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Abstract

The optimal control problem is considered for linear stochastic systems with a
singular cost. A new uniformly convex structure is formulated, and its consequences
on the existence and uniqueness of optimal controls and on the uniform convexity
of the value function are proved. In particular, the singular quadratic cost case
with random coefficients is discussed and the existence and uniqueness results on
the associated nonlinear singular backward stochastic Riccati differential equations
are obtained under our structure conditions, which generalize Bismut-Peng’s exis-
tence and uniqueness on nonlinear regular backward stochastic Riccati equations to
nonlinear singular backward stochastic Riccati equations. Finally, applications are
given to the mean-variance hedging problem with random market conditions, and
an explicit characterization for the optimal hedging portfolio is given in terms of the
adapted solution of the associated backward stochastic Riccati differential equation.
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1 Introduction
In this paper, we consider the optimal control problem of the following linear stochastic
system

dX(t) = [A({)X(t)+ B(t)u(t)] dt + ;[C’i(t)X(t) + D;(t)u(t)] dw;(t), (1)

X(0) = =z wu(t)e R™

under the following singular cost
T __
J(u;0,2) = EM(X(T)) + E / M (s, X (s)) ds. 2)
0

Here, (0, F, P,{F;}+>0) is a fixed complete probability space on which is defined a stan-
dard F;-adapted d-dimensional Brownian motion w(t) = (wi(t), - -, wa(t))*. Assume that
F; is the completion, by the totality N of all null sets of F, of the natural filtration {F*}
generated by w. We assume that M (z) is Fr-measurable and uniformly convex in z, and
M (t,z) is Fi-measurable and convex in z. Denote by {F2,0 <t < T} the P-augmented
natural filtration generated by the (d — dy)-dimensional Brownian motion (wg,11, - - -, Wa)-
Assume that all the coefficients A, B, C;, D; are F?-progressively measurable bounded
matrix-valued processes, defined on Q x [0, 7], of dimensions n X n,n X m,n X n,n X m
respectively. X (t) stands for the state of the system at time ¢ and u(-) the whole con-
trol action imposed to the system, which is required to take values in a previously given
nonempty closed convex subset U of the m-dimensional Euclidean space R™ and to be
adapted to the previously prescribed filtration {F;,0 <t < T'}.

A new feature of our problem is that the cost J is singular, that is it does not
explicitly depend on the control variable u while the admissible control values are possibly
unbounded in the n-dimensional Euclidean space R". A problem is said to be well-posed,
if and only if it has unique solution. The well-posedness of the singular stochastic optimal
control problem is concerned. On one hand, in the deterministic case, i.e. when C; = 0
and D; = 0, the above singular control problem is not well-posed in general.

Example 1. (no optimal control) A typical example is to consider the case of
n=1,A=B=1M(z)=M(z)=z*z,U = R.

In this example, for Vo # 0, the optimal control problem has no solution. To see this,
consider the constant feedback law
u=—kX

whose corresponding state process is given by X(t) = zexp(—(k—1)t),0 < t < T.
Therefore its value of the cost functional

$2

J(=hX;0,2) = 2" exp (=2(k = )T) + 57—

(1 —exp (=2(k - 1)T))



converges to zero as k — oo. If the optimal control problem has a solution @, then
one should have J(@;0,z) = 0, and therefore X (¢) = 0 for ¢t € [0,7]. This contradicts

X(0)==xz#0.
Example 2. (multiple optimal controls) Consider the case
n=1,A=B=1M(z)=z"z,M(z) =0,U = R.

In this example, for Vo € R, the number of optimal controls is infinite: all those controls
which shift the state of the system to zero at the terminal time 7" are optimal!

On the other hand, the above singular model is indeed used in financial economics
and the relevant financial problems are well-posed. It is used to formulate the mean-
variance hedging problem, for example. Actually, the latter observation motivates us to
study the above optimal stochastic control problem with a singular cost.

From the above comments, we see that in order to make our problem well-posed it
is necessary to make some assumption which excludes the degenerate case. In fact, we
assume that for some positive € > 0

> Di(t)"Di(t) = el. (3)

We shall call it the nondegeneracy condition.

The reader will see later that the above nondegeneracy condition is satisfied in the
mean-variance hedging problem.

Theoretically, it is also interesting that the above nondegeneracy condition together
with the uniform convexity assumption of the cost in state variable implies a uniform
convexity of the cost functional both in control processes and in initial states, which leads
in a straightforward way to the existence and uniqueness of optimal controls and the
uniform convexity of the value function in the state variable x. The proofs given here
are simple applications of the theory of backward stochastic differential equations
(BSDEs in short form), developed by Pardoux and Peng [15].

When the cost function is a positive quadratic form of the terminal state, then our
problem becomes a singular linear quadratic stochastic control problem, called a singular
stochastic LQ problem. It is associated with a nonlinear singular backward stochastic
Riccati differential equation (BSRDE in short form) of the following form

’dK(t) = —[A*K(t)+K(t)A+zd;CZK(t)Ci+ %d:l(CZLi(t)qLLi(t)Ci)
—(K(t B+ZC* ZD+ ;1L D;
x(z D;‘K(t)Di)1(K(t)Bi§:+C;‘K(t)Di+ | zd: Li(t)D;)*] dt )
+ Z L;(t) dw;(t) ogzi T, o

KT = @




It should be noted that the above differential equation has singularities in that the inverse
of the unknown matrix K is involved. For a nonlinear reqular BSRDE, which has the
following form

| dK(t) = —[A"K(t) +K(t)A+§d:C£‘K(t)Ci+ %d:l(Ci*Li(t) + Li(t)C;)
—(K(t B+Z;C* t)D; + ;IL D;
x(N +iDZ;‘K(t)Di)‘l(K(;)BO:LiCi*K(t)Di+ | gd; Li(t)D;)*] dt (5)
+Z” t) dw;(t) 0§t<7j,:1 o
K - @

\

with N > 0, an existence and uniqueness result was obtained by Wonham [25] for the
case of deterministic coefficients (that is dy = d), by Bismut [2] for the case of random
coeflicients with the assumption that Cy,41 = -+ = Cy =0 and Dgy41 = -+ = Dy = 0,
and by Peng [18] for the case of random coefficients with the assumption that Dy 1 =

- = Dy = 0. The literature on the study of the nonlinear singular BSRDE (4) is
restricted to the framework of deterministic coefficients (that is dy = d, and (4) is a
deterministic Riccati differential eqution) and moreover the assumption that C; = -+ =
Cy = 0 is made. Even in that quite restricted framework, there are only few positive
results: the existence and uniqueness result is obtained by Kohlmann and Zhou [12] for
the case of D; =1,i=1,...,d, under the following additional assumption:

A(t) + A*(t) > BB*(t). (6)

The arguments in [12] are based on a result of Chen, Li and Zhou [3].

In this paper, we obtain the existence and uniqueness result on nonlinear singular
BSRDE for a general C := (C4,...,Cy) and those D := (Dy, ..., Dy) which satisfy both
the nondegeneracy assumption (3) and the condition that

Dggs1 =+~ = Dy = 0. (7)

In our framework, the coefficients are allowed to be random, and the assumption (6)
and the condition that C; = --- = Cy = 0 in Kohlmann and Zhou [12] are dispensed
with. We use a regular approximating method, and the arguments given here are based
on our new observation in Theorem 2.2 (the uniform convexity of the value function, see
also Lemma 3.2), which a priori asserts that the symmetric matrix associated with the
value function of the singular optimal stochastic control problem under consideration is
uniformly positive. That new observation enables us to pass a limit in the approximating
regular BSRDESs. In this way the discussion on singular BSRDEs becomes unified and
straightforward.

As an application of the above results, the mean-variance hedging problem with
random market conditions is considered. The mean-variance hedging problem was ini-
tially introduced by Follmer and Sondermann [5], and later widely studied by Duffie and
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Richardson [4], Féllmer and Schweizer [6], Schweizer [21, 22, 23|, Hipp [9], Monat and
Stricker [14], Pham, Rheinldnder and Schweizer [20], Gourieroux, Laurent and Pham [7],
and Laurent and Pham [13]. All of these works are based on a projection argument.
Recently, Kohlmann and Zhou [12] used a natural LQ theory approach to solve the case
of deterministic market conditions. In this paper, the case of random market conditions
is solved by using the above results, and the optimal hedging portfolio is characterized
by the solution of the associated BSRDE. The variance-optimal martingale measure is
also characterized in terms of the solution of the associated BSRDE. Note that the ap-
plication of a convex duality method and the dynamic programming principle to finance
is well-known by now and the reader is referred to Karatzas and Shreve [11].

The rest of the paper is organized as follows. In Section 2, the optimal control
problem is studied for linear stochastic systems with a general singular cost. The nonde-
generate assumption (3) on the system and the uniformly convex assumption on the cost
function are made. The coefficients of the problem are allowed to be random. The results
given here contain the exposition of an implicit uniformly convex structure, the existence
and uniqueness for optimal controls, and the uniform convexity of the value function in
the state variable. As a particular but important case, the case of a quadratic cost, that is
the singular stochastic LQ problem is discussed in Section 3. Via a regular approximating
approach, the existence and uniqueness is proved for the adapted solution to the associ-
ated nonlinear singular BSRDE (4), and in terms of this solution the optimal control is
expressed as a closed form. For convenience of subsequent application, a detailed solution
to the nonhomogenious singular stochastic LQ problem is given. To illustrate the above
results, the mean-variance hedging problem with stochastic market conditions is solved
in Section 4, and the natural LQ theory approach is connected to the artificial hedging
numeraire method of Gourieroux et al [7]. Finally some concluding comments are made
in Section 5.

2 Optimal Control of Linear Stochastic Systems with
Singular Costs

2.1 Formulation of the problem

Throughout this paper (2, F, P, {Fi}+>0) is a fixed complete probability space on which is
defined a standard F;-adapted d-dimensional Brownian motion w(t) = (wq(t), - - -, wa(t))*.
Assume that F; is the completion, by the totality A of all null sets of F, of the natural
filtration {F}"} generated by w. Denote by L%(¢,T; R™) the set of all R™-valued, F;-
adapted stochastic processes ¢ on [t, T] such that E [ |¢(s)|?ds < oco.

Let A, B,C;, D; be Fi-progressively measurable bounded matrix-valued processes,
defined on Q x [0,T], of dimensions n X n,n X m,n X n,n X m respectively, and the
random variable M (z) be Fr-measurable and bounded for each z € R". Let U be a some
nonempty closed convex subset of the Euclidean space R™.

Consider the following linear stochastic control system parameterized by the initial



data (z,t) € R* x [0,T1:

dX(s) = [AX(s)+ Bu(s)]ds+ i[CiX(s) + Diju(s)] dw;(s), t<s<T, (8)

X(t) = =z

An admissible control on [t,T] is an Fs-adapted process {u,t < s < T} with values in
U, such that

T

E/ lu(s)|? ds < oo.

t
Denote by U,q(t,T') the set of admissible controls on [t, 7] and Let U,g be Uaq(0,T'). For
given initial data (t,z) and given u € Uy,q, the above control system (8) has a unique
solution X, also denoted by X“** to indicate its dependence on the triple (z,¢, u). For

given initial data (x,0), the optimal control problem (denoted by Py) is the following
minimization problem:

Problem P, J(u;0,z) ;== EM(X*%%(T)) = min!. (9)

u€U,q

Following the idea of dynamic programming, consider the following associated opti-
mal control problem parameterized by the initial data (¢, z):

min  J(u;t, ) (10)

u€U,q(t,T)
with
J(u;t, x) = B7 M(XP(T)). (11)
Denote it by Pe*. The value function is defined as follows:

V(t,z) .= min J(u;t, z). (12)

ueUad(t»T)

Observe that, for any fixed z, {V (¢, z),0 < t < T} is an F7-adapted real valued stochastic
process.

We make the following basic hypothesis. Assume that (a) there is some & > 0 such
that

d
Y D;D;(t) > eI, Vte[0,T],a.s. (13)
i=1

and that (2) the function M : Q x R™ — R is uniformly convex in the second argument:

M(zy) + M(z2) — 2M($1 i 332) >eley — 21|, Vo, 1 € R",as. (14)
and satisfies
|M(.’I}1) — M(ﬂ?g)' S 50(1 + |fl71| + |CL'2|)|.TC1 — .TC2|, V.T,'l,.fll'z S R",a.s. (15)
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for some positive constant gg.

Further notation. Throughout this paper, the following additional notaion will
be used:

M* : the transpose of any vector or matrix M;

| M| = 4/X;; mi; for any vector or matrix M = (my;);

(M, M) : the inner product of the two vectors M; and Mo;

R” : the n-dimensional Euclidean space;

S : the Euclidean space of all n x n symmetric matrices;

St . the set of all n X n nonnegative definite matrices;

C([0,T); H) . the Banach space of H-valued continuous functions on [0, T,
endowed with the maximum norm for a given Hilbert space H;

L£2(0,T; H) : the Banach space of H-valued F;-adapted square-integrable

stochastic processes f on [0,T], endowed with the norm
(E [§|£(t)]? dt)"/? for a given Euclidean space H;
LE(0,T;H) : the Banach space of H-valued, F;-adapted, essentially
bounded stochastic processes f on [0, 7], endowed with the
norm esssup; , | f(t)| for a given Euclidean space H;
L*(Q,F,P;H) : the Banach space of H-valued norm-square-integrable random
variables on the probability space (2, F, P) for a given
Banach space H;
and L*>(Q, F,P;C([0,T]; R")) is the Banach space of C([0,T]; R")-valued, essentially
maximum-norm-bounded random variables f on the probability space (2, F, P), endowed
with the norm esssup, ., maxo<i<r | f(t, w)|.

2.2 The backward feature of the problem, and the associated
backward stochastic differential equation

Intuitively, it is easy to see that the singular optimal stochastic control problem under
consideration has a backward structure: the optimality of the control process (and there-
fore the state process) is determined only by the terminal value of the corresponding
state process, for the value of the cost functional is completely determined by it. Hence
if the singular optimal stochastic control problem P, is expected to have a unique opti-
mal control, then it is natural to expect that the terminal value X (7') of the controlled
state process X%%%(.) should determine, in a unique way the whole control process u(-)
under being used, and thus determine simultaneously the whole state process X%%u(.)
(note that the stochastic differential equation (8) has under our setting a unique solution
X0®u(.) for given initial state z and given control process u(-)). This is to say, for each
¢ € L*(Q, Fr, P), the following BSDE

dX(t) = [AX(t)+ Bu(t)]dt + zd:[CiX(t) + Dyu(t)(8)] dwi(t),
X(T) = ¢ -

should have unique F;-adapted solution. So, it should not be surprising that the properties
of the control problem Py are closely related with the properties of the above BSDE (16).

(16)
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We have

Proposition 2.1. (the backward structure) Assume that the nondegeneracy
condition (13) is satisfied. Then for every & € L*(Q, Fr, P), the BSDE (16) has a unique
Fi-adapted solution (X (-),u(-)) with X € L£%(0,T; R") N L*(Q, Fr, P;C([0,T); R")) and
u € L%(0,T; R™).

Proof Set
¢ :=CX+Du, i=1,...,d.

In view of the nondegeneracy condition (13), we have

d

d
= (X DiD) Y Di(g; - C;X), i=1,....d
1= i=1

Substituting the above equation into the BSDE (16), we have

dX(t) = [AX(t)‘Fiéi% dt+2qz ) duwi(t (17)
X(T) = ¢ .

with

d
A:=A-BO_D:D;)" ZDC,, B; _BZDD ) IDfi=1,...,d.

i=1 =1

Note that A and B;,i =1,...,d, are uniformly bounded. Applying the theory of BSDE
(see Pardoux and Peng [15]), we conclude that the linear BSDE (17) has a unique F;-
adapted solution (X(-),u()) with X € £%(0,T;R") N L*(Q, Fr, P;C([0,T]; R™)) and
q € L£%(0,T; RY). Then the existence part of Proposition 2.1 follows. The uniqueness
part follows from Lemma 2.1 below.

Proposition 2.1 states a backward structure: the terminal condition determines, in
a unique way, both the whole state process X(-) (not only the initial state X (0)) and the
control process u(-). Moreover, we have the following quantitative characterization to this
backward structure, which is called a priori estimate of the solution of the BSDE (16).

Lemma 2.1. (a priori estimate) Assume that the assumption (13) is satisfied.
If X(+) and u(-) € L%(0,T; R™) satisfy (16), then there is 3 > 0, such that

2 T 2 2
%Eft / lu(s)[>ds + E7¢ | X (¢)]? < exp (B(T — t))EX | X(T)?, 0<t<T. (18)
t



Proof Using It6’s formula, we have from (16)

E7{|X(T)[?
2 2 T
= ETHX(r)|? + 2B / < AX(s) + Bu(s), X(s) > ds

s (T d
+E7 / 3" |CiX (s) + Dyu(s)]? ds
=1

2 2 T d
— E% |X(7~>|2+2Eft/ < (A+ 3 CrC)X(s), X(5) > ds
r i=1

(19)
2 T d
OB / < (B+Y.CrDyu(s), X(s) > ds
T d =1
+E% / u*(s)(> D D;)u(s) ds
2 ' 9 i:12 T s (T
> BHX()E + SB[ Juls)Pds - BB [ |X ()2 ds
for some positive constant G. Write
pr =BT |X(r)?, t<r<T (20)
Then, the above reads
e o [T ) T
Pt + §E t / lu(s)|*ds < pr —l—ﬂ/ ps ds. (21)
t t
By Grownwall’s inequality, we have
pr < exp(B(T —r))pr, (22)
c T
pt + §Ef't2 /t lu(s)]*ds < exp(B(T — t))pr. (23)

This concludes the proof.

We remark that the BSDE was initially introduced by Bismut [1] for the linear
case, and was later developed by Pardoux and Peng [15] for the nonlinear case. The
general theory of BSDE is well-known by now. The classical form is the BSDE (16)
with C; = 0 and D;u = w; (¢ = 1,...,d). The proof of Proposition 2.1 shows that
the general form of BSDE (16) can be transformed into the classical form under the
nondegeneracy assumption (13). The a priori estimate for the classical form of BSDE
can be found in Pardoux and Peng [16].

Proposition 2.2. (the closedness of the attainable set) Assume that the
non-degeneracy assumption (13) is satisfied. Then, for every x € R", the attainable set
R(0,z;T) at time T from the initial point x at time 0, of the linear stochastic system (1),
defined by

R(0,2;T) := {X"**(T) : Yu € Uy}, (24)

is closed in L*(Q, Fr, P).



Proof Let {&,}32, be a sequence of points in R(0, z; T'), and strongly convergence
to £ € L*(Q, Fr, P). Then, there are admissible controls u; such that

& = X0 (T), k=1,2,...
By Proposition 2.1, we conclude that there exist u € £%(0,T; R™) and Z such that
£ = XO%Y(T).

We assert that u is admissible. In fact, the pair (X} — X, uy — u) satisfies the BSDE (16)
with the terminal condition being &, — &. By Lemma 2.1, we have

€ T _ 2 a2 2
2E/ lup(s) — u(s)|*ds + |z — Z|* < exp (BT)E|& — &|°.
0

By passing to the limit, we obtain that Z = = and that u is a limit point of U,;. Hence
u € U,q (noting that the admissible control class U, is closed in £%(0,T; R™)) and £ is
attainable.

2.3 A new uniformly convex structure

Theorem 2.1. (the uniformly convex structure) Assume that (18) and (14) are
satisfied. Then, the cost functional J(-;t,-) is uniformly convex in admissible control
process u and the state variable x. In fact, we have

U1+U2 $1+ZL’2
: 5 b o)
B B € r? B 2 o2 (25)
> eexp(—B(T t))(2E t [ur(s) — ua(s)|* ds + |z1 — 2of),
Vuy,ug € L2(t, T; R™), x1,z9 € R".

J(uist, 1) + J(uz;t, z2) — 2J(

The above theorem shows that our assumptions (13) and (14) result in a —- to our
best knowledge — new uniformly convex structure of the cost functional. This structure
is implicit in the sense that the cost functional J(u;t,z),u € L%(t,T; R™) depends on
the control » in an implicit way.

Proof Let X; := X%®1u and X, := X»%2% Then, by the uniform convexity of
M, we obtain

J(uy;t, zy) + J(ug;t, z9) — 2J(u1 _; u2;t, 71t T2

)

2
= B () + M) — 20 (XD, (26
> B X (T) — Xo(T)2

Set

ou=1u, —us, 06X =2X;—X,. (27)
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They satisfy the following stochastic differential equation

d6X(r) = [A0X(r)+ Bbu(r)]dr + ;[CiéX(r) + D;du(r)] dw;(r), (28)
0X(t) = =z — . -

Applying Lemma 2.1, we complete the proof.

2.4 Existence and uniqueness of optimal controls

One immediate consequence of the above uniformly convex structure is the following
existence and uniqueness result on optimal controls.

Theorem 2.2. (existence and uniqueness) Assume that the assumptions (13)
and (14) are satisfied. Then if

inf J(u;t,x) > — 29
uEUlj}i(t,T) (uit,z) 0, (29)
there is a unique U € Ugq(t,T) such that

J(ust, xz) = I 6, x).
00 = il 3 005)

Proof We first show the uniqueness assertion. In fact, assume that u; and uy are
two optimal controls, that is

J(ug;t,z) = J(ug;t,x) = uelrjnng) J(u;t, x).

Then, we have by applying Theorem 2.1 that

0

Vv

J(uy;t, ) + J(ua; t, ) —2J(UI tu
2

’t7 x)
9 ]:2 T 2
> Sexp (BT~ )BT [ fur(s) — uals) ds
which gives u1(s) = ua(s),t < s < T.

Then we show the existence. In view of (29), we can choose a sequence of admissible
controls {uy}y., such that

i t,z) = inf 4, 7).
Jim J(u; ¢, ) uez}ﬁ(t,T)‘](“’t""’) (30)

We assert that {uy},-, is a Cauchy sequence in L% (¢, T; R™). In fact, from Theorem 2.1,
we have

J(ugt,x) + J(ug t, 2) — 2T (U545 ¢, 1)
2

> % exp (—ﬁT)EJEt2 /tT lug(s) — w(s)|* ds (31)

11



which implies

— s T
lim E7 /t lug(s) — w(s)|* ds = 0. (32)

k,l—o0

Then, by the closedness of U,4(t,T) in L%(t,T; R™), we conclude that there is u(-) €
Uaa(t,T) such that u; converges strongly in L%(t,T; R™). As a consequence, Xb%uk(T')
converges to X4%%(T) strongly in L?(Q2, Fr, P; R™). In view of (15), we obtain

J(u;t, x) = klim J(ug;t,z) = inf  J(v;t, z), (33)
—o0

’UGUad(t,T)

and therefore u(-) is optimal.

2.5 The uniform convexity of the value function
The following presents the second consequence of the above uniformly convex structure.

Theorem 2.3. (the uniform convexity of the value function) Assume that
(18) and (14) are satisfied. Assume that V (t,z) > —oo for Vt € [0,T] and x € R™. Then,
the value function V is uniformly convex in the state variable x. In fact, we have

xr1 + X9

V(t, 1131) + V(t, 56'2) - 2V(t, ) (34)
> cexp (—B(T —t))|z; — 257, Vzi,22 € R",P — a.s.

Proof By Theorem 2.2, there are uq, us, v, such that

V(t,z1) = J(uy;t, x1), V(t, o) = J(ug;t, x2),
V(t, .’I}1+$2) :J(U;t, .771+.’I}2>. (35)
2 2
Therefore,
V(t,2) + V(t 2) — 2V (¢, 2 2)
= J(uy;t, 21) + J(ug;t, x2) — 2J(v; t, w)
U1 + U2 . T+ To (36)

Y

J(uyst, 1) + J(ugst, z2) — 2J(

t
2”2)

T
eexp (—6(T — t))(%Eff/t |uy — ug|*(s) ds + |1 — x2|*) by Theorem 2.1

v

which completes the proof.

Further properties of the value function which are not used in this paper will be
discussed elsewhere.
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3 The Quadratic Case: singular backward stochastic
Riccati equation and the optimal feedback law

3.1 Formulation of the stochastic LQ problem and some histor-
ical comments

Consider the optimal control problem (denoted by Py) concerning the linear stochastic
system

dX(t) = [AX(t) + Bu(t)]dt + zd:[CiX(t) + Dyu(t)] dwi(t),

@7
X(0) = =z
the following general quadratic cost
Tw0,) = B [ [(N(s)u(s),u(s) + (G)X (), X(s)] ds (3%)

+E(QX(T), X(T))

and the admissible control class U,g = £%(0,T; R™). Assume that all the coefficients
A, B,C;, D;, N, G are F2-progressively measurable bounded matrix-valued processes, de-
fined on Q x [0, 7], of dimensions n X n,n X m,n X n,n X m,m X m,n X n respectively.
Also assume that Q € L™(Q, F7, P; S").

The above problem P, with random coeflicients was initially studied for the case
of both state and control independent system noises W?2(that is, C; = D; = 0 for i =
do+1,...,d) by Bismut [2]. He derived the associated Riccati differential equation,

dK(t) = —[A*K(t)+ A+§jo* £)Ci+ G

i=1

(KB + 3 CIK@)D)

do = do (39)
x (N + Z DK (t)D;)*(K(t)B + Z C;K(t)D;)*] dt
+ Z L;(t) dw;(t) 0<t<T,
i=do+1
K(T) = Q.

and proved the existence and uniqueness of the solution for that "new” (at that time)
type of equation (later it is called BSDE). The speciality of this case is that the second
unknown variable does not appear in the drift term of the Riccati equation. In this way,
for the case of C; = D; = 0,i = dy+1,...,d, he showed the well-posedness of the problem
Po and obtained the feedback form of the optimal control.

Later, Peng [18] addressed the above general case, and formally derived the associ-
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ated nonlinear BSRDE

, dK(t) = —[A*K(t) +K(t)A+§:C’;‘K(t)Ci+G+ Edj (CrLi(t) + Li(t)Cy)
=1 i=do+1
—(K(t)BJer:C;*K(t)DiJr Ed: Li(t)D;)
J =1 i=do+1 g p (40)
X(N+ > DiK(t)D;) "(K(t)B+Y_ C/K(t)D; + > L;(t)D;)*]dt
=1 =1 i=do+1
+ Z L;(t) dw(t) 0<t<T,
i=do+1

| K(T) = Q.

However, he only attacked the above BSRDE (40) for the case of D; = 0,i = do+1, ... ,d,
that is the following equation

AK(t) = —[AK(D)+ KHA+S CIK()C, + G
b3 (CLO+ L0 - (KB + 3 CiK(D)
o+ £ DD (B - 5 KD )
+ZZL1 t) dw;(t) 0§t<7j,:1

KT = @

The special feature of the Riccati equation in this case is that the second unknown variable
appears in the drift term in a linear way. Then, for the case of D; = 0,71 =dy + 1,...,d,
he proved the well-posedness of the above problem P, and expressed the optimal control
in a feedback form.

Both Bismut [2] and Peng [18] only considered the regular case, that is they assume
that

N>0,Q>0,G(t) > 0. (42)

For the singular case, the study in the literature is restricted to the context of deterministic
coefficients with the assumption that C; = --- = C4 = 0: Chen, Li and Zhou [3] gave
an equivalent criterion for the existence and uniqueness of the solution, and Kohlmann
and Zhou [12] proved the existence and uniqueness of the solution under the additional
assumptions:

D =1 A"(t) + A(t) > BB*(t).

3.2 Well-posedness of the stochastic LQ control problem

For the singular case, we have the following

14



Theorem 3.1. Assume that the nondegeneracy condition (13) is satisfied and the
F2-measurable bounded matriz Q is uniformly positive. Then, the problem Py is well-
posed.

Proof Under the assumptions of this theorem, it is obvious that
V(t,z) > —oc0, VY(t,z) €[0,T] x R".
So, by Theorem 2.2, there is unique optimal control.

For the regular case, the following theorem can easily be proved with similar argu-
ments as in the proof of Theorem 2.2.

Theorem 3.2. Assume that N is uniformly positive, and G,Q are semipositive.
Then, the problem Py s well-posed.

3.3 Nonlinear singular backward stochastic Riccati differential
equation, and the optimal feedback law

Consider the singular case, that is N(¢) = 0,0 <t < T. Assume
Q€ L*(Q,F}, P;SY), Q>el for some positive constant e. (43)

For simplicity of presentation, also assume that G(t) = 0,Vt € [0, 7.
Consider the following regular approximation of the original control problem Py

Problem P, min  J,(u;t,x) (44)
ue Ly (t,T;R™)

with
, (T
Jo(u;t, ) = J(u;t, ) + aE7 / lu(s)|* ds, a>0. (45)
¢

It associates with the following regular BSRDE

' dK(t) = —[A"K(t)+ K(t)A+ Ed: CIK(t)C;
+ S (CILD) + LG — (KB + z CiK(t)Dy)

do d
(al + ) DiK(t)D;) (K (t)B + ) C;K(t)D;)"] dt
=1 =1
d
+ > Li(t) dw(t), 0<t<T,
i=do+1

[ K(T) = Q.

(46)

The value function of the problem P, is denoted by V, (¢, z). Next, the following result of
Peng [18] is borrowed for subsequent citation.
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Lemma 3.1. For Va > 0, the reqgular BSRDE (46) has a unique F?-adapted
solution (Ko(), La(+)) with K, € L£3%(0,T;8?) N L®(Q, FZ, P; C([0,T]; ST)) and L, €
(£%,(0,T; S"))4=%)  and the problem P, has unique optimal control i,. Moreover, the
optimal control U, has the following closed form

do d
o = —(al + ) D;K,(t)D;) [ B*Ku(t) + > D Ko(t)Ci) X (47)

i=1 =1
and the value function

Valt,z) = (Ka(t)z, ). (48)

The relationship between the singular problem Py and the regular approximating
problem P, is discussed in the next lemma.

Lemma 3.2.  Assume that the conditions (13) and (43) are satisfied. Then,
for fizted x € R", V,(t,z) converges to V(t,x) strongly both in L3(0,T;R) and in
L=(Q, 74, P;C([0,T]; R)).

Proof Denote by @ the optimal control of the original problem, i.e. V(t,z) =
J(u;t,z). Then,

V(t, )

IN

Va(t,2) < Jo(@;t, 2)
= J(u;t,z) + aB7F / [a(s)|* ds (49)
— V(t,a) +aE7 /t a(s)|? ds.
Therefore,
\Va(t,z) — V(t,z)| < aBTE /tT a(s)|* ds.
It is easy to show that there is a constant (G; > 0 such that
J(0;t,2) < |z*exp (B(T - t)). (50)

Noting the positivity of ) and Lemma 2.1, we have

2 - 2 2 T
Jat) > B XD > e (<00 - 0)E7 [ a(s)ds. (1)
¢
Since
J(@;t,z) =V (t,z) < J(0;¢,2),

we have

e? P I PSS 2

5 exp (=B(T —t))E7" /t [a(s)|*ds < |z|*exp (B1(T — t)). (52)

Concluding the above, we have
Va(t,z) = V(t, )| < 20e?[z|* exp (B + B)(T — 1)).
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This completes the proof of this lemma.
With Lemma 3.2, the following is easily proved:

Lemma 3.3.  Assume that the conditions (13) and (43) are satisfied. Then,
the value function V has a quadratic expression. More precisely, there is an F?-adapted
stochastic process K(-) € £L%(0,T;S8%) N L®(Q, F7, P; C([0,T]; St)) such that

V(t,z) = (K(t)z,z), V(t,z)€[0,T]x R",P—a.s. (53)
Moreover, K, converges to K strongly in the two spaces

£(0,T587) and  L*(Q, 73, P;C([0,T]; 7).

Lemma 3.4. Assume that the conditions (13) and (43) are satisfied. Then, the
matriz-valued stochastic process K(-) in Lemma 3.8 is uniformly positive with respect to
(t,w) €[0,T] x Q. Hence, {La} is a Cauchy sequence in (L£2(0,T;Sm™))ld=d0).,

Proof The uniform positivity of P(-) results from the uniform convexity of the value
function V(¢,z) in the state variable x. Therefore, in view of Lemma 3.3, when a > 0
is sufficiently small, K, is uniformly positive. At this stage, we can use the standard
arguments to conclude that {L,} is a Cauchy sequence in (£%,(0, T; S"))(d-d0).

Theorem 3.3. Assume that the conditions (13) and (43) are satisfied. Then, the
singular BSRDE (4) has a unique F}-adapted solution (K(-), L(-)) with

K e LF(0,T; Si) N LOO(Q,.'F%, P;C([0,T]; Si))’ L e (£2}_2(0’T; Sn))(dfdo)’

and K (t,w) being uniformly positive w.r.t. (t,w).

Proof Let L be the limit in (£2Z,(0,T;S"))@ %) of the Cauchy sequence {L,}. By
Lemma 3.4, the K € £L35%(0,T;S?)NL®(R, .7-"%, P;C([0,T];8%)) specified in Lemma 3.3 is
uniformly positive. Therefore, it is meaningful to take limit in the approximating regular
BSRDEs (46) by letting o — 0. As a result, (K(-), L(-)) is shown to be an F?-adapted
solution to the singular BSRDE (4).

Next, we show the uniqueness assertion. Assume that (f , E) is another solution to
the singular BSRDE (4) with

R € L2(0,T:8)) N L(QF, PiC(0,TSY), L€ (L3(0,T58m)1 %),

and K(t,w) being uniformly positive w.r.t. (¢,w). Our aim is to show that K(t)
K(t),Vt € [0,T], and L(t) = L(t),a.s.a.e.t € [0,T]. For this purpose, define F(S,T, L) :
S x RMXn (Sn)(d do) by

d
F(S,T,L) = (A+BI)*S+S(A+ BT)+ ) (Ci+ DTI)*S(Ci + D;T")
d = (54)
+ > (CiL; + L;Cy),
i=dp+1
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and T': 8” — R™" by

=R do dO

['(S)= —(Z D:SD;) *(B*S + Z D;SCy).

Then, we have

{dK(t) = F(K(t),T(K(t)),L(t))dt — i Li(t) dw(t)
K(T) = Q o
and
{dK() = F(K(t),T(K(t)),L(t)) dt — i Li(t) dw;(t)
E(T) _ Q i=dp+1
Set

SK(t) = K(t) — K(t), 6Li(t)=Li(t) — Ly(t),i =do+1,...,d, tel0,T]

They satisfy the following

—déK(t) = [F(5K(t)>f(K(t)),5L(t))+@(t)]dt—‘Edj 0L;(t) dwi(t),
SK(T) = 0

r
= (D(&(1) - 1q(/f\f(t)))*(; DiK (t)Di)(T(K(t)) — T(K(¢)))
e S B

For given (¢, z), let Y(-) be the solution of

i=1

dY(s) = (A+ Bf(K(s)))Y(s) ds + Z(Cz + Dif(K(s)))Y(s) dw;(s),
t<s<T,

Y(t) = =z
(6K (t)z,z) = B*F /t L O(s)Y (5), Y (s)) ds > 0.

t)
K (t) Vt € [0, T]. Then it is straightforward to prove that L = L.
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(56)

(58)

(59)

> 0 and K(t) > K(t). Identically, K(¢t) > K(t). This proves that K(t) =



From the above theorem, the next theorem can be derived in a straightforward way.
For the detailed proof, the reader is referred to the proof of Theorem 3.5 below.

Theorem 3.4. Assume that the conditions (13) and (43) are satisfied. Let (K, L)
be the unique F?-adapted solution to the singular BSRDE (4). Then, the optimal control
u of the singular stochastic L(Q) problem Py has the following feedback law

8=~ DIK()D) " (BK W) + 3 DK (G, ()

and the value function V (t, x), (t,x) € [0, T| X R" is a quadratic form given by the following
formula

V(t,z) = (K(t)z,z), V(t,z)€[0,T]x R" a.s. (61)

3.4 The nonhomogenious singular stochastic L(Q problem

Assume that

Q € L>(Q, F3, P; ST, Q > eI for some positive constant ;

f.g € L2(0,T; R™), £ € L2(Q, Fr, P). (62)
Consider the following optimal control problem (denoted by ’ﬁo):
sectin o EMX e(T)) (63)
with
M(z) = (Q(z - £), (z - §)) (64)
and X»%%(.) solving the linear stochastic system
dX(s) = [AX(s)+ Bu(s)+ f(s)]dt
+ zd:[C'iX(s) + Dyu(s) + gi(s)] dwi(t), t<s<T, (65)
X(t) = w,iﬂu € L%(t, T; R™).
The value function V' is defined as
V(t,z):= min E7*M(X""(T)), (t,z)<€[0,T]x R". (66)

ueLL(t,T;R™)

Note that £ is Fr-measurable and therefore the expectation in (66) is conditioned on F;
rather than F7. Let (¢, ) be the Fi-adapted solution of the following BSDE

awie) = {14+ BEEO)Y + 300+ DEEO) (9~ K)o
£ Y oK) - KOf — S Laddi+ S, O
L u(r) = e h )
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where (K, L) is the unique F?-adapted solution of the singular BSRDE (4). With The-

orem 3.3, the following can be verified by a pure completion of squares.

Theorem 3.5. Assume that (13) and (43) are satisfied. Let (K, L) be the unique
F?-adapted solution of the singular BSRDE (4 )~ Then, the optimal control u for the
nonhomogenious singular stochastic L(Q) problem Py exists uniquely and has the following

feedback law

—(%D*Kt “H(B*K(t) +§:DK )Ci) X
—B*1) +ZD gi — ).

The value function V (t,x),(t,z) € [O,T] X R™ has the following explicit formula
V(t,2) = (K (b, 2) - 20(t),2) + V1), (t2) € [0,T] x R”

with
Vo) = BTHQEE) 287 [ (0(s), 1(s)) ds
#8716 0(9) ~ 26(5). )]
_E% /f((é D:K D), u0) ds.
and
= (S D)D) B0(6) + 33 i) ~ Ko, <5< T
Proof Set

@=u—TD(K(t)X, A=A+ BL(K(t),C; = C;+ D;IL(K(t),i=1,...,d.
Then the system (65) reads
dX(s) = [AX(s)+ Bu(s)+ f(s)]dt
+ zd:[CA'iX(s) + D;u(s) + gi(s)] dwi(t), t<s<T,
X(t) = :L',iﬂu € L%(t, T; R™).
Applying It6’s formula, we have the equation for X (t) =: X X*(¢):

A¥ = [AX + XA+ X(BU(s) + ()" + (Bals) + f() X "]t
+ Y [CiXC; + CiX (Dyi(s) + gi(s))* + (Diii(s) + gi(s)) X" C;

+(zfjm<s> T gi(5)) (Didi(s) + gi(5))"] it

i=1
t<s<T,
X(t) = zz*, weLi(t,T;R™).
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(68)
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(70)



Note that the singular BSRDE (4) can be rewritten as

—dK(t) = F(K(t),T(K(t)), L(t)) dt - Zd: Li(t) dw;(t)

i=do+1 (75)

K(T) = Q
where F' is defined by (54). So, application of Itd’s formula gives
E7H(QX(T), X(T)) = E7tx(QX(T))

- (WX, X(0)+257 /t C(K()(Bu(s) + £(5)), X (s)) ds

+m7 [ 22 i(s) + 9:(s)), CiX (5)) ds
+EF /TZ s) + gi(s)), Dsi(s) + gi(s)) ds
vop7 [0 ‘_dz (Li(s)(Dii(s) + gi(s)), X (5)) ds,

and

Combining the last two equations, we get
E7*M(X(T)) = E7(QX(T), X(T)) — 2E7(QX(T), &) + E7*(QE, €)
= (KX(), X( ))—2(10( ) X(t) + E™(Q§,¢€)

+Eft/ Z s) + gi(s)), Diti(s) + gi(s)) ds

—2Eft/t (¥(s), Bu(s) + f(s)) ds — 2B /th;((ﬁz‘(S),Dzﬂ(s) +9i(s)) ds
= (Kz,z) —2(3(t),z) + B (QE, €) . :

_2Eft/t (w(s),f(S))dS+Eft/t ;[(ng’(b‘),gi(s)) —2(¢i(s), 9i(s))] ds

T do T do
+E% / (Y. DIKD;)(ii — ), i — u°) ds — B / (3. DIKD;)u, u) ds.
t =1 t =1

This completes the proof.

4 The Mean-Variance Hedging Problem

In this section, we consider the mean-variance hedging problem when asset prices follow
Ito’s processes in an incomplete market framework. The market conditions are allowed
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to be random, but are assumed to be uniformly bounded which implies that there is an
equivalent martingale measure. It will be shown that the mean-variance hedging problem
in finance of this context is a special case of the linear quadratic optimal stochastic control
problem discussed in the preceding section, and therefore can be solved completely, by
using the above results.

4.1 The financial market model
Consider the financial market in which there are n+1 primitive assets: one nonrisky asset
(the bond) of price process

Solt) = exp (/Otr(s) ds), 0<t<T, (76)

and n risky assets (the stocks)
dS(t) = diag(S(t))(u(t) dt +o(t) dW'(t)), 0<t<T. (77)

Here W' = (wy,...,w,)* is a n-dimensional standard Brownian motion defined on a
complete probability space (2, F, P), and {F;,0 < ¢t < T} is the P-augmentation of the
filtration generated by a d-dimensional Brownian motion W = (wy, ..., Wy, Wny1, - - ., Wa)*
with d > n. Denote by W? = (wy1,...,wg)* the (d — n)-dimensional Brownian motion.
Assume that the instantaneous interest rate r, the n-dimensional appreciate vector process
w1 and the volatility matrix n X n process ¢ are progressively measurable with respect to
{F2,0 < t < T}. For simplicity of exposing the main ideas, assume that they are
uniformly bounded and there exists a positive constant ¢ such that

oo*(t) >el, 0<t<T,a.s. (78)
The risk premium process is given by
A(t) = o7 (t)(u(t) —r(t)en), 0<t<T (79)

where e, = (1,...,1)* € R™

4.2 Formulation of the problem

For any € R and 7 € L%(0,T; R"), define the self-financed wealth process X with initial
capital x and with quantity 7 invested in the risky asset S by

{ dX(t) = (rX(t)+ (u—req,m))dt + o dWi(t), 0<t<T, (20)

X(0) = =z, =mel%(0,T;R").

Given a random variable £ € L%*(Q, F, P), consider the quadratic optimal control
problem:

Problem P, (&) min  E(X%%"(T) — ¢)? (81)

me £2.(0,T;R")
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where X%%7 is the solution to the wealth equation (80). The associated value function is
denoted by V (¢, z), (t,z) € [0,T] x R. The minimum point of V (¢, ) over z € R for given
time ¢ is defined to be the approximate price for the contingent claim £ at time ¢.

The problem Py, (§) is the so-called mean-variance hedging problem in financial
economics. It is the one-dimensional case of the singular stochastic L problem Po. In
the next subsection, Theorem 3.5 will be used to give a complete solution to the mean-
variance hedging problem Py, ().

4.3 A general case of random market conditions: a complete
solution

In the case of the mean-variance hedging problem, we have

A(t) = r(t), B(t) = (b—ren)'(t),  Ci(t) = 0,
Dit) = of, u) = =(t),

7

do
— _ * _ n * *
Q = 1, dy = n, Z DiD; = r, 007 =00

where o; is the ¢-th column of the volatility matrix o. The associated Riccati equation is
a linear BSDE:

d
dK = —(@2r—|A})Kdt+ > Lidw(t), 0<t<T
i=n-+1 (82)
K(T) = 1.
Let (v, ¢) is the Fi-adapted solution of the following BSDE
n d
dyp = —{(r— A"y - Z[UZ‘(M*)*I(M —ren)|¢i} dt + ) didwi(t)

i=1

(83)

= {0 —Pw Z/\¢z}dt+2¢zdwz
L 9(T) = ¢

An immediate application of Theorem 3.5 provides an explicit formula for the opti-
mal hedging portfolio:

n

T o= Za, ) H (b — ren)[X — K H(t)y(t) ZUZQS,K L)}

— —(o0") 1{(b—?“€n)[X K= (t)p(1)] - ( {0, () K1)
= —(0")TAX = KN (O (0)] + (07) 7 (80 (t), - - da(t)) K7(2)

where (K, L) is the F?-adapted solution to the Riccati equation (82). The value function
V is also given by

(84)

V(t,z) = K(t)z* — 2¢(t)x + E7t¢? — B /tT K1(s)| M + ¢|*(s) ds (85)
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where ¢ := (¢1, ..., ®n)*. So, the approximate price p(t) at time ¢ for the contingent claim
£ is given by

p(t) = K~ (t)y(t). (86)

The above solution need not introduce the additional concepts of the so-called hedg-
g numeraire and variance-optimal martingale measure, and therefore is simpler than
that of Gourieroux et al [7], and Laurent and Pham [13]. To be connected to the latter,
the optimal hedging portfolio (84) is rewritten as

T =—(0")TAX = ()] + (@) (S (D), - -, Galt))". (87)

Here, the pair (~, %) is defined as

v(t) = K1),
gb,(t) = QSiKil(t), 1= 1,...,?1, (88)
Gi(t) = ¢K (1) — Lip(t)K2(t), i=n+1,...,4d
and solves the following BSDE:
d d
- =1 i=1 (89)
p(T) = ¢
with
X(t) = X(D), Vte[0,T], i=1,...,n, (90)
N(t) = —K'(t)Li(t), Vtel0,T], i=n+1,...,d.

The process 15 is just the approzimate price process, and the BSDE (89) is the approzimate
pricing equation.
Note that the optimal hedging portfolio (84) consists of the following two parts:

7l (t) == —(0*)TAX(t), 0<t<T (91)
and
() == (o") " AB(E) + (A1(8), -, Ba(1))], O<E<T (92)
and satisfies
m(t) = 7' (t) +7°(t), 0<t<T. (93)

The first part 7! is the optimal solution of the homogenious mean-variance hedging prob-
lem Py .(0) (that is the case of £ = 0 for the problemP, ,(£)). The corresponding optimal
wealth process X%5™ is the solution to the following optimal closed system

{ dX(t) = X@)[(r—|A?)dt — X dW'(t)], 0<t<T, (04)

X(0) = 1,
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and is just the hedging numeraire. So, the hedging numeraire is just the state (wealth) tran-
sition process of the optimal closed system (94) from time 0, or it is just the fundamental
solution of the optimal closed system (94).

To understand the quantity (Xn“, ce Xd)*, consider the BSDE satisfied by (K, £)

d d
dk = {@2r—DPK+ DY LIK'}dt+ Y Lidwi(t), 0<t<T

i=n-+1 i=n+1

(95)
K(T) = 1

with K := K~! and £; := —L;K 2. It is the singular BSRDE for the following singular
stochastic LQ problem (denoted by Pg ,):

Problem P} min  E|x%0(T)? (96)
’”’ 0€L2(0,T;RI-")

where X%%¢ is the solution to the following stochastic differential equation

dX = X[-rdt— N dW'(t)]+ 0 dW3t), 0<t<T, (97)
X(0) = =z, 0¢€L%(0,T;R4™).
Its optimal control § = (§n+1, e éd)* has the following feedback form
;= —K L)X = -N@®)X, i=n+1,...,d (98)

The problem P, is just the so-called dual problem of the problem Py, (0) in [7, 13], and
so the variance-optimal martingale measure is P, defined as

dP, = exp{ Z/ £) dwi(t) %/{)T(de Xf)dt} dP. (99)

i=1

P, is an equivalegt martingale measure.
Note that ¥ has the following explicit formula:

B(t) = BF € exp (— /tTr(s) ds), 0<t<T. (100)

Here, the notation E7* stands for the expectation operator conditioning on the o-algebra
F; with respect to the probability P,. The discounted ¢ is just the integrand of the

stochastic-integral-representation of the P*-martingale { E*€ exp (— S r(s)ds),0 <t <
T} (w.r.t. the P*martingale W + [y Xdt with X := (A*, \uy1, ..., Aa)*).

4.4 The case of Markovian market conditions

Assume the following Markovian structure for the randomness of the market conditions:
r(t,w) =r(t,Y;), ptw):=utYs), o(tw):=0c(tYr) (101)

with {Y;,0 <t < T} defined by the stochastic differential equation

(102)

dY; = n(t,Yy)dt +(t,Y;)dW?(t), 0<t<T,
Y, = y€ Ri™
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In this case, the risk premium process {A(t,w),0 <t < T} reads
Mt,w) =0 (t,Y)[ut,Y:) —r(t, ey, 0<t<T. (103)

This context includes the stochastic volatility models usually studied in the literature
(Hull and White [10], Stein and Stein [24], Heston [8]).

Under the above assumption, the Riccati equation (82) and the stochastic differential
equation (102) constitute a forward-backward stochastic differential equation. Then, it is
straightforward in the literature that the solution to the Riccati equation (82) can be
characterized by the parabolic partial differential equation:

Zt + (77(757 y): Zy) + %tr (77*(ta y)Zyy) + (27” - |)‘|2)(ta y)Z = 07
ye R 0<t<T, (104)
Z(T,y)=1, yc RI™

through the relation
K@t)=2(tY:),  Li(t) = Z,(t Yo)n(t, V). (105)

The reader is referred to Peng [19], Pardoux and Peng [16], and Pardoux and Tang [17]
for details.

5 Concluding Comments

In this paper, a new framework for the stochastic LQ problem is developed where the cost
is singular and the coefficients are allowed to be random. The nondegeneracy condition
and the uniform positivity of the terminal state weighting matrix () are assumed. The
existence and uniqueness of the solution to the associated nonlinear singular BSRDE
are proved, and in terms of it the optimal control is expressed as a feedback form. These
results can be used to solve the mean-variance hedging problem with random market
conditions under some mild conditions. However, our framework has obvious limitations:
(a) our model is put into an It6 process setting rather than a semimartingale setting, (b)
the uniformly bounded condition on the coefficients is assumed, (c) the randomness of the
coefficients is not general enough. Due to these limitations, the general mean-variance
hedging problem could not be treated at present with a LQ theory approach.
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