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Abstract

By applying SEMIFAR models (Beran, 1999), we examine 'long mem-

ory' in the volatility of worldwide stock market indices. Our analysis yields

strong evidence of 'long memory' in stock market volatility, either in terms of

stochastic long-range dependence or in form of deterministic trends. In some

cases, both components are detected in the data. Thus, at least partially,

there appears to be even stronger and more systematic 'long memory', than

suggested by a stationary model with long-range dependence.

Key words: SEMIFAR model, ARCH models, trend, long-range depen-

dence, short-range dependence, volatility, semiparametric model, kernel esti-

mation, bandwidth selection, maximum likelihood estimation, power trans-

formation.

1 Introduction

Modeling (conditional) variances has been one of the most important top-

ics in the stochastic analysis of �nancial time series, as can be seen by the

extensive amount of research on autoregressive conditional heteroskedastic

(ARCH) models (Engle, 1982) and their extensions, in particular generalized

ARCH (GARCH), exponential GARCH (EGARCH) and integrated GARCH

(IGARCH). These models are readily interpreted as ARMA- and ARIMA-

type models of the (conditional) variance (Bollerslev & Mikkelsen, 1996).

That is, they possess exponentially decaying summable correlations. Also,

long-range dependence in the (conditional) variance of �nancial time series,

in particular stock market indices, has recently attracted considerable atten-

tion in the literature (see e.g. Bollerslev & Mikkelsen, 1996; Crato & de

Lima, 1994; Ding & Granger, 1996; Ding, Granger & Engle, 1993). The new

approaches, such as fractionally integrated GARCH (FIGARCH) and long

memory ARCH (LM-ARCH), allow to model a certain kind of volatility per-

sistence, typically detected via a slow hyperbolical decay of the correlations

of an appropriate volatility measure. In particular, Ding, Granger & En-
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gle (1993) found substantially high correlation between absolute returns and

power transformed absolute returns of some stock market indices for long

lags. Independently Baillie, Bollerslev & Mikkelsen (1996) came to similar

results, namely long memory in volatility series. Both studies appear to argue

against short-range dependent ARCH type speci�cations of the (conditional)

variance based upon squared return series.

In this paper, the potential usefulness of SEMIFAR models (Beran, 1999;

Beran & Ocker, 1999; Beran, Feng & Ocker, 1998) is explained and their

application to volatility series of worldwide nominal stock market indices is

discussed. These models include a nonparametric trend function as well as a

fractional di�erencing parameter. This allows for data-driven distinction of

long-range dependence, di�erence-stationarity and deterministic trends.

The paper is organized as follows. In section 2, we give a brief description

of Beran's (1999) SEMIFAR model. Most of this section is based on results

in Beran (1999); other preprints are also included. A data-driven algorithm

is given in section 3. The application of SEMIFAR models to volatility series

of nineteen nominal stock market indices is discussed in section 4. Some

�nal remarks are given in section 5. Tables and �gures are provided in the

appendix.

2 The SEMIFAR model

A SEMIFAR model is a Gaussian process Yi with an existing smallest integer

m 2 f0; 1g such that

�(B)(1�B)�f(1�B)mYi � g(ti)g = �i; (1)

where ti = (i=n), � 2 (�0:5; 0:5), g is a smooth function on [0; 1], B is the

backshift operator, �(x) = 1 �
Pp

j=1 �x
j is a polynomial with roots outside

the unit circle and �i (i = :::;�1; 0; 1; 2; :::) are iid zero mean normal with

var(�i) = �2� . Here, the fractional di�erence (1�B)� introduced by Granger
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and Joyeux (1980) and Hosking (1981) is de�ned by

(1� B)� =
1X
k=0

bk(�)B
k (2)

with

bk(�) = (�1)k
�(� + 1)

�(k + 1)�(� � k + 1)
: (3)

The motivation for this de�nition can be summarized as follows: We wish

to have a model that may be decomposed into an arbitrary deterministic

(possibly zero) trend and a random component that may be stationary or

di�erence stationary. Moreover, short-range and long-range dependence as

well as antipersistence should be included. Here, a stationary process Yi with

autocovariances (k) = cov(Yi; Yt+k) is said to have long-range dependence,

if the the spectral density f(�) = (2�)�1
P
1

k=�1 exp(ik�)(k) has a pole at

the origin

f(�) � cf j�j
�� (j�j ! 0) (4)

for a constant cf > 0 and � 2 (0; 1), where '�' means that the ratio of the

left and right hand side converges to one (Mandelbrot, 1983; Hampel, 1987;

K�unsch, 1987; Beran, 1994 and references therein). In particular, this implies

that, as k !1, the autocovariances (k) are proportional to k��1 and hence

they are not summable. On the other hand, a stationary process is called

antipersistent, if (4) holds with � 2 (�1; 0). This implies that the sum of all

autocovariances is zero. Note that for usual shot-memory processes, such as

stationary ARMA processes, (4) holds with � = 0, and the autocovariances

sum up to a nonzero �nite value.

To model long-range dependence and to avoid overdi�erencing, which

is often encountered in the usual Box-Jenkins setting, Granger & Joyeux

(1980) and Hosking (1981) introduced fractional ARIMA processes. There,

the di�erencing parameter d is restricted to the stationary range (�:5; :5).

In a direct extension, Beran (1995) de�nes an arbitrary di�erencing param-

eter d > �:5 such that (1� B)mYt is a stationary fractional ARIMA(p; �; q)

process, m = [d + :5] is the integer part of d + :5 and � = d � m. This

corresponds to equation (1) with a constant function g � �. Since the inte-

ger di�erencing parameter m assumes integer values only and the fractional
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di�erencing parameter � is in (�:5; :5), both di�erencing parameters can be

recovered uniquely from the 'overall di�erencing parameter' d = m + �. If

d > :5, then we have a nonstationary fractional ARIMA process. It should

be noted, in particular, that this parametrization allows for maximum likeli-

hood estimation of d. Thus not only �, but also m can be estimated from the

data and con�dence intervals can be given for both di�erencing parameters

(see Beran, 1995). Excluded are, however, deterministic trends with station-

ary errors (m = 0) and other than polynomial trends. SEMIFAR models

extend the de�nition of fractional ARIMA models with arbitrary d = m+ �

by including an arbitrary deterministic trend function g satisfying certain

smoothness assumptions.

More speci�cally, for SEMIFAR models, Zi = f(1 � B)mYi � g(ti)g is

a stationary (possibly) fractional autoregressive process. Thus, the spectral

density of Zi is proportional to j�j
�2� at the origin so that the process Zi has

long-memory if � > 0, antipersistence if � < 0 and short memory if � = 0.

1 generalizes stationary fractional AR-processes to the nonstationary case,

including di�erence stationarity and deterministic trend. Four special cases

of model (1) are:

(a) Yi= no deterministic trend + stationary process with short- or long-

range dependence;

(b) Yi= deterministic trend + stationary process with short- or long-range

dependence;

(c) Yi= no deterministic trend + di�erence-stationary process, whose �rst

di�erence has short- or long-range dependence;

(d) Yi= deterministic trend + di�erence-stationary process, whose �rst

di�erence has short- or long-range dependence.

Observe that alternative (c) includes stochastic trends which are typi-

cally generated by purely stochastic nonstationary processes (m = 1) such

as random walks or integrated ARIMA models. In addition to nonstationary

models, stationary long memory processes often exhibit local spurious trends
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which may be hard to distinguish from deterministic and/or purely stochastic

trends in nonstationary time series. Here, alternative (a) allows the possibil-

ity of local spurious trends (m = 0; � > 0). Also, (c) allows a combination

of stochastic and local spurious trends (m = 1 and � > 0), whereas (b) is a

mixture of deterministic and local spurious trends. Alternative (d) includes

a mixture of all three kinds of trends.

In practical applications, it is often very di�cult to �nd the 'right' model

and, in particular, to decide whether a series is stationary, has a determinis-

tic or stochastic trend, or whether there may be long-range correlations. (in

fact, often, a combination of these may be present.) A possible approach to

resolving the problem is given by the SEMIFAR model. The model provides

a uni�ed data-driven semiparametric approach that allows for simultaneous

modeling of and distinction between deterministic trends, stochastic trends

and stationary short- and long-memory components. Within the given frame-

work (1), the approach helps the data analyst to decide which components

are present in the observed data.

Briey speaking, a SEMIFAR model is a fractional stationary or non-

stationary autoregressive model with a nonparametric trend. This extends

Box-Jenkins ARIMA models (Box & Jenkins, 1976), by using a fractional dif-

ferencing parameter d > :5, and by including a nonparametric trend function

g. The trend function can be estimated, for example, by kernel smoothing

(see Beran, 1999). The parameters may be estimated by an approximate

maximum likelihood introduced in Beran (1995) (see also Beran, Bhansali &

Ocker, 1999). Note in particular that, with this method the integer di�erenc-

ing parameter is also estimated from the data. A data-driven algorithm for

estimating SEMIFAR models, which is a mixture of these two approaches is

presented in the following section. Con�dence intervals and tests are given

in Beran (1999).
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3 A data-driven algorithm

The following algorithm, proposed in Beran (1999), is an adaptation of that

in Beran (1995) by replacing �̂ by a kernel estimate of g. The algorithm

makes use of the fact that d is the only additional parameter, besides the

autoregressive parameters, so that a systematic search with respect to d

can be made. The optimal bandwidth is estimated by an iterative plugin

method similar to the one in Herrmann, Gasser & Kneip (1992) and Ray &

Tsay (1997). The steps of the algorithm are de�ned as follows:

Step 1: De�ne L =maximal order of �(B) that will be tried, and a su�-

ciently �ne grid G 2 (�0:5; 1:5): Then, for each p 2 f0; 1; :::; Lg; carry

out steps 2 through 4.

Step 2: For each d 2 G; setm = [d+0:5]; � = d�m; and Ui(m) = (1�B)mYi;

and carry out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let bo = �omin(n
(2��1)=(5�2�) ; 0:5) with 0 < �o < 1 and set

j = 1:

Step 3b: Set b = bj�1:

Step 3c: Calculate ĝ(ti;m) using the bandwidth b: Set X̂i = Ui(m)�

ĝ(ti;m):

Step 3d: Set ~ei(d) =
Pi�1

j=0 bj(�)X̂i�j; where the coe�cients bj are

de�ned by (4).

Step 3e: Estimate the autoregressive parameters �1; :::; �p from ~ei(d)

and obtain the estimates �̂2� = �̂2� (d; j) and ĉf = ĉf(j): Estima-

tion of the parameters can be done, for instance, by using the

S-Plus functions ar.burg or arima.mle. If p = 0; set �̂2� equal to

n�1
P
~e2i (d) and ĉf equal to �̂2�=(2�):

Step 3f: Set b2 = b(5�2�)=(9�2�) and estimate g00 by

ĝ00(t) =
1

nb32

nX
j=1

~K(
tj � t

b2
)Uj(m)
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where ~K : R ! R is a polynomial symmetric kernel such that
~K(x) = 0 for jxj > 1;

R ~K(x)dx = 0 and
R ~K(x)x2dx = 2: Calcu-

late I(ĝ00):

Step 3g: Calculate V and Copt from � and the estimated parameters

obtained in Step 3f. Set

bj = Copt n
(2��1)=(5�2�) :

Step 3h: Increase j by one and repeat steps 3b through 3g 4 times.

This yields, for each d 2 G separately, the ultimate value of �̂2� (d);

as a function of d:

Step 4: De�ne d̂ to be the value of d for which �̂2� (d) is minimal. This, to-

gether with the corresponding estimates of the AR parameters, yields

an automatic model selection criteria such as the AIC�(p) (as a func-

tion of p) and the corresponding values of �̂ and ĝ for the given order

p:

Step 5: Select the order p that minimizes AIC�(p): This yields the �nal

estimates of � and g:

The factor (5 � 2�)=(9 � 2�) in step 3f inates the bandwidth b to a

bandwidth b2, which is optimal for estimating g00 in the case of � = �o. The

estimated parameters, the selected bandwidth b̂ as well as the estimated

trend ĝ(t), t 2 [0; 1], by the above algorithm are all consistent.

4 Volatility of stock market indices

4.1 The Data

The data include nineteen nominal stock market closing indices for the period

January 1, 1992 to November 10, 1995. They are, according to de�nition of

the IFC (1997), indices for ten developed markets (DMs: Australia, Belgium,

Canada, France, Germany, Hong Kong, Italy, Switzerland, United Kingdom,
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and United States), and nine emerging markets (EMs: Brazil, Chile, Greece,

Hungary, Malaysia, Mexico, Poland, South Korea, and Thailand). Table 1

presents the names and the exchanges for these indices, together with global

ranking by market capitalization in US$ terms as of end-1995 (Euromoney,

1996).

The indices are expressed in local currencies and, overall, are neither ad-

justed for dividends nor for ination. Figure 1 shows daily values of the

indices (weekdays only). Besides the large number of infrequent local spikes,

which are often related to as heteroskedasticity, most indices exhibit an ap-

parent high magnitude around the middle part of the period under considera-

tion. Note the impact of the Mexican currency and banking crisis, beginning

in the last quarter of 1994, and the corresponding (retarded) spillovers to

Brazil and Chile. Observe also the low level of the Easteuropean indices at

the beginning of the period under consideration. The two stock markets in

Hungary and Poland were re-established in 1990 and 1991 respectively, re-

sulting in a low degree of activity in 1992. Finally, observe the smooth sample

path of the Brazilian index, which is due to several rebasements during the

sample period.

To study volatility, we analyze the power transformed absolute di�erences

Yt = jIt � It�1j
:25, where It denotes the original index. The corresponding

series are shown in �gure 2 (weekdays only, excluding holidays). When evalu-

ating multiple assets from di�erent countries within an a multivariate frame-

work, the handling of holidays becomes an issue. Sophisticated statistical

optimization methods may be required to specify stochastic models. In the

current univariate study, we take a simple pragmatic approach. In a �rst

step, missing values in the original index series are replaced by the closest,

previous closing value, resulting in zero increments. In a second step, zero

values of Yt were omitted and the series are treated as equidistant.

The reason for taking the fourth root of the increments is that the

marginal distribution of the resulting series is very close to normal (see the

normal probability plots in �gure 3). A similar transformation approach is

used, for instance, by Ding, Granger & Engle (1993). As in their study, the

correlograms of Yt in �gure 4 do indeed indicate slowly decaying autocor-
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relations (with the exception of the three DMs Belgium, France and US).

The question arises, whether this behaviour may be explained by long-range

dependence in the stochastic component and/or a (nonparametric) deter-

ministic trend. A non-parametric deterministic (and essentially arbitrary)

trend function as an additional building block can, apart from d, explain

long-term uctuations. A smooth deterministic function can be interpreted

as an even stronger (and more systematic) degree of temporal dependence

than stationarity with slowly decaying correlations.

4.2 Empirical Results

Table 2 summarizes the essential features of the �tted SEMIFAR models for

the daily volatility series. The corresponding 95%-con�dence intervals are

given in brackets. The models were selected using the BIC.

The estimated value of d and the con�dence intervals suggest that the

stochastic part of all series is stationary (d < :5). This is not very surprising

in view of the general visual impression given in �gures 2. For the EMs

(except Brazil) and the two small DMs Belgium and Italy, d = 0 is not, or

almost not (for Belgium), contained in the 95%-con�dence interval. Thus,

the estimates indicate that there is long-range dependence in the stochastic

component of daily volatility series of EMs and small DMs. For these stock

markets, as a �nding, the degree of persistence becomes stronger the smaller

the market (see �gure 7). Applying Spearman's rank correlation we found

that �̂ = :77 (p-value=.022).

Substantial short-term dependence, which is typically assumed in tradi-

tional ARCH speci�cations, was only found in one series (namely for Thai-

land) in form of small AR(1) term.

For all DMs (except Belgium), a signi�cant deterministic trend is found.

For the EMs, only �ve out of nine markets have a signi�cant trend. However,

for them, stochastic long-range dependence is found (except Brazil). Figure 2

shows the volatilities Yt with the �tted trends and upper and lower 5% critical

limits for testing signi�cance of the trends. The results indicate that there
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are relatively long periods where volatility is high/low systematically for the

DM series. This is, in particular, apparent for the DMs Australia, Canada,

Germany, Hong Kong, Italy, Switzerland and UK, where a signi�cant trend

is detected due (at least a posteriori) to the relatively long period of high

volatility around the middle part of the considered time period. Observe in

particular the similarity between the trends for Hong Kong and Switzerland.

These �ndings are less evident for the US and France (which also corresponds

to their correlograms, see �gure 4). Some EMs (Brazil, Chile, Malaysia,

Mexico and Poland) also exhibit periods with high/low volatility in form of

a (local) signi�cant deterministic trend. In particular, the stock markets of

Brazil, Malaysia and Poland show highly deterministic volatility patterns.

Note the extreme behaviour of the Brazilian series which may be due to

several rebasements during the period under consideration. For the other

EMs, apparent local trends do not persist long enough, and can therefore be

explained as spurious.

The satisfactory �ts of the models are demonstrated by the normal prob-

ability plots and correlograms of the residuals in �gures 5 and 6. Slight

departures from normality can be observed for Belgium and Brazil. Note,

however, that normality of the residuals is not required in order that the

theoretical results hold (Beran, 1999).

Overall, the estimates indicate that there is 'long memory' in the volatility

of stock market indices, either in form of local deterministic trend (for the

DMs and some EMs) or in form of long-range dependence in the stochastic

component (for the EMs and small DMs) resulting in local spurious trends.

In some cases, both components are present in the data. In contrast, there is

almost no evidence for short memory as it is typically assumed in traditional

ARCH speci�cations. Moreover, the signi�cant trends �tted to the volatility

series indicate that there may be even stronger and more systematic 'long

memory' in volatility than suggested by a stationary model with long-range

dependence.
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5 Final remarks

In this paper, we illustrated the potential usefulness of SEMIFAR models

for volatility analysis by several data examples. We found strong evidence of

'long memory' in power transformed absolute return series. 'Long memory'

is understood here as stochastic long-range dependence and/or deterministic

trends. A deterministic trend as an additional building block can, apart from

d, explain long-term uctuations.

'Long memory' in the volatility of stock market indices has some impor-

tant implications:

� If 'long memory' is indeed present in the data, statistical inferences

concerning asset pricing models based on traditional testing proce-

dures may no longer be valid (see e.g. Mandelbrot, 1971, Bollerslev

& Mikkelsen, 1996).

� In addition, the discovery of 'long memory' suggests possibilities for

improved volatility forecasting performance, especially over longer fore-

casting horizons (see e.g. Ocker, 1999; Beran & Ocker, 1999; Granger

& Joyeux, 1980; Geweke & Porter-Hudak, 1983).

� Also, many �nancial time series are available in temporarily aggregated

form. Long-range dependence is, in contrast to traditional short mem-

ory, robust with respect to temporal aggregation (see e.g. Ocker, 1999;

Beran & Ocker, 1999). Realistic models should therefore include the

possibility of 'long memory' (stochastic and deterministic).

Our results indicate that traditional short-memory ARCH type speci�ca-

tions may not be appropriate for modelling volatility of stock market indices.

Our �ndings suggest that there may be even stronger and more systematic

temporal dependence in volatility than suggested by a stationary ARCH

model with stochastic long-range dependence. A more sophisticated anal-

ysis of volatility may be obtained by applying GARCH-type extensions of

SEMIFAR models to the original index series It. The mathematical theory

necessary for such extensions is subject to current research. For fractional

11



models that do not include deterministic trend functions Ling & Li (1997) ex-

tend the maximum likelihood method of Beran (1995) to fractional GARCH

models. Also, an extension to moving average terms (which may be called

'SEMIFARIMA models') is obvious.
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Appendix

Table 1: Stock indices of developped and emerging markets

Countries Exchange Index Ranking

DM series

Australia Sydney All Ordinaries 10

Belgium Brussels Stock Index 20

Canada Toronto TSE 300 7

France Paris CAC 40 5

Germany Frankfurt DAX 4

Hong Kong Hong Kong Hang Seng 9

Italy Milan DS General 12

Switzerland Zurich Swiss Bank Corporation 6

United Kingdom London FTSE 100 3

United States New York S&P 500 1

EM series

Brazil Sao Paulo BOVESPA 17

Chile Santiago IGPA 22

Greece Athens General Index 38

Hungary Budapest BUX 49

Malaysia Kuala Lumpur KLSE 11

Mexico Mexico City IPC 21

Poland Warsaw WIG 44

South Korea Seoul KOSPI 18

Thailand Bangkok Book Club 23
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Table 2: Estimation results

Countries bd 95%-c.i. d b�1 95%-c.i. �1 signi�cant trend

DM series

Australia .025 [-.024, .074] - - yes

Belgium .048 [-.002, .097] - - no

Canada .035 [-.014, .084] - - yes

France -.085 [-.135, -.036] - - yes

Germany -.020 [-.069, .029] - - yes

Hong Kong -.004 [-.054, .046] - - yes

Italy .052 [.003, .101] - - yes

Switzerland .036 [-.013, .085] - - yes

UK -.025 [-.074, .024] - - yes

US -.041 [-.090, .008] - - yes

EM series

Brazil -.062 [-.112, -.012] - - yes

Chile .248 [.198, .298] - - yes

Greece .221 [.172, .271] - - no

Hungary .283 [.233, .333] - - no

Malaysia .108 [.058, .158] - - yes

Mexico .104 [.055, .153] - - yes

Poland .233 [.173, .293] - - yes

South Korea .142 [.067, .217] -.085 [-.180, .011] no

Thailand .208 [.136, .280] -.179 [-.269, -.089] no

17


