies that
(%Y)_ CH'CK = X)-a+ A) = 2y — (g;;’y)_ (K + H') -

M + N)T — 1 is a predictable local martingale of finite variation on
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[0,7], hence constant on [0,7] almost surely, see J&S87, Corollary

1.3.16. We therefore find E(H'C(K — \) - a + A)” = 1. Now let

HelL}, (S"),set H:= (H, I’B{{S)T and consider the discounted value

process V* := VI;I;) = E(—HCX-a+H-M)" generated by H. We have

VY = E(HO(K —\)-a+A+(K+H)-M+N)T = E((H—-H)C(K—))-
a+(K+H)-M+N)" is a supermartingale for all H € L}, (S7) by as-
sumption. For H := K—A+H' we find (V*Y)_-(K=\C(K—))-a) =
VY —(V*Y)_-((K+ H)-M+ N) — 1 to be a non-decreasing local
supermartingale on [0,7]. Therefore (K — A\)C(K — A\) = 0, da-a.s.
and from 1 = E(H'C(K — \) - a+ A)T = £(A)T we conclude A = 0
and Y = £(A- M + N)T € D(My.1). 0
In DMSSS97, Theorem A-C, (for p = 2), and GK98, Theorem 3.1 and

Theorem 4.1, (for p > 1), necessary and sufficient conditions are given
ensuring Gi (Mo,r1) to be closed. These results imply

Proposition 6.3. If G§(My 1) is closed, then
(6.4) V(p, 0, T, SP(M[O,T})) = V(p, 0, T, QP(M[O,T})),

and VoPPOT can be obtained by a self-financing hedging strategy in

GP(Mq)). Furthermore, for 0 < t < T, the optimal pair for the

market ./\;l[t,T] s given by

Vopt7p707T Zopt*7q707T

tv- tv- - -

o) (v Z) € (M) x D (M),
t t
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7. THE BSDE APPROACH

In this section we will put to use Proposition 3.1 in a general setting.
Assume the existence of a continuous local martingale N orthogonal to
M such that (M, N) has the local martingale representation property
and [N, N] = C'- a. Since the case p = 0 is already solved (see Remark
4.3) we assume in this section p # 0,1. Let 0 < ¢ < T be fixed.

Consider the following formal calculation for the optimal solution
VortpbT for a maximization problem of terminal utility in the market
M7 and an arbitrary attainable BLT e A’ (Mpu):

(T1) U4 Y) < Uy £ 0 (e,

implies

Y
(7.2) E, | BrU' (VPP — | =0,
Br

since kY is attainable for all F;-measurable random variables k. Hence
BpU' (V2" should define an absolutely continuous martingale mea-
sure up to normalization. In general this argument breaks down be-
cause of integrability problems. However, for isoelastic utility with
exponent p > 1 this approach works. None the less, we can try the
following ansatz:

(7.3) ¢, BpU' (VEPPETY = (N M + v - N)p,

respectively

(74)  In ((ctBTU’ (1/;3’"*1”“))_1 EN-M+v- N)T> —0,

N\T R _
where VoPLpbT — V(H)) for H = (H, 1’HS)[IE’T] € L7.(S) and v €

B loc
L2 .(N). Ansatz (7.3) leads to a FBSDE. For the isoelastic utility
functions ansatz (7.4) will lead to a BSDE, where (H,v) form part of

the solution. For ¢t < s < T define the adapted process

-1
(7.5) YPMTi=1In (<c B du (vopt’P’t’T)) EAX-M+v-N) )
. f = 1D dr s t v s | -
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Applying It6’s formula and by the definition of the stochastic exponen-
tial we find

T
t,T t,T
Y]I:a ) — }/;pz ) _'_ / d}/’spatzT
t

Y;p,t,T + /T (p - l)HsCsHs _2VsCsVs - )‘scs)\s dOzs
t

T
+/ ((p - 1)Hscs)\s - st) das
t

T T
—|—/ (As — (p— 1)Hy) dM; +/ VsdNj.
¢ ¢

Because of Proposition 3.2 and the formulas (3.16) and (3.17) we expect
YPLT to be independent of ¢, hence we arrive at the following BSDE
fort <t <T:

yon /T (0= VH,CoH, = vsCovs = A\CAs

% 2

T

(7.6) - [ @=men - do,
t’
T T
_/ (A — (p— DH)AM, — | v,dN.,.
t! v

Conversely, given an adapted solution (Y @), H,v) to the BSDE (7.6)
on [t,T], we can define a self-financing hedging strategy in My 1 by
using

. 1—HS\®

. H:=|H
(7.7 (1.255")
as a generator for
(7.8) VI =& ((r—HCN) - a+ H-M)" € SF(Myr).
We also have
(7.9) 7" =&N-M+v-N)" € D(Mg).
Lemma 7.1. VT(I:I) and ZY. satisfy (3.8):

(p,T)
exp (—Yt ) dU®) X
7.10 7V = B 1) (D)

( ) T Bt|p| T‘Sgn( p) dr ( T ) )
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Proof. Observe

T J— J— S J—
L~ e ( / (0 = DH,CH, — v,Covy = MCAs das)
t

2
T
</ (p - l)HsCsAs - prsdas>
t

T T

< exp (YJ”’T’ = [ w-vaav+ [ usdzvs) ,

t t
which implies

gt(AM‘i‘VN)T

T (1 - p)H,C,H,
= exp (/ 0= pHC +(1—p)HsCs)\s+p7"sdas>
t

2

T
X exp (—th’ [ w- 1>Hdes)
t

T p—1
= (exp </ ro — H,CA\g — H,C.H,s da5>>
t 2
T p
xE(r - ) exp (—Yt(p’T)> <exp </ Hdes>>
¢

-1

exp (_Y;(P,T)> B
= B Br& ((r— HCN) -a+H - M)}
t
(p,T)
exp (—Yt ) dU®) X
= B 1—p)— (V™).
By[p] rsen(l—p)—n (VT )

Proposition 7.2. Assume (Y®7) (H,v)) to be a solution to the BSDE
(7.6) on [t,T). Define H, resp. VI, 77 by (7.7), resp. (7.8), (7.9). If
forp<1,&E((H+AN) -M+v- N)T is a uniformly integrable martin-

gale, respectively if forp > 1, VIDH € SF} (M), then (V(ﬁ), Z”)
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15 the optimal pair for the market /\;l[t,T] with respect to optimization

in SFy(Myr)). Furthermore we have

(711)  V(p.t,T) = —sgn(q) exp(Y;"") = —sgn(q) exp(¥(p,,T)).

Proof. The first assertion follows from Proposition 3.1, (7.11) follows

from (3.13). O

Conversely, the existence of an optimal pair for the market /\;l[t,T] to-
gether with the local martingale representation property of (M, N),
implies the existence of a solution (Y®7) (H,v)) for the BSDE (7.6)
on [t, T] satisfying the assumption of Proposition 7.2.

8. MARKOVIAN MARKET MODEL

As an example, we will transform in this section the BSDE (7.6) for
a (for simplicity time-homogeneous) markovian market model into a
non-linear partial differential equation with boundary condition.

Consider the following market model: Assume the existence of a
(m + m')-dimensional Brownian motion W = (W' W?) on Q,, and
assume F to be generated by W. For simplicity, let g1 = (u, ') :
R — R4 and ¢ : RHY — RE+)x(m+m) he smooth uniformly
bounded functions with uniformly bounded derivatives of all orders,
such that for all 2 € R™*? | go*(x) : R*H? — R™ is invertible with
uniformly in 2 bounded inverse. Furthermore, assume oo*(z) = C'(x) X
C'(z) : R? x R¥ — R? x R¥. Then there exists a R**¢ -valued Markov
process X = (S, S") solving the SDE for zy € R™*"

(8.1) dX; = p(Xy)dt + o(Xp)dW;, Xy = xy.

Denote by M the martingale part of S, and by N the martingale part
of S’. Note that M and N are orthogonal. Assume the interest rate
r to be a bounded function of X, and define B, := exp <f0tr(Xs)ds)
for all t > 0. Set A := C~'( —rS) and 3% := ACX. We now interpret

S := (S, B) as a price process and S’ as (non-traded) state variables.
Consider the following non-linear PDE for Y : R¢ x R x [0, 00) — R,
(p#1):
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—or LY LY = LY+ LPY + a5 =,
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with boundary condition Y(s, s',0) =0, Vs,s', where

62

t,j=1
dl

,
b= Z“Za' _ZCJasaS"

and for f € CVY(R? x R? x [0, 00)),

&
]' /
Lsf = _52_: ”83

1 of
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ST Zas, "733 q., B, (i

i,7=1

Assume Y®) ¢ C?>(R? x RY x [0,00)) to be a solution of the PDE
(8.2), sat1sfy1ng the boundary condition Y ®)(-, - 0) = 0. Applying Itd’s
formula to the process ;" := Y®)(S,, SI, T —t) we find

(Y(p,T), (Hopt,p,T, Vopt*,q,T)) —
n_ oy ® ’ . »
(82) <Y(p7T), <)\(S,S) gil(sws-vT ), 3}8/5(’)(5 Sl ))) ,

to be a solution for the BSDE (7.6). We give (admittedly quite strong
and not easy to check) conditions, ensuring (Y®?), (H,v)) to be a
useful solution:

Theorem 8.1. If forp > 1, E(A- M + vP*%T . N)p € LIY(Qo ) for
ane >0, resp. if forp<1,p#0, & (()\ + Hoptp Ty L\ 4 portspT . N)T

15 a uniformly integrable martingale, then for all 0 <t <T
(83) Vopt,p,t,T — gt ((T . HOpt’p’TC)\) ca+ HOpt’p’T ) M)T,
and

(8.4) ZP0t T = g, (X M + vt N
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Proof. The assertion follows directly from Lemma 3.3 and Proposition

7.2. 0

Remark 8.2. Because of Theorem B in DMSSS97, resp. Theorem 4.1
in GK98, and Theorem 2.15 in DMSSS97, the condition for p > 1 in
the above theorem is more natural than it might appear at the first

moment.

Remark 8.3. For constant q%z — pr one easily finds YP)(s,s,t) =
—t (qﬁ—; —pr) to be a solution of the PDE (8.2) satisfying the con-
ditions of Theorem 8.1. This also proves that in this case the ¢-

optimal martingale measure equals the minimal martingale measure,

ZoPpbT — £.(\ - M), see Follmer and Schweizer (1990).

Remark 8.4. For p = 2, under the assumption of Theorem 8.1, we
can construct the hedging numéraire explicitly. In Laurent and Pham
(1999), Section 6, this is achieved under stronger assumptions on 3? —
2r. See also Leitner (2000) for an application to the mean-variance
efficiency problem and the calculation of the intertemporal price for

risk.

9. CONCLUSIONS

One of the problems in the probabilistic theory of finance is, that
one has to make an ansatz for the probability law of the future price
processes. In a constantly changing world it is not at all clear how such
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a law could ever be determined. Without knowing the actual law (it is
even difficult to argue that such a law exists, since it is not clear how we
can speak of probabilities in experiments which can not be repeated)
it is difficult to define what we mean by an optimal hedging strategy.

In a more pragmatic approach one could try to parameterize a class
of reasonable laws and look for parameters such that the implied prices
fit the observed prices best. If observed and implied prices differ, or if
the estimated law differs from the law an investor believes prices to fol-
low, then the investor should buy underpriced and sell overpriced stocks
until risk aversion, the trust in the used model and the confidence to be
more clever than the market, are in a balance. In our model this would
involve solving parameterized (F)BSDEs and estimating good param-
eters. In a discrete time model this can be achieved using a backward
iterative algorithm, but would be computational very expensive, since
observed prices have to be compared with implied prices for a large
number of parameter values. For a markovian model as in Section 8,
we would still have to solve a (parameterized) non-linear PDE.

Another problem in the probabilistic theory of finance is, that when-
ever a new, i.e. non attainable, stock or security is introduced to the
market, then the market data C,\, 3 and the optimal pairs VoPtPbT
ZoPPbT will change in general.

We have shown, that the problem of maximizing isoelastic utility
from terminal wealth is significantly facilitated if the price for instan-
taneous risk is assumed to be totally unhedgeable. In this situation
optimal portfolios can be constructed from locally efficient portfolios
and there holds a two-fund-theorem for all investors maximizing isoe-
lastic utility of terminal wealth. The big advantage of locally efficient
portfolios is that they can be determined by estimating the local char-
acteristics of the price process. We only have to assume that prices
follow some probability law (that allows for successful estimation of
local characteristics), but we don’t have to decide for a specific law.
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