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BSDES WITH STOCHASTIC LIPSCHITZ CONDITION

CHRISTIAN BENDER AND MICHAEL KOHLMANN

Abstract. We prove an existence and uniqueness theorem for

backward stochastic di�erential equations driven by a Brownian

motion, where the uniform Lipschitz continuity is replaced by a

stochastic one.

1. Introduction

In this paper we study Backward Stochastic Di�erential Equations

(BSDEs for short) of the form

�dY (t) = f(t; Y (t); Z(t))dt� Z(t)dW (t)

Y (�) = �

A wellposedness result was obtained by Pardoux and Peng [P-P] in

the case that the stopping time � is deterministic and bounded and the

driver f is uniformly Lipschitz continuous. This last condition is very

restrictive and cannot be assumed in many interesting applications.

Let us have a look at the pricing problem of a European claim for

example. This problem is equivalent to solving the linear BSDE

�dY (t) = �[r(t)Y (t) + �(t)Z(t)]dt� Z(t)dW (t)

Y (T ) = �

Here r(t) is the interest rate and �(t) is the risk premium vector. Both

will not be bounded in general. So Pardoux-Peng's theorem cannot be

applied.

Consequently, one is interested in relaxing the Lipschitz condition.

But some examples show (see e.g. [ElK]) that this condition is neces-

sary in the standard setting. Hence, one must strengthen other con-

ditions while relaxing the Lipschitz continuity. Indeed we will have

stronger integrability conditions on the driver as well as on the solu-

tions. These integrability conditions make it possible to replace the

uniform Lipschitz condition by a stochastic one, which was introduced
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2 CHRISTIAN BENDER AND MICHAEL KOHLMANN

in [E-H], and allow an in�nite and random time horizon, too. Due to

the fact that the BSDE is driven by a Brownian motion the third part

of the solution which was necessary in [E-H] can be proved to vanish.

In this way related results in [E-H], [M-Y], and [Y-Z] are generalized.

The paper is organized as follows. In chapter 2 we introduce some

notation including some spaces, which are di�erent from the standard

spaces used in BSDE-theory. In chapter 3 we set the problem and state

the main results on existence, uniqueness and continuous dependence.

A priori estimates are given in chapter 4. An existence and uniqueness

theorem for a class of "easy" BSDEs is obtained in chapter 5, while

chapter 6 contains the proofs of the main results.

2. Some Notations

Let (
; F; F (t); P ) be a �ltered probability space. Let W (t) be a n-

dimensional Brownian motion. We assume, that F(t) is the standard

�ltration generated by the Brownian motion and augmented by all P-

null-sets. It follows, that F(t) is complete and continuous (see [K-S] for

a proof).

The standard inner product of the R
d is denoted by h:; :i, the Eu-

klidean norm by j:j. A norm on R
d�n is de�ned by tr(ZZ�): We will

denote this norm by j:j, too.
For any nonnegative F(t)-adapted process a we de�ne the increasing

continuous process

A(t) =
R t

0
a2(s)ds

We can introduce the appropriate spaces now:

Let � � 0 and a be a nonnegative F(t)-adapted process. We set

L2(�; a; �;Rd) = f�;Rd -valued and F(�)-measurable such that

jj�jj2� = E[e�A(�)j�j2] <1g
L2(�; a; [0; � ];Rd) = fY ;Rd -valued and F(t) � adapted such that

jjY jj2� = E
R �

0
e�A(s)jY (s)j2ds <1g

L2;a(�; a; [0; � ];Rd) = fY ;Rd -valued and F(t) � adapted

such that jjaY jj2� <1g
L2;c(�; a; [0; � ];Rd) = fY ;Rd -valued, F(t)-adapted and continuous

such that jjY jj2�;c = E sup0�t�� e
�A(t)jY (t)j2 <1g

We notice that L2(�; a; [0; � ];Rd) is a Banach space with the norm

jjY jj�.
Consequently,

M(�; a; �) = L2;a(�; a; [0; � ];Rd)� L2(�; a; [0; � ];Rd�n)

is a Banach space with the norm

jj(Y; Z)jj2� = jjaY jj2� + jjZjj2�
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Our main interest is in a subspace of M(�; a; �), namely

M c(�; a; �)

= (L2;a(�; a; [0; � ];Rd) \ L2;c(�; a; [0; � ];Rd))� L2(�; a; [0; � ];Rd�n)

We de�ne a norm on M c(�; a; �) by

jj(Y; Z)jj2�;c = jjY jj2�;c + jjaY jj2� + jjZjj2�

3. Statement of the main results

We assume (
; F; F (t); P ) to be a �ltered probability space as in the

previous chapter.

Let f : 
�R+�R
d �R

n�d ! R
d such that for all (y; z) 2 R

d �R
n�d

f(:; :; y; z) is F(t)-adapted. Let further � be a stopping time which may

take values in [0;1] and let � be a F(� )-measurable random variable.

We consider the following BSDE (suppressing !):

�dY (t) = f(t; Y (t); Z(t))dt� Z(t)dW (t)(3.1)

Y (�) = �

De�nition 1. Let � > 0 and a a nonnegative F(t)-adapted process.

A pair (Y; Z) 2M c(�; a; �) is called a solution of BSDE (3.1), if

Y (t ^ �) = � +

Z �

t^�

f(s; Y (s); Z(s))ds�
Z �

t^�

Z(s)dW (s)(3.2)

Equation (3.1) is said to be uniquely solvable, if for any two solutions

(Y; Z) and (Y 0; Z 0) the following holds

Y (t) = Y 0(t) P � a:s: 8t 2 [0; � ]; Z(t) = Z 0(t) P � a:s: a:e: t 2 [0; � ]

(3.3)

De�nition 2. Let � > 0 . We call a triple (�; �; f) standard data, if

the following holds:

(H1) � is a stopping time of the �ltration F(t).

(H2) There are two nonnegative F(t)�adapted processes r(t)and u(t)

such that 8(y; z; y0; z0) 2 R
d � R

d�n � R
d � R

d�n

jf(t; y; z)� f(t; y0; z0)j � r(t)jy � y0j+ u(t)jz � z0j(3.4)

We refer to (H2) as the stochastic Lipschitz condition.

(H3) 9" > 0 a2(t) := r(t) + u2(t) � "

(H4) � 2 L2(�; a; �;Rd)

(H5)
f(:;:;0;0)

a
2 L2(�; a; [0; � ];Rd)

We can now state the main results
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Theorem 3. Let (�; �; f) be standard data for a su�ciently large �.

Then the BSDE (3.1) has a unique solution.

We will further obtain the following result concerning the continuous

dependence:

Theorem 4. Assume (�; �; f) and (�; �0; f 0) to be standard data with

associated solutions (Y; Z) and (Y 0; Z 0). For � large enough there is a

constant K > 0 independent of � such that

jj(Y; Z)� (Y 0; Z 0)jj2�;c(3.5)

� Kjj� � �0jj2� +Kjj
f(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�

We split the proofs in several steps. First we give some a-priori-

estimates. Then we show a wellposedness result for some "easy" BS-

DEs. Finally, we use the contraction mapping theorem to prove theo-

rem 3. Theorem 4 turns out to be a corollary of the a priori estimates.

4. A Priori Estimates

Lemma 5. (A-priori-estimates)

Let (�; �; f) be a triple of data satisfying (H1) and (H4) for some � >

0 and an F(t)-adapted process a � " > 0. Let (Y; Z) be a solution of

the BSDE associated with the data and assume

f(t; Y (t); Z(t))

a
2 L2(�; a; [0; � ];Rd)

Then

jjaY jj2� �
2

�
jj�jj2� +

4

�2
jj
f(t; Y (t); Z(t))

a
jj2�(4.1)

jjY jj2�;c � Cjj�jj2� +
C 0

�
jj
f(t; Y (t); Z(t))

a
jj2�(4.2)

jjZjj2� � jj�jj2� +
2

�
jj
f(t; Y (t); Z(t))

a
jj2�(4.3)

for positive constants C and C 0 independent of � and �:

Proof. Since (Y; Z) is a solution associated with the given data, we

obtain from (3.2) for T � t � 0

Y (t ^ �) = Y (T ^ �) +

Z T^�

t^�

f(s; Y (s); Z(s))ds�
Z T^�

t^�

Z(s)dW (s)
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Let us recall that

A(t) =
R t

0
a2(s)ds.

Applying Itô's formula to

jY (t ^ �)j2e�A(t^�)

yields

jY (t ^ �)j2e�A(t^�) +
Z T^�

t^�

e�A(s)jZ(s)j2ds

= jY (T ^ �)j2e�A(T^�) �
Z T^�

t^�

e�A(s)[�a2(s)jY (s)j2

+2 hf(s; Y (s); Z(s)); Y (s)i]ds+
Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i

� jY (T ^ �)j2e�A(T^�) +
Z T^�

t^�

e�A(s)[��a2(s)jY (s)j2

+2jf(s; Y (s); Z(s))jjY (s)j]ds+
Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i

� jY (T ^ �)j2e�A(T^�) +
Z T^�

t^�

e�A(s)[�
�a2(s)

2
jY (s)j2

+
2

�a2(s)
jf(s; Y (s); Z(s))j2]ds

+

Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i(4.4)

Here the last estimate is due to Young's inequality.

Noting that
R T^�

t^�
e�A(s) hY (s); Z(s)dW (s)i is a martingale and taking

expectation we have

2E

Z T^�

0

e�A(s)jZ(s)j2ds+ E

Z T^�

0

e�A(s)�a2(s)jY (s)j2ds

� 2EjY (T ^ �)j2e�A(T^�) + E

Z T^�

0

e�A(s)
4

�a2(s)
jf(s; Y (s); Z(s))j2ds

Now E sup0�t�� e
�A(t)jY (t)j2 < 1 because (Y; Z) 2 M c(�; a; �). Let-

ting T !1 we obtain by the dominated convergence theorem

2E

Z �

0

e�A(s)jZ(s)j2ds+ �E

Z �

0

e�A(s)a2(s)jY (s)j2ds

� 2Ej�j2e�A(�) +
4

�
E

Z �

0

e�A(s)
1

a2(s)
jf(s; Y (s); Z(s))j2ds
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(4.1) and (4.3) follow easily.

By the Burkholder-Davis-Gundy's inequalities

E sup
0�t�T^�

j
Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i j

� Ej
Z T^�

0

e�A(s) hY (s); Z(s)dW (s)i j

+E sup
0�t�T^�

j
Z t^�

0

e�A(s) hY (s); Z(s)dW (s)i j

� 2KE[

Z T^�

0

e2�A(s)jY (s)j2jZ(s)j2ds]
1

2

� 2KE[( sup
0�t��^T

jY (t)j2e�A(t))
1

2 (

Z T^�

0

e�A(s)jZ(s)j2ds)
1

2 ]

�
1

2
E sup

0�t��^T

jY (t)j2e�A(t) + 2K2E

Z T^�

0

e�A(s)jZ(s)j2ds(4.5)

Combining this with (4.4) we have

E sup
0�t�T^�

jY (t)j2e�A(t)

� EjY (T ^ �)j2e�A(T^�) + E

Z T^�

0

e�A(s)
2

�a2(s)
jf(s; Y (s); Z(s))j2ds

+E sup
0�t�T^�

j
Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i j

� EjY (T ^ �)j2e�A(T^�) + E

Z T^�

0

e�A(s)
2

�a2(s)
jf(s; Y (s); Z(s))j2ds

+
1

2
E sup

0�t��^T

jY (t)j2e�A(t) + 2K2E

Z T^�

0

e�A(s)jZ(s)j2ds

Thus,

E sup
0�t�T^�

jY (t)j2e�A(t^�)

� 2EjY (T ^ �)j2e�A(T^�) + 4E

Z T^�

0

e�A(s)
1

�a2(s)
jf(s; Y (s); Z(s))j2ds

+4K2E

Z T^�

0

e�A(s)jZ(s)j2ds



BSDES WITH STOCHASTIC LIPSCHITZ CONDITION 7

Letting T ! 1 and using Fatou's Lemma, dominated convergence

theorem and (4.3)

E sup
0�t��

jY (t)j2e�A(t^�)

� lim
T!1

E sup
0�t�T^�

jY (t ^ �)j2e�A(t^�)

� (2 + 4K2)Ej�j2e�A(�) +
4 + 8K2

�
E

Z �

0

e�A(s)
1

a2(s)
jf(s; Y (s); Z(s))j2ds

So we obtain (4.2) and �nish the proof.

Lemma 6. Assume (�; �; f) and (�; �0; f 0) to be standard data with as-

sociated solutions (Y; Z) and (Y 0; Z 0) respectively. Then

f(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))

a
2 L2(�; a; [0; � ];Rd)(4.6)

f(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))

a
2 L2(�; a; [0; � ];Rd)(4.7)

Moreover,

jj
f(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�

� 3(jja(Y (t)� Y 0(t))jj2� + jj(Z(t)� Z 0(t))jj2�(4.8)

+jj
f(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�)

Proof. By the stochastic Lipschitz condition we have

jf(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))j
� jf(t; Y (t); Z(t))� f(t; Y 0(t); Z 0(t))j

+jf(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))j
� r(t)jY (t)� Y 0(t)j+ u(t)jZ(t)� Z 0(t)j

+jf(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))j

Now by Young's inequality and the de�nition of a2

jf(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))j2

� 3(r2(t)jY (t)� Y 0(t)j2 + u2(t)jZ(t)� Z 0(t)j2

+jf(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))j2)
� 3a2(t)[a2(t)jY (t)� Y 0(t)j2 + jZ(t)� Z 0(t)j2

+
jf(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))j2

a2(t)
]
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Consequently,

jf(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))j2

a2(t)
e�A(t)

� 3e�A(t)[a2(t)jY (t)� Y 0(t)j2 + jZ(t)� Z 0(t)j2

+
jf(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))j2

a2(t)
]

Integrating from 0 to � and taking expectation yield (4.8).

Furthermore we have

jj
f(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�

� jj
f(t; Y 0(t); Z 0(t))

a
jj2� + jj

f 0(t; Y 0(t); Z 0(t))

a
jj2�

By (H2)

jf(t; Y 0(t); Z 0(t))j � r(t)jY 0(t)j+ u(t)jZ 0(t)j+ jf(t; 0; 0)j

By Young's inequality and the de�nition of a2 we obtain

jf(t; Y 0(t); Z 0(t))j2

a2(t)
� 3(a2(t)jY 0(t)j2 + jZ 0(t)j2 +

jf(t; 0; 0)j2

a2(t)
)

Using (H5) one can easily check that jjf(t;Y
0(t);Z0(t))

a
jj2� <1. One obtains

jjf
0(t;Y 0(t);Z0(t))

a
jj2� < 1 in the same way. Hence, (4.6) holds and (4.7)

follows directly from (4.8) and (4.6).

5. Wellposedness for "easy" BSDEs

In this chapter we consider a class of "easy" BSDEs. The meaning

of "easy" is, that the driver f of the BSDE is independent of Y and Z.

We are going to obtain the following result.

Proposition 7. Let � > 0 and let a be a nonnegative F(t)-adapted

process bounded away from 0 by an " > 0. Assume

f
a
2 L2(�; a; [0; � ];Rd)

and � 2 L2(�; a; �;Rd). Then the BSDE

�dY (t) = f(t)dt� Z(t)dW (t)(5.1)

Y (�) = �

has a unique solution.
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The idea of the proof is the same as in [P-P], but the proof becomes

by far more technical because of the more general situation. Let us

give a heuristic argument �rst.

Let (Y; Z) be a solution of the BSDE. We have

Y (t ^ �) = � +

Z �

t^�

f(s)ds�
Z �

t^�

Z(s)dW (s)

Taking conditional expectation yields

Y (t ^ �) = E[Y (t ^ �)jF(t ^ �)]

= E[� +

Z �

0

f(s)dsjF(t ^ �)]�
Z t^�

0

f(s)ds

So we have a candidate for one part of the solution. De�ne

M(t ^ �) = E[� +

Z �

0

f(s)dsjF(t ^ �)]

Y (t ^ �) = M(t ^ �)�
Z t^�

0

f(s)ds

We obtain the following estimates for M and Y .

Lemma 8.

E[jM(t ^ �)j2] � 2Ej�j2 +
2

�
E

Z �

0

jf(s)j2

a2(s)
ds(5.2)

E sup
0�t��

[e�A(t)jY (t)j2](5.3)

� 8Ej�j2e�A(�) +
8

�
E

Z �

0

jf(s)j2

a2(s)
e�A(s)ds

Consequently, M(t) (t 2 [0; �)) is a square integrable martingale.
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Proof. By the de�nition of Y we obtain using Jensen's, Young's and

H�older's inequality respectively

e�=2A(t^�)jY (t ^ �)j = jE[� +
Z �

t^�

f(s)dsjF(t ^ �)]je�=2A(t^�)

� E[

s
j� +

Z �

t^�

f(s)dsj2e�A(t^�)jF(t ^ �)]

�
p
2E[

s
j�j2e�A(�) + j

Z �

t^�

f(s)dsj2e�A(t^�)jF(t ^ �)]

�
p
2E[fj�j2e�A(�) +

(

Z �

t^�

a2(s)e��A(s)ds)

(

Z �

t^�

jf(s)j2

a2(s)
e�A(s)ds)e�A(t^�)g

1

2 jF(t ^ �)]

�
p
2E[

s
j�j2e�A(�) +

1

�

Z �

0

jf(s)j2

a2(s)
e�A(s)dsjF(t ^ �)]

Thus, e�=2A(t^�)jY (t ^ �)j is dominated by a martingale. By Doob's

inequality and Jensen's inequality one has the estimate for Y . The

estimate for M follows in a similiar way.

Let us now construct the second part of the solution. Because M

is a square integrable martingale we can make use of the martingale

representation theorem (see e.g. [I-W]). We have:

There is an F(t)-adapted process Z : 
� R+ ! R
d�n such that

P (

Z
1

0

jZ(s)jds <1) = 1

and

M(t ^ �) = M(0) +

Z t^�

0

Z(s)dW (s)

One can easily show (using the de�nitions above) that for any �xed

T <1 and t � T

Y (t ^ �) = Y (T ^ �) +

Z T^�

t^�

f(s)ds�
Z T^�

t^�

Z(s)dW (s)(5.4)

Letting T !1 we see that Z is the natural candidate for the second

part of the solution. For this purpose let us prove that Y (T ^ �) !
� (P � a:s:). We brie
y discuss two cases.
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(i) Let f� � T gfor a T <1. By Problem 1.2.17 in [K-S] we have

E[� +

Z �

0

f(s)dsjF(T ^ �)] = E[� +

Z �

0

f(s)dsjF(� )] = � +

Z �

0

f(s)ds

Hence, Y (T ^ �)! � on f� <1g:
(ii) f� = 1g: Since f

a
2 L2(�; a; [0; � ];Rd) and � 2 L2(�; a; �;Rd),

we have f = 0 and � = 0 on f� = 1g: Thus Y (T ^ �) ! � holds

trivially. Notice that we need a bounded away from 0 to conclude that

f and � equal 0.

Consequently,

Y (t ^ �) = � +

Z �

t^�

f(s)ds�
Z �

t^�

Z(s)dW (s)

We have to prove that (Y; Z) 2M c(�; a; �).

Lemma 9. (Y; Z) 2M c(�; a; �)

Proof. From the previous lemma we know that

Y 2 L2;c(�; a; [0; � ];Rd):

Applying Itô's formula to e�A(t^�)jY (t ^ �)j2 noting (5.4) yields

jY (t ^ �)j2e�A(t^�) +
Z T^�

t^�

e�A(s)jZ(s)j2ds

= jY (T ^ �)j2e�A(T^�) �
Z T^�

t^�

e�A(s)[�a2(s)jY (s)j2 + 2 hf(s); Y (s)i]ds

+

Z T^�

t^�

e�A(s) hY (s); Z(s)dW (s)i

We have to pay attention to the fact thatR T^�

t^�
e�A(s) hY (s); Z(s)dW (s)i

could be a real local martingale. Hence, we cannot assume that

E
R T^�

t^�
e�A(s) hY (s); Z(s)dW (s)i = 0.

But similiar to the a priori estimates in lemma 5 one has (using the

Burkholder-Davis-Gundy's inequalities)

E

Z T^�

0

e�A(s)jZ(s)j2ds+ E

Z T^�

0

e�A(s)ja(s)Y (s)j2ds

� C[EjY (T ^ �)j2e�A(T^�) + E

Z �

0

jf(s)j2e�A(s)ds+ E sup
0�t��

(e�A(t)jY (t)j2)]
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with a constant C only dependent of � but not of T . The details are

left to the reader. Then we can make use of (5.3) and pass to the limit

to obtain the desired result.

It remains to prove the uniqueness:

Let � = 0 and f = 0. Applying Itô's formula to jY (t^ �)j2 we obtain

EjY (t ^ �)j2 = �E
Z �

t^�

jZ(s)j2ds

Hence,

Y (t ^ �) = 0 P � a:s:

Z(t) = 0 P � a:s: a:e: t 2 [0; � ]

Uniqueness follows from the linearity of the equation.

The proof of proposition 7 is complete now.

6. Proofs of the main results

After these preparations we are able to prove the main results. We

make use of the contraction mapping theorem. So recall that

(M(�; a; �); jj(:; :)jj�)

is a Banach space.

Proof of Theorem 3.
For �xed (y; z) 2M(�; a; �) consider the BSDE

�dY (t) = f(t; y(t); z(t))dt� Z(t)dW (t)(6.1)

Y (�) = �

By (H2)

jf(t; y(t); z(t))j � r(t)jy(t)j+ u(t)jz(t)j+ jf(t; 0; 0)j

By Young's inequality and the de�nition of a2

jf(t; y(t); z(t))j2

a2(t)
� 3(a2(t)jy(t)j2 + jz(t)j2

+
jf(t; 0; 0)j2

a2(t)
)

Thus, using (H5) we have

f(t; y(t); z(t))

a(t)
2 L2(�; a; [0; � ];Rd):

Hence the BSDE (6.1) has a unique solution by proposition 7.
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So we can de�ne the operator

� :M(�; a; �)!M c(�; a; �) � M(�; a; �)

such that �(y; z) is the solution of the correspondig BSDE (6.1).

We will show, that for a � large enough � is a contraction mapping.

Using the contraction mapping theorem we �nd a unique �xed point,

which is the unique solution of BSDE (3.1).

Assume (y; z), (y0; z0) 2M(�; a; �): By lemma 6

jj
f(t; y(t); z(t))� f(t; y0(t); z0(t))

a
jj2� � 3(jja(y(t)� y0(t))jj2� + jjz(t)� z0(t))jj2�)

Combining this with the results of lemma 5 - using the obvious fact

that �(y; z) � �(y0; z0) is the solution of the BSDE given by the data

(�; 0; f(t; y(t); z(t))� f(t; y0(t); z0(t))) - one has

jj�(y; z)� �(y0; z0)jj2� � (
12

�2
+

6

�
)(jja(y(t)� y0(t))jj2� + jjz(t)� z0(t))jj2�)

� (
12

�2
+

6

�
)jj(y; z)� (y0; z0)jj2�

Hence, for � large enough � is a contraction mapping. Thus the

BSDE (3.1) has a unique solution. The proof is complete now.

It remains to prove the continuous dependence property

Proof of Theorem 4.
Let

g(t; y; z) = f(t; y + Y 0(t); z + Z 0(t))� f 0(t;�y � Y (t);�z � Z(t))

Then (Y �Y 0; Z�Z 0) is a solution of the BSDE induced by (�; ���0; g).
By lemma 6

g(t; Y (t)� Y 0(t); Z(t)� Z 0(t))

a
2 L2(�; a; [0; � ];Rd)
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Hence, lemma 5 can be applied and we obtain

jj(Y � Y 0; Z � Z 0)jj2�;c

� (C + 1 +
2

�
)jj� � �0jj2�

+(
C 0 + 2

�
+

4

�2
)jj
f(t; Y (t); Z(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�

� (C + 1 +
2

�
)jj� � �0jj2�

+3(
C 0 + 2

�
+

4

�2
)fjja(Y (t)� Y 0(t))jj2� + jj(Z(t)� Z 0(t))jj2�

+jj
f(t; Y 0(t); Z 0(t))� f 0(t; Y 0(t); Z 0(t))

a
jj2�g

The second inequality follows from lemma 6. Choosing � large enough

the proof is �nished.

Finally, we compare the results with Pardoux-Peng's theorem in the

case of the standard setting. So let the stopping time � be bounded by

some T0 <1 and let a uniform Lipschitz condition hold, i.e.

jf(t; y; z)� f(t; y0; z0)j � K(jy � y0j+ jz � z0j)

Obviously, under these assumptions (H4) and (H5) are equivalent to

(H4') � 2 L2(0; 0; �;Rd)

(H5') f(:; :; 0; 0) 2 L2(0; 0; [0; � ];Rd)

Hence, the conditions for the data are perfectly the same as in [P-P].

Consequently, theorem 3 covers Pardoux-Peng's theorem in the case

of the standard setting.
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