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Abstract 

Maniadis et al. (2013) present a theoretical framework that aims at providing insights into the 

mechanics of proper inference. They suggest that a decision about whether to call an 

experimental finding noteworthy, or deserving of great attention, should be based on the 

calculated post-study probability. Although I in large agree with most points in Maniadis et al. 

(2013), this note raises some important caveats.  
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Introduction 
In a recent article, Maniadis et al. (2013) claim that their “…framework highlights that, at 

least in principle, the decision about whether to call a finding noteworthy, or deserving of 

great attention, should be based on the estimated probability that the finding represents a true 

association, which follows directly from the observed p-value, the power of the design, the 

prior probability of the hypothesis, and the tolerance for false positives.” One of the authors’ 

contributions “is to illustrate this basic point by means of a theoretical framework that 

provides insights into the mechanics of proper inference.” Although I agree with most of the 

conclusions in Maniadis et al. (2013), this note raises some important caveats.  

 

Theory and Analysis 
The basic framework in Maniadis et al. (2013) consists in calculating the post-study 

probability (PSP), which is the probability that a research finding that is statistically 

significant, is true.  

 

𝑃𝑆𝑃 =  
(1 − 𝛽)𝜋

(1 − 𝛽)𝜋 + 𝛼(1 − 𝜋)
 

 
where 𝛼 = 𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) and reads as the probability that the test statistics rejects  𝐻0 (i.e. 

erroneously favors 𝐻1) when 𝐻0 is true, 1 − 𝛽 =  𝑃(𝑡𝑒𝑠𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝐻1) and reads as the probability 

that a research hypothesis is found significant when it is true, and 𝜋 =  𝑃(𝐻1) is the 

unconditional probability that 𝐻1 is true.1 Alternatively, we can write it in terms of the 

probability that the null hypothesis 𝐻0 is true given that the data 𝐷 provides support for the 

alternative hypothesis 𝐻1. The probability that a research finding that is statistically 

significant is false is  

 

𝑃(𝐻0|𝐷) =  
𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) ∙ 𝑃(𝐻0)

𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) ∙ 𝑃(𝐻0) + 𝑃(𝑡𝑒𝑠𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝐻1) ∙ 𝑃(𝐻1)
= 1 − 𝑃𝑆𝑃 

                                                           
1 Hence 𝛼 denotes the probability of a type 1 error and 𝛽 denotes the probability of type 2 error and 1 − 𝛽 
denotes the power of the test. In repeated random sampling 𝛼 and 𝛽 are the long run frequencies of type 1 
and type 2 errors.  
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Note the use of Bayes’ theorem.2 This approach is widely applied in medical and psychiatric 

diagnosis where all of the terms in right-hand side of the equation are assumingly known, 

including 𝑃(𝐻0),  which is the unconditional probability of the prevalence of a disease in the 

population. Calculating the PSP, therefore, is of great value and provides information on how 

likely it is that a patient who is given a positive diagnosis actually has a disease.  

 

Maniadis et al. (2013) remind us that the probability of rejecting 𝐻0 when 𝐻0 is true (i.e. the 

probability of committing type 1 error) is not equal to the probability that the hypothesis 𝐻0 is 

true when 𝐻0 is rejected.  Table 2 in Maniadis et al. (2013) shows, for example, that if 𝑃(𝐻0) 

is known and equals 0.99, and 𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) = 0.05, and 𝑃(𝑡𝑒𝑠𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝐻1) = 0.80, then 

Bayes’ theorem allows us to calculate the conditional probability 

𝑃(𝐻0|𝐷) = (0.05)∙(0.99)
(0.05)∙(0.99)+(0.80)∙(0.01) = 0.86, which is the posterior probability that the null is true 

when the researcher rejects the null. Hence, the PSP states that there is only a 14 percent 

chance that the statistically significant finding at the 5% level will represent a true association. 

Moreover, this is still far from the worst case that is presented. Maniadis et al. (2013) 

calculates several PSP’s under the assumption that the priors ranges between 0.45 < 𝑃(𝐻0) <

0.99. Based on the general impression from these calculations, Maniadis et al. (2013) 

conclude that “…it is not unlikely that the PSP after the initial study is less than 0.5 as several 

plausible parameter combinations yield this result (presented by bold fonts)”. 3 As mentioned, 

Maniadis et al. (2013) suggest that a decision about whether to call an experimental finding 

noteworthy, or deserving of great attention, should be based on the Bayesian post-study 

probability since the Classical procedure is shown to be problematic.  

𝑃(𝐷|𝐻0) ≠  𝑃(𝐻0|D) follows immediately from Bayes’ theorem. About 20 years ago, Cohen 

(1994) raised this issue in the context of Null Hypothesis Significance Testing (NHST) in one 

of the major psychology journals. The point was made that there could be a chance as low as 

60 percent that the statistically significant finding will represent a true association when 

𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) = 0.05 i.e. at a 5% significance level. Baril and Cannon (1995) replied that 

instead of demonstrating that 𝑃(𝐷|𝐻0) ≠  𝑃(𝐻0|D) with fabricated data to illustrate how 

different these probabilities can be, it would be more informative to estimate how large the 

gap between the conditional and reversed conditional probabilities is likely to be. In his reply 

Cohen (1995) made clear that his example was not intended to model NHST as used “in the 
                                                           
2 A more sophisticated approach would require the specification of a prior distribution and not only the prior 
probability.  
3 This is to say, the conjecture is that 𝑃(𝐻0|𝐷)  is higher than 0.5.  
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real world” but rather to demonstrate how wrong one can be when the logic of NHST is 

violated. In light of the claims in Maniadis et al. (2013), there is a need to revisit the results in 

Baril and Cannon (1995).  

The starting point in Baril and Cannon (1995) is that statistical power cannot be sufficiently 

good to detect all effect sizes. Assuming that the effect sizes follow a standard normal 

distribution centered at zero and that scientists’ only detect and consider effect sizes ± 0.2𝑑 as 

relevant (𝑑 is what is known as Cohen’s effect size, i.e., it is the difference between means 

divided by the standard deviation), approximately 16 percent could be considered as 

equivalent of 𝐻0  being true.4 Based on Rossi (1990), the average statistical power for 

moderate effect sizes (i.e. 𝑑 > 0.2) is appreciated to be 0.57. Finally, the conventional 

𝑃(𝑡𝑒𝑠𝑡 𝑤𝑟𝑜𝑛𝑔|𝐻0) = 0.05 is applied. Using Bayes’ theorem, we now have: 𝑃(𝐻0|𝐷) =
(0.05)∙(0.16)

(0.05)∙(0.16)+(0.57)∙(0.84) = 0.016, i.e. the PSP states that there is a 98.4 percent chance that the 

statistically significant finding will represent a true association. This means that the 

probability of 𝐻0 being true given a significant test is 0.016, which is not very different from 

0.05 which is, in turn, the probability of a significant test given that 𝐻0 is true. Clearly, 

0.016 ≠ 0.05, but still the conditional and reversed conditional probabilities are shown to be 

not very different once a different parameter space is adopted than in Maniadis et al. (2013). 

Although it is possible that estimates (e.g. statistical power) are different in economic 

experiments compared to psychological experiments, using estimates from a related field can 

still serve as a first informative approximation. Also note that even if we assume that the 

statistical power takes a considerable lower value of 0.20, the PSP equals 0.95 which means 

that there is a 95 percent chance that the statistically significant finding will represent a true 

association. More crucial to our results is that we assumed that scientists are willing to 

consider economic significance instead of only hunting statistical significance, which partly is 

a normative statement on how to apply classical statistics.   

Remember that Maniadis et al. (2013) assumed priors in the range of 0.45 < 𝑃(𝐻0) < 0.99 to 

calculate PSP, which is obviously far off from the neighborhood of 𝑃(𝐻0) ≈0.16, and they 

show that in the absence of other biases, such as research competition and research 

misconduct, the Classical framework still leads to an “excessive number of false positives” 

                                                           
4 The point that economists should consider economic significance together with statistical significance is raised 
by McCloskey (1985). In case absolute substantive significance is hard to corroborate, Cohen’s d statistics offers 
a relative measure that facilitates sample size planning and power analysis. 
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compared to what is stated in the significance level.5 The conclusion in Maniadis et al. (2013) 

that we should embrace the Bayesian framework seems exaggerated and is based on selective 

empirical support that only considers 0.45 < 𝑃(𝐻0) < 0.99 and excludes support in the 

neighborhood of 𝑃(𝐻0) ≈ 0.16 which is appreciated to be a more realistic estimate that would 

change their main result.  

At this point we have not even taken into account that the prior could be biased but instead we 

have treated it as a known which is in line with the simulation in Maniadis et al. (2013). But 

this should not go uncommented because therein lies the real rub. Knowing the unconditional 

probability facilitates assessment of the probability that a research hypothesis that is 

statistically significant is true but it is only feasible in the Bayesian framework. Note, 

however, that the context in medical diagnosis where PSP is often calculated is different from 

hypothesis testing in economics. In medicine, the aim is to find the conditional probability 

that an individual patient who is given a positive diagnosis actually has the disease and the 

unconditional probability, i.e., prevalence in the population, is considered attainable. For 

economic hypotheses, the unconditional probability 𝑃(𝐻0) is hardly ever known. Bayesian 

statistics cope with this problem assuming that the prior probability is a subjective belief that 

is subject to revisions.  

 

The assumption that the prior probability 𝑃(𝐻0) is a subjective belief, facilitates a move from 

the Classical to a Bayesian framework, even when the prior is unknown. What is worth 

emphasizing is that based on a single experiment and using prior beliefs we do not estimate 

the unbiased 𝑃(𝐻0|𝐷) in the Bayesian framework, i.e. both approaches can lead to erroneous 

conclusions6. Going back to the example of Baril and Cannon (1995), remember that the 

conditional probability was calculated to 𝑃(𝐻0|𝐷) = (0.05)∙(0.16)
(0.05)∙(0.16)+(0.57)∙(0.84) = 0.016 and it was 

assumed that the unconditional probability is known and equals 0.16. Let us instead assume 

that the unconditional probability is unknown and that the subjective beliefs are that the prior 

                                                           
5 The conclusion that the Classical statistics leads to an “excessive number of false positives” is reached under 
the definition that the benchmark probability of false positives is the probability that  𝐻0 is true when 𝐻0 is 
rejected. The significance level in Classical statistics on the other hand measures the probability to reject 𝐻0 
when  𝐻0 is true (i.e. error of the first kind). Hence the claim that Classical statistics leads to “excessive number 
of false positives” is another way to claim that there is a positive difference between the conditional and 
reversed conditional probabilities.  
6 Neyman-Pearson error probabilities have a long-run repeated sampling interpretation. E.g. probability of 
making type 1 error can only be controlled in repeated sampling, opposed to a single experiment.  
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corresponds to 𝑃(𝐻0) = 0.99. In this case, 𝑃(𝐻0|𝐷) = (0.05)∙(0.99)
(0.05)∙(0.99)+(0.57)∙(0.01) = 0.897. Hence, 

while 𝑃(𝐷|𝐻0) = 0.05 is close to the correct benchmark of 𝑃(𝐻0|𝐷) = 0.016, the conditional 

probability based on subjective beliefs is considerably higher, namely at 𝑃(𝐻0|𝐷) = 0.897. 

The example demonstrate that it is easy to come up with counterexamples to Maniadis et al.’s 

(2013) simulation and show that the Bayesian framework does not necessarily perform better 

than the Classical framework but might even perform worse in terms of estimating the  

𝑃(𝐻0|𝐷). In the example above the PSP calculation underestimates the probability that a 

statistically significant research finding is true.7  

 

The conceptual difference between the Classical and Bayesian framework based on prior 

beliefs of 𝑃(𝐻0) also deserves to be mentioned. In Classical statistics a probability is the long-

run relative frequency, while in the Bayesian framework a probability is the degree of beliefs. 

While posterior 𝑃(𝐻0|𝐷) undeniably has an appealing interpretation, it is only available 

through Bayes’ theorem which Fisher (1937) rejected with the motivation that it requires one 

to: “…regard mathematical probability not as an objective quantity measured by observable 

frequencies, but as measuring merely psychological tendencies, theorems respecting which 

are useless for scientific purposes” (p.6). Although Fisher’s position may be perceived as 

extreme, we mention it to place the difference between the Classical and Bayesian approach 

in a historical context.  

 

Conclusions 
Based on what is presented in Maniadis et al. (2013), the conclusion that only a Bayesian 

analysis provides “proper inference” seems exaggerated. The assumption that the 

unconditional probability 𝑃(𝐻0) is known8 implies that the Bayesian approach can only be 

better but never worse than the Classical approach in their simulation. Once we relax this 

assumption (i.e. allow for subjective beliefs) it is no longer trivial to decide whether the 

Classical or the Bayesian framework is better. This they combined with a selective empirical 

setup that also favors the Bayesian framework by excluding many instances where the bias in 

the Classical approach is small. This makes the simulation in Maniadis et al. (2013) great in 

                                                           
7 By incorporating subjective beliefs into the inference process, the risk of introducing errors or biases that 
would not otherwise be present is, of course, inevitable. On the other hand, the Bayesian approach is 
particularly useful when one has strong prior knowledge of a situation and wants to summarize the 
accumulated evidence. 
8 While Maniadis et al. (2013) make use of different values of 𝑃(𝐻0) to calculate the difference between 
conditional and reversed conditional probabilities, in each calculation it is assumed that 𝑃(𝐻0) is known 
(unbiased) which makes the Bayesian approach the benchmark and the Classical approach biased.  
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demonstrating the pitfalls of Classical framework, however, their conclusion about “proper 

inference” is questionable. Finally, also note that the simulation in Maniadis et al. (2013) 

focuses on the gap between conditional and reversed conditional probabilities but ignores all 

other arguments that could be perceived important in a comparison between the Classical and 

Bayesian framework.  
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