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A NOTE ON MEAN-VARIANCE HEDGING OF

NON-ATTAINABLE CLAIMS

MICHAEL KOHLMANN AND BERNHARD PEISL

Abstract. A market is described by two correlated asset prices.

But only one of them is traded while the contingent claim is a

function of both assets. We solve the mean-variance hedging prob-

lem completely and prove that the optimal strategy consists of a

modi�ed pure hedge expressible in terms of the obervation process

and a Merton-type investment.

1. Introduction

On the basis of [7] we solve the continuous time hedging problem

with a mean-variance objective for general claims. The market is given

by one bond and two asset processes, but only one of them is tradable.

The target at time T is a function of both assets.

This incomplete market model was treated in [2], [11]. These authors

use techniques from martingale theory and orthogonal projection to

derive the optimal strategy. We make use of the concept of Backward

Stochastic Di�erential Equations (BSDE for short) which is relatively

new and extremely powerful in �nancial applications [3] to achieve

similar results in a more general reading.

2. Preliminaries

The market under consideration is described by the following tools:

the random input comes from two independent Brownian motions (w1; w2)

on a given probability space (
;F ;Ft; P ) where (Ft)t2[0;T ] is the aug-

mentation of the �ltration generated by (w1; w2) with T > 0 the �xed

time horizon, and F = FT . Then (Ft) is right-continuous and satis�es

the usual conditions.

Received by the editors dec 09, 1999.

1991 Mathematics Subject Classi�cation. 60H10, 90A09.
Key words and phrases. backward stochastic di�erential equations, mean vari-

ance hedging, nontradable claims.
This work is partially supported by the Center of Finance and Econometrics,

project: mathematical �nance, december 19,1999.

1



2 MICHAEL KOHLMANN AND BERNHARD PEISL

With (w1; w2) we construct the following standard Brownian motion

(wt) given by

wt =

Z t

0

�s dw
1
s +

Z t

0

p
1� �2s dw

2
s , t 2 [0; T ]

where � is a bounded adapted process with j� (s)j � 1 for s 2 [0; T ].

For t 2 [0; T ] the bond is given by

dP0(t) = r(t)P0(t) dt , P0(0) > 0,

and the stock by

dP1(t) = P1(t) (b(t) dt+ �(t) dwt) , P1(0) > 0,

with r; b; � real-valued bounded deterministic functions. Moreover we

assume �2 � � > 0. Hence for t 2 [0; T ] the wealth process is given by

dx(t) = (r(t) x(t) + (b(t)� r(t))�(t)) dt+ �(t) �(t) dwt

x(0) = x > 0

where � 2 L2
F(0; T ;R) (we denote by L2

F(0; T ;R) the set of all R-

valued, measurable stochastic processes '(t) adapted to Ft such that

E
hR T

0
j'(t)j

2
dt
i
<1) is the quantity invested in the stock. With the

risk premium process

� :=
b� r

�

we can write this as

dx(t) = (r(t) x(t) + �(t)�(t) �(t)) dt+ �(t) �(t) dwt

x(0) = x > 0.

We call �(t), t 2 [0; T ], the portfolio or the hedging strategy of an

agent and a twice integrable predictable strategy will be considered as

admissible.

The contingent claim � is given as a twice integrable FT -measurable

square integrable random variable. Our objective is, for each initial

value x > 0 and the contingent claim �, to choose a hedging strategy

� 2 L2
F (0; T ;R) so as to minimize

J(x; �) :=
1

2
E [xx;� (T )� �]

2

over all hedging strategies where xx;� (T ) denotes the terminal value of

the wealth process associated with the initial value x and the hedg-

ing strategy �. This problem was treated in detail in [7] where �
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was assumed to be Fw
T -measurable. Here we shall assume that � =

g (P1(T ); ST ) with g a bounded Borel function and

dSt = St

�
�t dt+ �t dw

1
t

�
S0 > 0

where � and � are real-valued bounded deterministic functions.

Remark 1. (i) In economical terms we may interpret the problem in

the following way: An agent is only allowed to trade the stock P1 in

order to hedge a function of ST . This is a typical situation in markets

where the option is written on a non-tradable market instrument, for

example a market index. This problem has been treated by martingale

methods earlier in [2], [11].

(ii) In the above problem we have the technical di�culty that we

have to deal with backward stochastic di�erential equations where the

terminal condition is not measurable with respect to the Brownian

motion of the underlying risky asset. Economically this means that

the contingent claim � is not attainable by a wealth process (xt). A

similar problem is described in [8].

3. Some results on Backward Stochastic Differential

Equations

When we try to model the price (p (t))0�t�T for � we would like to

write this price in the usual way as

dp (t) =
�
r (t) p (t) + � (t) z1t

�
dt+ z1t dwt , t 2 [0; T ](3.1)

p (T ) = �.

In general this BSDE will not have a solution. A way out of this

di�culty is proposed in [11] without making use of BDE-techniques and

in a special situation of "partial information" in [8], so our approach

relates results in [4], [6] to BSDE-techniques. The idea is to add an

orthogonal martingale term which is orthogonal to
R t

0
z1s dws. With the

(Ft; P )-martingale

dNt =
p
1� �2t dw

1
t � �t dw

2
t

N0 = 0

for t 2 [0; T ] such an orthogonal term is given byZ t

0

z2s dNs.
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So instead of (3.1) we consider

(3.2)

dp (t) =
�
r (t) p (t) + � (t) z1t

�
dt+ z1t dwt + z2t dNt , t 2 [0; T ]

p (T ) = �.

Remark 2. This procedure has been known in a control-theoretical set-

ting for quite a long time. As the BSDE under consideration may be

seen as the formal adjoint of a trivial control problem [9], a similar

procedure is already described in [1].

One way to see that this BSDE has a (unique) solution (p; z1; z2)

follows the following argument: Let � 2 L2
FT

(
;R), then � may be

represented as

� = E (�) +

Z T

0

 1
sdw

1
s +

Z T

0

 2
sdw

2
s

where  1;  2 2 L2
F(0; T ;R). With


 =
1

�
 1 �

1� �2

�
 1 +

p
1� �2 2

� =
p
1� �2 1 � �  2

and an easy calculation we derive

� = E (�) +

Z T

0


s dws +

Z T

0

�s dNs

with 
; � 2 L2
F (0; T ;R). This shows that any square integrable FT =

� (w1; w2)-measurable random variable is representable with respect to

the orthogonal martingales (w;N). This implies that the BSDE (3.2)

has a unique solution (p; z1; z2) (See, for example, [12] for an existence

and uniqueness theorem for BSDEs.)

Now we compute a pricing system u from a Feynman-Kac formula

in order to represent

p(t) = u (t; P1(t); y(t)).

The observation of ST given Ft is given by

dyt =
�
r(t)yt + �(t)q1t

�
dt+ q1t dwt + q2t dNt(3.3)

yT = ST .

For � = g(P1(T ); ST ) = p(T ) we can compute p(t) = u (t; P1(t); y(t))

with Itô's-formula (with indices at u indicating partial derivatives of u).
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For simplicity we omit the notation of the dependence of the functions

and processes on t:

dp = utdt+ uxdP1 + uydy

+
1

2
(uxxd hP1; P1i+ uxyd hP1; yi+ uyxd hy; P1i+ uyyd hy; yi)

= utdt+ uxP1bdt+ uxP1�dw + uy
�
ry + �q1

�
dt+ uyq

1dw + uyq
2dN

+
1

2
uxx (P1)

2
�2dt+

1

2
uxyP1�q

1dt

+
1

2
uyxP1�q

1dt+
1

2
uyy

�
q1
�2
dt+

1

2
uyy

�
q2
�2
dt

= utdt

+

�
uxP1b+ uy

�
ry + �q1

�
+

1

2
uxx (P1)

2
�2 + uxyP1�q

1

�
dt

+

�
1

2
uyy

�
q1
�2

+
1

2
uyy

�
q2
�2�

dt

+
�
uxP1� + uyq

1
�
dw + uyq

2dN

This must be equal to

dp =
�
r p+ � z1

�
dt + z1 dw + z2 dN;

so we derive

z1 = uxP1� + uyq
1

z2 = uyq
2.

Thus we end up with the following partial di�erential equation for u

ru+ �uxx� + �uyq
1 = ut + uxxb + uy

�
ry + �q1

�
+
1

2
uxxx

2�2 + uxyx�q
1 +

1

2
uyy

��
q1
�2

+
�
q2
�2�

u(T; x; y) = g(x; y).

or

ru�ut�r(uxx+uyy)�
1
2

�
uxxx

2�2 + uyy

�
(q1)

2
+ (q2)

2
��

�uxyx�q
1 = 0

u(T; x; y) = g(x; y)

as a generalized stochastic Black Scholes formula.

4. The control problem

Now we go back to the mean variance hedging problem:

J(x; �) :=
1

2
E [xx;� (T )� �]

2
= min

�
!(4.1)
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To derive the optimal portfolio � we follow in identical steps the proof

in [7]. So we have

Theorem 3. The optimal portfolio of the hedging problem (4.1) is

��(t) = ��(t)�(t)�1 (x�(t)� p(t)) + �(t)�1z1t , 0 � t � T ,(4.2)

where (p; z1; z2) is the solution of

(4.3)

dp(t) =
�
r(t)p(t) + �(t)z1t

�
dt+ z1t dwt + z2t dNt , 0 � t � T ,

p(T ) = � = g(P1(T ); ST )

Proof. To apply [7] to our wealth process we write this process as

dx(t) = (r(t) x(t) + (b(t)� r(t))�(t)) dt+ �(t) �(t) dwt + 0 � �(t) dNt

x(0) = x > 0.

So here the volatility matrix from [7] e�, is
e�(t) = (�(t); 0) .

If we take account of this the theorem is proved by applying Theorem

5.1 in [7].

As already noted in [7] the optimal portfolio is divided in two parts.

The term on the right hand side is known as the replicating portfolio

[12]. The other term is some kind of a Merton portfolio [5]. So we �rst

try to hedge the claim, the rest of the money is invested in a Merton

type portfolio.

In this framework it is also possible to consider the generalization in

[7]. Instead of having only terminal costs we add now running costs.

Here we introduce also weights on terminal and running costs. So the

hedging problem with terminal and running costs is:

J(x; �) :=
1

2
�E [xx;� (T )� �]

2
+

1

2
�E

�Z T

0

jxx;�(t)� E(�jFt)j
2dt

�
= min

�
!

(4.4)

for given � > 0, � � 0.

It is important that � 6= 0 as in the following we want to satisfy the

conditions in (4.5). Now we have

Theorem 4. The optimal portfolio of the hedging problem (4.4) is

��(t) = ��(t)�(t)�1 (x�(t)� p(t)) + �(t)�1z1t , 0 � t � T ,
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where (p; z1; z2) is, for 0 � t � T , the solution of

dp(t) =

�
r(t)p(t) + �(t)z1t + �

p(t)� E(�jFt)

P (t)

�
dt+ z1t dwt + z2t dNt

p(T ) = � = g(P1(T ); ST )

and P (t) is the solution of

_P (t) + 2r(t)P (t)� �(t)2P (t) + � = 0 , t 2 [0; T ] ,

P (T ) = �(4.5)

P (t) > 0 for all t 2 [0; T ]

with explicit solution

P (t) = � exp

�
�

Z T

t

�(u)2 � 2r(u)du

�
+ �

Z T

t

exp

�
�

Z s

t

�(u)2 � 2r(u)du

�
ds.

5. An explicit example

Let us assume that all coe�cients r, b, �, �, � are constant, and

g (P1(T ); ST ) = ST . Then we set

yt = St exp

�
�

Z T

t

(���s � �+ r) ds

�
, t 2 [0; T ] ,

q1t = ��tyt

q2t = �
p
1� �2t yt.

Using

dw1
t =

�
1

�t
�

(1� �2t )

�t

�
dwt +

p
1� �2tdNt

= �tdwt +
p
1� �2tdNt

to compute
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dyt = dSt � exp

�
�

Z T

t

(���s � �+ r) ds

�
+ St � d exp

�
�

Z T

t

(���s � �+ r) ds

�

= St

�
� dt+ � dw1

t

�
exp

�
�

Z T

t

(���s � �+ r) ds

�

+St (���t � �+ r) exp

�
�

Z T

t

(���s � �+ r) ds

�
dt

(5.1)

= rytdt+ ���tyt| {z }
=�q1

t

dt+ ��tyt| {z }
=q1

t

dwt + �
p
1� �2t yt| {z }
=q2

t

dNt

(5.2)

=
�
ryt + �q1t

�
dt+ q1t dwt + q2t dNt

yT = ST

we see that the settings for (yt), (q
1
t ), (q

2
t ) solve the BSDE (3.3) for

(yt). As furthermore dp(t) = dyt and p(T ) = yT we have p(t) = yt for

all t 2 [0; T ]. Now we compare the coe�cients in (4.3) and (5.2) and

derive

z1t = q1t = ��tyt

z2t = q2t = �
p
1� �2t yt.

Finally we �nd the solution for the optimal portfolio from equation

(4.2)

��(t) = ����1 (x�(t)� p(t)) + ��1��t p(t) , 0 � t � T ,

or in terms of the observation process

��(t) = ����1 (x�(t)� p(t)) + ��1��t y(t) , 0 � t � T .

Hence

p(t) = St exp
�
�
R T

t
(���s � �+ r) ds

�
for t 2 [0; T ].

This completely solves the problem and explicitly shows the depen-

dence of the price on the drift of St.

6. Conclusion

The problem of hedging a nontradable claim was brought to our

attention recently by Mark Davis. In this paper we tried to go into this

problem under the aspect of being able to �nd a complete solution.So

many extensions are possible for instance by introducing techniques
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from �ltering theory to describe the observation process (yt) in a more

general setting. This will be described in a forthcoming paper.

In [10] a similar problem will be solved: Roughly speaking there the

observation process together with some information about the market

structure is given and the properties of the resulting price process are

examined. This gives some new insight into the asset prices.
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