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Abstract

We consider temporal aggregation of stationary and nonstationary time series
with short memory, long memory and antipersistence, within the framework of frac-
tional autoregressive processes. Asymptotically, long memory and antipersistence
are preserved whereas short memory components vanish. In the case of integrated
processes, the results extend Tiao’s [15] to the fractional case.

Key words: temporal aggregation, differencing, long memory, short memory, an-
tipersistence, stationarity, nonstationarity, fractional ARIMA, Box-Jenkins ARIMA,
fractional Gaussian noise, white noise.

1 Introduction

Data are often available in an aggregated form (temporal aggregation). Typical
examples are flow variables (e.g. industrial production) which exist only through
aggregation over a certain time interval. Also, applied data analysts sometimes
prefer to analyze aggregated data in order to eliminate seasonal fluctuations. Here,
we consider the problem of temporal aggregation for a class of parametric time series
models that includes classical nonfractional Box-Jenkins ARIMA(p, m, 0) models as
well as stationary and nonstationary fractional autoregressive processes. Beran [3]
(also see Beran, Bhansali and Ocker [4]) proposes a unified treatment by noting that
these models are special cases of

¢(B)(1 - B){(1 - B)"X; — u} = &, (1)

where ¢; are iid zero mean normal with 62 = Var(e), B denotes the backshift
operator such that BX; = X; 1. Also ¢(z) = >-5_; ¢;27 is a polynomial with ¢ = 1
and roots outside the unit circle. The integer m is the number of times X; must be
differenced to achieve stationarity. The mth difference (1 — B)™X, is a stationary
FARIMA(p, 6,0) process with fractional differencing parameter 6 € (—.5,.5) and
expected value p. The fractional difference (1 — B)? is defined by

(1-B)° =Y b(0)B*, where
k=0

. T@+1)
S ET ek )

0, (1) reduces to an ARIMA(p, m,0) model (Box & Jenkins [5]). For
) reduces to a stationary FARIMA(p, ,0) process (Granger & Joyeux [6],

bi(6) = (-1

For § =
m =0, (1
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Hosking [7]). Definition (1) extends the concept of standard ARIMA(p, m, 0) models
by allowing the mth difference to be a stationary FARIMA(p, d,0) process with
arbitrary § € (—.5,.5). Also, (1) is an extension of the FARIMA(p, 6,0) models,
by allowing the possibility of nonstationarity (d > .5). The differencing parameter
d = m + § determines which (possibly fractional) difference has to be taken in
order to obtain a stationary Box-Jenkins ARMA (p, 0) process. We refer to (1) to as
FARIMA(p, d,0) model.

Here, a stationary process (1—B)™X, is said to be persistent or to have long mem-
ory (or long- range dependence) if Y32 __ p(k) = oo, where p(k) = Corr(Xy, Xey)-
For (1) this is the case if 6 € (0,.5), since the correlations of a stationary
FARIMA(p,4,0) process decay hyperbolically, i.e., p(k) ~gjooe Co(¢,6)|E[*71,
c,(+) > 0 (see e.g. Hosking [7]). For § € (—.5,0), the correlations decay hyper-
bolically too, but 332 p(k) = 0. The process is then said to be antipersitent.
For 6 = 0, the differenced process (1 — B)™X, becomes a standard short memory
ARMA(p, 0) model with summable exponentially decaying correlations. Thus (1)
incorporates stationary and nonstationary, short- and long-range dependent autore-
gressive processes.

The impact of temporal aggregation on nonfractional ARIMA(p, m,0) models is
well known (see e.g. Amemiya & Wu [1], Stram & Wei [12], Tiao [15], Wei [16]). For
stationary fractional processes, related results follow directly from functional limit
theorems (see Lamperti [9], Taqqu [13] and others). Nothing is however known
about the effects upon nonstationary FARIMA(p, d,0) models. Many time series,
in particular in economics, are nonstationary and appear to have long-range corre-
lations or antipersistence. It is therefore important to know how a process changes
when it is aggregated.

The purpose of this article is to derive the asymptotic behaviour of temporal
aggregates of an observed time series z; generated by the FARIMA(p, d,0) model
(1). All results on temporal aggregation of non-fractional ARIMA (p, m, 0), station-
ary fractional FARIMA(p, 6,0) as well as nonstationary fractional FARIMA(p, d, 0)
models can be derived using one unified approach. The following definition of tem-
poral aggregation is used.

Definition 1 Lett = sT and s > 2, then the series

s—1
_ (z Bi) Bor,
=0

represents the s-period nonoverlapping aggregates of x;.

Tiao [15] has shown for Box-Jenkins ARIMA processes that, as the degree of
aggregation s tends to infinity, the series 27 approaches an ARIMA (0, m, m) model,
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irrespective of the ARMA order and the size of the coefficients. Thus the integer
differencing parameter m determines the asymptotic process. The question arises
whether a similar result holds in connection with fractional differencing.

The article is organized as follows. The main theoretical results are obtained in
section 2. The results are illustrated by simulations in section 3. Final remarks in
section 4 conclude the paper. Proofs are given in the appendix.

2 Asymptotic results

To simplify presentation, the moving average order ¢ is chosen to be equal to zero.
The same results hold for ¢ # 0. Also, without loss of generality, we assume pu
to be known and equal to zero. Since a FARIMA(p,d,0) process has an infinite
moving-average representation for 6 < .5 (Hosking [7]), we can express (1) by

(1 - B)mIEt = i": YVr€i—k, (2)
k=0

where 1 is obtained by inverting (1). In order to derive the process for the aggre-
gates 27, we adapt Telser’s [14] technique and multiply (2) by (352, B*)™*!. Using
progression we get

(1— B*)™ (;1 Bi> Ty = (é Bi> " Uz, (3)

where u; = > po Vr€r—k- Now let

s—1
i=0
where B operates on T by Bzr = zr_;. That is, yr is the mth difference of the
aggregate zr. The covariances v, (k) = Cov(yr, yr4r) of the process yr are specified
in the following lemma for m = 0 and 1.

Lemma 1 Let v, (k) be the autocovariance of the series yr = (1 — B)™zr at lag k.
Then

(ii) wy (k) = 52 o—ny(s = liD(s = )i — 1 = sk), if m =1,

where v, (j — 1 — sk) = Cov(Ui(s,r) 15> Wi(s T+k)+1), with i =1i(s,T) = s(T'—1) +1, for
m =1, and v,(j — l — sk) = Cov(ugr_i, Us(rk)—;), for m = 0, respectively.
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Lemma 1 enables us to derive explicit formulas for the autocorrelations. In par-
ticular in the following theorem it is shown that the correlations p, (k) = v, (k)/~,(0)
of yr depend on the differencing parameter d = m + ¢ only. This is a generalization
of Tiao’s [15] result.

Theorem 1 Let y,(k) be the autocovariance and py(k) the autocorrelation of yr =
(1 — B)™2r at lag k. Then, as s tends to infinity, the following holds:

(i) If d =m =0, then v,(0) = O(s), v,(k

(i) If d = m = 1, then v,(k) = O(s®
lim, o0 py(l) = .25 and lim,_, py (k)

o(s) (k > 1), and lim,_,« p, (k) = 0;

)=
) 0,1), w(k) = ofs) (k = 2),

(
0(k>2)

(iii) if d =6 € (=.5,.5) \ {0}, then v,(k) = O(s'*?) for all k and lim,_, p,(k) =
: {(k + )20+ — 22041 4 (k — 1)2‘”1} . This implies in particular

py (k) ~koo 8(28 + 1)E21
a’nd: f07' _% << 07 Zzoz—oo py(k) = 07

(i) If d=m+ 6 € (.5,1.5) \ {1}, then ~,(k) = O(s**%®) for all k,

7 + 325—1—3 225—1—5

sllglo py(l) 925+4 _ 8
and for k > 2,
(k + 2)25—1—3 _ 4(k + 1)25—1—3 + 6k25+3 _ 4(k _ 1)25—1—3 + (k _ 2)25-1—3
lim py (k) = 9211 _ g :

This implies in particular

0(260 +1)(204+2)(20 + 3
) ATV D05 50

and, for —3 <8 <0, X352 py(k) = 0.
Remarks:

1. The limiting model of the aggregate yr (equation (4)) of a nonfractional
ARIMA process (1) (i.e. ¢ = 0) becomes white noise, for d = m = 0, and
approaches an MA(1) process, for d = m = 1, respectively. This result was
first obtained by Tiao [15] using a different approach.



2. If the original series z; is a stationary FARIMA model (1), with d = § €
(—.5,.5) \ {0}, then the asymptotic aggregate process yr is fractional Gaus-
sian noise (Mandelbrot & van Ness [10], Mandelbrot & Wallis [11]). Thus,
long memory and antipersistence respectively remain asymptotically, whereas
short memory model components vanish. This result can also be proved di-
rectly by using functional limit theorems for stationary fractional processes
(see Lamperti [9], Taqqu [13] and others).

3. When the original series z; is a nonstationary FARIMA(p, d, 0) process, with
d=m+4 € (.5,1.5) \ {1}, then the limit of the aggregated series yr is
such that its first difference is a stationary Gaussian process with the same
long-memory parameter ¢ as x; — x;_1. Thus, temporal aggregation of a non-
stationary fractional autoregressive process (1) does not change the property
of long-range dependence. Similarily, antipersistence is preserved. However,
first difference of the process does not converge to fractional Gaussian noise.
This is similar to standard integrated ARIMA processes (6 = 0, m = 1), where
the first difference of the limiting process does not converge to iid noise (which
is fractional Gaussian noise with d = 0) but instead has a lag-1 correlation
of .25. Note also that the correlation formulas exhibit a continuous transition
between § # 0 and 6 = 0, since lim;_,g py(1) = 3 and lims_ py(k) = 0 for
k> 2.

3 Simulations

For d equal to —.3,0,.3,.7,1.0,1.3, and sample size n = 40000, one hundred series
of each of the following four models were simulated:

e Model a: (1+.9B)(1 — B)’(1 — B)™X; = &;

e Model b: (1— B)’(1 — B)™X, = ¢;

e Model ¢: (1—.9B)(1 — B)’(1 — B)™X, = ¢;

(1+
(
(
(

e Model d: (1 —1.42B +.73B?)(1 — B)’°(1 — B)"X; = .

Model ¢ has a very strong positive short memory and may converge quite slowly to
the limiting model with increasing degree of temporal aggregation s. In contrast,
Model b is expected to converge quite fast under temporal aggregation. Model a ex-
hibits short-range correlations with alternating signs. Model d has a local maximum
at a nonzero frequency implying random short-range periodicities.



Note that simulation by the S-Plus function arima.fracdiff.stm poses computa-
tional problems for large sample sizes. Therefore, the series were simulated combin-
ing the simARMAQ function in Beran [2] (to obtained a fractional ARIMA(0, §, 0)
series) with the linear filter function arima.sim, and cumsum for d > .5.

For each simulated series (i = 1,...,100), and each aggregation level s =
1,2,5,10,20,...,100, the sample correlations py, (k) (kK = 1,2) were calculated.
Figures 1 and 2 display, for models 1 to 4, and & equal to 1 and 2 respectively, the
simulated average sample correlations p, s(k) = 10071 ;% p, 5.i(k), plotted against
s. The straight lines mark the corresponding limiting correlation according to the-
orem 1. Note that, sample autocorrelations of fractional models are biased (Hosk-
ing [8]), and in the case of lon memory the bias decays very slowly as the sample size
increases. In order that the effect of aggregation is not confounded with this bias,
series of the same length n = 400 were used for each aggregation level s to calcu-
late py si(k). For Model ¢, we can observe a slow convergence to the corresponding
limiting values, whereas convergence is fast for the other models. Moreover, there
is a systematic negative bias in the long memory cases d = .3 and d = 1.3. This is,
however, consistent with the bias expected theoretically (Hosking [8]). To illustrate
this, table 3 lists 1. the theoretical limiting values of p, (k) (k = 1,2), 2. the observed
average sample correlation p, 4(k) for the models 1 though 4, given an aggregation
degree of s = 100, 3. the corresponding empirical bias b = p, ,(k) — p,(k) and 4. the
theoretical bias, for n = 400. Recall that the theoretical bias given in Hosking [8] is

b= (py(k) - 1)”25—1, m =0 (5)

B —1)(20 +2)(20 +3)(2%13 —4) -1 m=1"
The empirical bias is always negative, as is expected by equation (5), and slightly
larger than the theoretical one. The difference is, however, quite small as can be
seen from the ratio b/b. Overall, around 80% of the observed bias are explained by
equation (5), supporting the practical relevance of theorem 1.



Table 1: Empirical vs. theoretical bias.

d=.3 d=13

py(k) py(k) b bbb pyk) py(k) b b b/b
Model a

k=1 516 457 -.044 -.059 .746 .658  .618 -.036  -.040 .900

2 368 292 -058 -.076 .763 431 359 -.060 -.072 .833

5 253 172 -.068 -.081 .840 292 205 -074 -.087 .81

10 191 120 -074 -.071 1.042 .220 123 -.082 -.097 .845

15 163 080 -.076 -.083 .916 187 085 -.08  -102 .833

20 145 062 -.078 -.083 .940 167 053 -087 -114 .763
Model b

k=1 516 466  -.044 -.050 .8R0 .658  .603 -.036 -.055 .655

2 368  .303  -.058 -.065 .892 431 342 -060 -.089 .674

5 253 177 -.068 -.076 .895 292 185 -074  -107  .692

10 191 112 -074 -.079 .937 .220 .109 -.082 -111 739

15 163 079 -.076 -.084 .905 187  .076 -085 -111 .766

20 145 052 -.078 -.093 .839 167 043 -087 -124 702
Model ¢

k=1 516 486  -.044 -.030 1.467 658  .622 -036 -.036 1.000

2 368 308 -.058 -.060 .967 431 366 -.060 -.065 .923

5 253 176 -.068 -.077 .883 292 .206 -074 -.086 .861

10 191 .105 -074 -.086 .861 .220 129 -.082 -.091 .901

15 163 075  -.076 -.088 .864 187 092 -.08  -.095 .895

20 145 057  -.078 -.088 .886 167 .066 -.087 -101 .861
Model d

k=1 516 464 -.044 -.052 .846 .658  .604 -.036 -.054 .667

2 368 306 -.0568 -.062 .936 431 346 -.060 -.085 .706

5 253 179 -.068 -.074 .919 292 192 -074  -100 .740

10 191 .109 -074 -.082 .902 .220 118 -.082 -102 .804

15 163 .08  -.076 -.078 .974 187 074 -085 -113 .752

20 145 055 -.078 -.090 .867 167 052 -.087 -115 .756

4 Final remarks

In this paper we investigated the effects of temporal aggregation on nonstation-
ary and stationary short- and long-range dependent autoregressive processes. Long



memory and antipersistence are robust with respect to temporal aggregation,
whereas short memory is not. For stationary processes, aggregation leads asymp-
totically to fractional Gaussian noise. For integrated processes, a more complicated
process is obtained in the limit which retains the long-memory properties of the
original series. This extends and includes the case of an integrated short-memory
ARMA process (i.e. § = 0) treated in Tiao’s [15]. The assumption of Gaussian
innovation is not essential for the derivation of the asymptotic correlation structure
of the aggregated process yr. However, an essential assumption was that the original
process z; is linear. In view of observed nonlinearties in many time series, the effect
of aggregation will also need to be studied for nonlinear processes. In the case of long
memory, this is likely to lead to nonstandard limit theorems similar to Tagqu [13].
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6 Appendix

Proof of lemma 1:

(i) Noting that yr = .57, usr_; the covariance is given by straightforward calcula-
tion as v, (k) = X752 Lovu(j — 1 — sk).

(ii) For the case of m = 1, consider

sT

yT—X%)BJZBluST— Z (s—1j—s(T—1)—1])u;

i(s,T)+(s—1)

s—1
= Y (s=l-is,DNui= D (s—|i])uisr)4s-
j=—G-1

j=i(s,T)—(s—1) )

Hence, the covariance equals

s—1
vy(k) = Z s—7]) uHT)ﬂ, S (s=i) ust+k)+l) :
(s—1) =—(s—1)
s—1
= > (s=lih(s— Il -1 — sk),
Jl=—(s-1)



where i(s,T) = s(T — 1) + 1.

Proof of theorem 1:

First note that lemma 1 may be written as

j—sk

Z > ) (6)

J=0v=75—s(14+k)+1

s—1 j—s(k—1)—1
k) = 3—|J|{ > [s(1=k) 47— v]v(v)+

j=1l-s =j—sk
j—sk—1

+ > [8(k+1)—j+v]%(v)}- (7)

v=j—s(k+1)+1

Proof of (i) Since the covariances 7, (-) of an ARMA process decay exponentially in
the sense that there is an upper bound [vu(h)] < ca™, where 0 < c < 00,0 <a <1

are constants, we have |y, (k)] < 3332032975 (L ol so that
s—1 7 — j
WO < ey Y all< Z +> a
Jj=0v=j—s+1 j=0 \v=j— s—|—1 v=0
< —
—Cé{(l—a>+(1-a>} Al-7=m) = (-0)
1—a: (s)
and
j—sk s—1s(1+k)— ) 1—q* 1—qa°
OIED M S <CZ Z s SCW( a—l) ( a)
J=0v=75—s(14+k)+1 v=sk l1—-a l1—a

< const - a**~Y = o(s),Vk > 1.
Hence, p, (k) = 0,Vk > 1.

Proof of (ii) Suppose first that the ARMA covariances are such that v, (v) = 0 for
|v| > k,. Then from (7), we have

|
—

L)

1(0) & (8—|j|){(8+j)]§ Yu(v) + (s = J) JX_: ’Yu(v)}

j v=j v=j—s+1

Il
—
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s—1

~ oy (s—1il)? Z'Yu ~28/(1—fv deZ%

j=—(s-1) v=—ko v=—ko

~(25/3) 3 ml(v) = O(s)

v=—ko
and

~ 5 (s—ljl){j Y w0 +@s—g) Y 'Yu(v>}

j=1-s v=j—8§ v=j—2s+1

%ZS—M Z% /(1—$$d~”ﬂ2%
=

v=—ko v=—ko

~(52/6) 3 (o) = O(s?)

v=—ko

In addition we can show that +,(k) = o(s®),Vk > 2. Thus, we obtain p,(1) = .25
and p,(k) = 0,Vk > 2. The general case, with 7, (v) not necessarily zero for |v| > k,,
follows by approximating the autocovariances by covariances that vanish for |v| > k,,
with a suitably chosen k,.

Proof of (iii) Consider first the long memory case ¢ € (0,.5). Since vu(h) ~|n—o0
cy(8,1)|h¥~1, where c,(-)#0, (6) may be written as
j—sk
~ C’YZ Z |,U|25 I ¢ys 25+1/ / |v|25—1d:vdy= 0(325—1—1),

J=0v=5—-s(1+k)+1

which yields

2c, 8201
w0~ 555+ 1)
and
y (k) N 07325+1 {(k n 1)25+1 — )2+l 4 (k )26+1} Vi > 1.
Y 26(26 + 1)
The correlations are
1
pu(k) =3 {(k+ 1)+ — 2k 4 (k= 1)**'} Yk > 1.
For § € (—.5,0),

W =% ¥ %<v>=—§{ RIS %(v)}

j=0v=j—-s+1 §=0 \v=j+1 v=—00
5
N 2512 =O(325+1)
25(25+1)
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and

s—1 j—sk s—1 [ j—sk j—s(1+k)
wk)=>, > 'Yu(v):Z{ Y. wl) - D 'Yu(v)}
J=0v=j—s(14k)+1 j=0 (v=—00 v=—00

s—1 [ j—sk j—s(1+k)
NCVZ{ PIRCO MDY (—v)”‘l}
7=0 | v=—00 vV=—00
1 z—k z—1—k
o 32‘”107/0 {/_oo (—y)¥'dy /_oo (—y)%_ldy} di
-~ 31+2507 {(k + 1)25+1 — 92041 4 (k — 1)25+1} — O(s25+1) Vi > 1
26(26 4+ 1) ’ =

The result then follows.

Proof of (iv) Again, we first consider the long memory case § € (0,.5). Lemma
1(ii) may be written as

1 1
k) ~ e [ [ (1= o)1= lyl)le =y — P dudy = O(s+2),

so that
(0) 07826—1—3(8 _ 225—1—4)
Ty 95(26 + 1)(26 + 2)(26 + 3)’
) £, 52043 (92045 _ 7 _ 32043)
T 25(26 + 1)(20 + 2)(26 + 3)’
() —(k +2)23 + 4(k + 1)2+3 — 6£20F3 4+ 4(k — 1)%+3 — (k — 2)20+3
y laYs

20(26 + 1)(26 + 2)(26 + 3)(cys20+3) -1 ;
Vk > 2. Thus, the correlations are

225—1—5 —_ 7= 325—1—3

and
k) — _(k + 2)25-1-3 + 4(k + 1)25-1-3 _ 6k25+3 + 4(k _ 1)25—1—3 _ (k _ 2)25-1—3
py( ) - 8 — 225+4 )

Vk > 2, respectively.

The formulas for the correlations in the case § € (—.5,0) follow in a similar
fashion, using (7) and the equality

ify(z'):—{ SROEDS 'Y(i)}={§7(i)— 5 'Y(i)}-

i=s+1 i=—00 i=s+1
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Figure 1: Lag-1 autocorrelations under temporal aggregation
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Figure 2: Lag-2 autocorrelations under temporal aggregation
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