

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Pehnelt, Gernot; Vietze, Christoph

Working Paper Quo vadis European biofuel policy: The case of rapeseed biodiesel

Jena Economic Research Papers, No. 2013-015

Provided in Cooperation with: Max Planck Institute of Economics

Suggested Citation: Pehnelt, Gernot; Vietze, Christoph (2013) : Quo vadis European biofuel policy: The case of rapeseed biodiesel, Jena Economic Research Papers, No. 2013-015, Friedrich Schiller University Jena and Max Planck Institute of Economics, Jena

This Version is available at: https://hdl.handle.net/10419/85025

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

JENA ECONOMIC RESEARCH PAPERS

2013 – 015

Quo Vadis European Biofuel Policy: The Case of Rapeseed Biodiesel

by

Gernot Pehnelt Christoph Vietze

www.jenecon.de

ISSN 1864-7057

The JENA ECONOMIC RESEARCH PAPERS is a joint publication of the Friedrich Schiller University and the Max Planck Institute of Economics, Jena, Germany. For editorial correspondence please contact markus.pasche@uni-jena.de.

Impressum:

Friedrich Schiller University Jena Carl-Zeiss-Str. 3 D-07743 Jena www.uni-jena.de Max Planck Institute of Economics Kahlaische Str. 10 D-07745 Jena www.econ.mpg.de

© by the author.

Quo Vadis European Biofuel Policy: The Case of Rapeseed Biodiesel

By Gernot Pehnelt* and Christoph Vietze**

Abstract

The European Union's (EU) Renewable Energy Directive (RED) continues to be the focus of much debate over the validity of biofuel sustainability. The debate is driven in part by ongoing concerns of transparency and regional variations of emissions from feedstock cultivation and processing.

In a working paper, Pehnelt and Vietze (2012) undertook a general analysis of rapeseed biodiesel greenhouse gas (GHG) savings. In light of the recent effort to decentralize assessments to regional (i.e. Member State) authorities to assess the sustainability of biofuel feedstocks, we have done the same for three Member States, incorporating the comments and critique we received on our latest working paper (Pehnelt and Vietze 2012).

Using publicly available cultivation and production figures from Germany (the largest producer and consumer of rapeseed biodiesel), Poland and Romania, we analyse the greenhouse gas (GHG) emissions savings of rapeseed biodiesel which we then compare to the values of GHG savings identified in the RED.

Under average conditions and conservative assumptions on N2O emissions, German rapeseed biodiesel meets the GHG savings requirements of 35 percent in the RED. However, in years with unfavourable weather conditions and lower yields, German rapeseed biodiesel may fail to reach the 35 percent threshold even with efficient production technologies in the subsequent steps of the supply chain. Taking into account higher N2O emissions due to fertilizer input as suggested by some researchers, German rapeseed biodiesel clearly fails to fulfil the 35 percent criterion required by the RED. Meanwhile, in no instance Polish or Romanian rapeseed biodiesel meet the RED's 35% GHG savings threshold.

The assessment of the sustainability of rapeseed biodiesel heavily depends on the very production conditions and assumptions regarding the N2O field emissions. As a matter of fact, not every liter of rapeseed biodiesel produced in the EU is 'sustainable' in the sense of RED. Therefore, the use of standard values (e.g. default values) in order to categorize rapeseed biodiesel – or any other biofuel – as sustainable or not is not justifiable.

^{*} Corresponding author (gp@globecon.org). Gernot Pehnelt is director at the independent research institute GlobEcon and research partner at the Friedrich-Schiller-University of Jena.

Christoph Vietze is funder of the independent research institute EconEcolDev and Research Associate at the Friedrich-Schiller-University of Jena.

Jena Economic Research Papers 2013 - 015

With renewable energy strategies proliferating throughout the world, the validity of technical criteria has become increasingly critical to the success of these strategies – particularly the fiercely debated RED. The application of technical criteria remains inconsistent, and in the case of the RED, resulting in unreliable assessments of biofuel feedstocks and heated debates over the authority of these assessments.

- **Keywords**: Biofuel, Rapeseed, Biodiesel, RED, Renewable Energy Directive, Default Values, Typical Values, GHG-emissions
- JEL Code: F14, F18, O13, Q01, Q15, Q27, Q56, Q57

1. Introduction

In a recent working paper titled 'Uncertainties about the GHG Emissions Saving of Rapeseed Biodiesel', Pehnelt and Vietze (2012) show that the sustainability of rapeseed biodiesel in the interpretation of the Renewable Energy Directive (RED) depends heavily on production conditions. The study attracted substantial attention from the scientific community, as well as from the biofuels industry in Europe, and the world of academia. The authors received informed and well-constructed input from many of these actors, building on the approach of the paper. In this new, updated paper we have sought to utilise that peer input to produce a more in-depth and specific analysis, to complement the previous paper. We achieve this by following a more supply-chain specific approach, by using more current data and by adjusting some of the inventory data, though using the same methodological approach as in Pehnelt and Vietze (2012, 2013) which is in line with the methodology proposed by RED.

The calculations in Pehnelt and Vietze 2012 are based on average European values over a period of 15 years and do not distinguish between country specific conditions along the supply chain. Even using average parameters and rather slight parameter variations, the results show a striking range regarding the GHG emissions performance of rapeseed biodiesel and yield a high uncertainty about the actual GHG emissions savings of European rapeseed biodiesel. In most of the scenarios the GHG emissions savings of rapeseed biodiesel do not reach the 35% threshold required by the EU Directive for being considered as a sustainable biofuel.

As a consequence of useful comments on the mentioned working paper, in this study we calculate new scenarios taking into account current input / output data for Germany – the most important producer of rapeseed biodiesel in the EU – Poland and Romania. In further scenarios we address the controversial issue of N2O field emissions which is considered to be one of the critical factors for the assessment of agricultural production with respect to its GHG performance.

As expected, the finding of a high level of uncertainty about the sustainability of rapeseed biodiesel is confirmed by the new calculations. Rapeseed biodiesel produced under current conditions in the EU may reach the 35% threshold which is one of the sustainability criteria of the RED. However, not every single litre of rapeseed biodiesel produced within the EU can be referred to as 'sustainable' under the criteria detailed in RED. Our results suggest that even under efficient production conditions rapeseed biodiesel is rather unlikely to fulfil the advanced sustainability threshold of 50% GHG emissions reduction which will come into force in 2017/2018.

Finally, we briefly outline the consequences of our findings for the EU's future biofuel policy.

2. Methodology and Data

This paper is based on Pehnelt and Vietze (2012), but considers more current input / output data on plantation and Transport and the helpful responses from scientists and peer groups to the previous paper. This fruitful scientific discussion has contributed to further strengthening the methodologies and conclusions we are able to reach. Apart from these updated data and assumptions, we rely on the same production process as discussed in Pehnelt and Vietze (2012) and use the inventory data on milling, refinery and esterification specified there. Background data for the whole biodiesel production chain are according to the background data proposed by the Renewable Energy Directive and used by the EU's JRC (see table A-7). In this paper we calculate further scenarios (with IFEU 2011 model) based on different – and more volatile – input / output values as suggested by scientific studies (e.g. Crutzen et al. 2007) as well as the rapeseed industry (e.g. Brünning 2012).

2.1 Plantation yields

In contrast to Pehnelt and Vietze (2012), we include the most current German input / output data in the inventory of the plantation stage, as Germany is the biggest European producer of rapeseed biodiesel. The yield from rapeseed cultivation is the German average 2006-2010 according to FAOSTAT (2012) of 3.82 t/ha (fresh matter content). In two different scenarios we distinguish between high yield and low yield years. Hence, we calculate scenarios with a yield of 3.44 t/ha in 2007 (five year low) and 4.29 t/ha (five year high). As we take accurate calculated values for N2O field emissions into account, we include the rapeseed straw production in our inventory. According to Biograce (2012) the value of (above-ground) straw production yields with 150% of produced rapeseed (dry matter content). While 87% of the produced straw per kg rape seed yield (dry matter content) in our estimations on N2O field emissions. Moreover, the moisture content of rapeseed is (conservatively) calculated with 9% (Schmidt 2007, Dansk Landbrug 2004).

To obtain these higher yields compared to the 1991-2005 average in Pehnelt and Vietze (2012), higher inputs of fertilizer and pesticides are required. Hence, the typical high-yield type of rapeseed used in Germany needs more (especially N)-fertilizer to gain the expected yields. Regarding fertilizers, we use the average (with respect to soil quality) fertilizing recommendations by various sources (e.g. Raiffeisen 2012, LNW 2012, and Nmin-NRW 2012). Hence, 190 Kg N/ha N-fertilizer is applied, but 27 kg N/ha can be saved in the soil for the crop after rapeseed in crop rotation (Schmidt 2007, Jacobsen et al. 2002). Therefore, 27 kg N/ha is credited to rapeseed and we calculate with 163 kg N/ha. Additionally, 85 kg P2O5 per hectare and 200 kg K2O per hectare should be used to receive the above mentioned rapeseed yield.¹ These values regarding the yield / fertilizer ratio are confirmed by experimental field studies

¹ It is agricultural practice to apply lime (CaO) of around 2000 kg per hectare per year to reduce the soil acidity (Thamsiriroj and Murphy 2010) which increase the GHG emissions of plantation. In this paper, we do not consider on this scenario.

Jena Economic Research Papers 2013 - 015

conducted in Germany (see Rathke et al. 2005, 2006, Rathke and Diepenbrock 2006). Furthermore, we obtain a pesticide consumption of 2.35 kg a.i. per hectare, the average value suggested by de Vries et al. (2010) and Halleux et al. (2008). The input values for fossil fuel consumption of traction (112.1 l/ha/year) and the drying of rapeseed (60.83 kWh/t rapeseed) are the same as in Pehnelt and Vietze (2012a).

In further scenarios we rely on a typical agricultural system in Poland², though assuming comparably efficient production conditions on the subsequent production steps. Due to the local cultivation methods, varieties and climate conditions rapeseed plantations gain lower yields than in Germany where the highest yields per hectare are obtained. The average yield per hectare in Poland in the period observed (2006-2010) is about 2.77 t/ha fresh matter content (FAOSTAT 2012). We use the fertilizer values suggested by Firrisa (2011). According to this study, a fertilizer input of 183 kg N, 157 kg P2O5 and 132 kg K2O per hectare is considered. As in all scenarios we use conservative values and, therefore, credit 27 kg N/ha to rapeseed which can be saved in the soil for the succession crop in a crop rotation system. Hence, we calculate with 156 kg N/ha. Following de Vries et al. (2010) and Halleux et al. (2008), we rely on the same pesticide usage (2.35 kg ai/ha) as in the other scenarios.

In addition, we calculate some scenarios for Romania which rely on a typical extensive agricultural system resulting in comparatively lower yields. On the other hand, such plantings require far lower fertilizer input and diesel consumption for traction. Moreover, due to local climate conditions the seeds do not have to be dried after harvesting. Thus, no drying is considered in the study of Romanian rapeseed biodiesel. According to FAOSTAT (2012) Romanian rapeseed plantations yield a five year average (2006-2011) of 1.59 t/ha (fresh matter). As input / output data on Romanian rapeseed plantations are not readily available, we use the values of two studies by Baguero et al. (2011, 2013) regarding extensive Spanish rapeseed planting. These studies rely on similar climatic and technical conditions and should be comparable to Romanian conditions. According to Baquero et al. (2011, 2013), a fertilizer input of 115 kg N, 125.9 kg P2O5 and 55.5 kg K2O per hectare is considered. As in all scenarios we use conservative values and, therefore, credit 27 kg N/ha to rapeseed which can be saved in the soil for the succession crop in a crop rotation system. Hence, we calculate with 88 kg N/ha. Furthermore, a lower (normed) seed input of 6.13 kg seeds per hectare and a lower fossil fuel consumption of 70.0 l/ha for traction is applied. Following de Vries et al. (2010) and Halleux et al. (2008), we rely on the same pesticide usage (2.35 kg ai / ha) as in the other scenarios.

2.2 Fertilizer use and N2O field emissions

Intensive agricultural cultivation produces most of the GHG emissions in the biodiesel production chain. Besides the CO2eq emissions arising from land management, the production of pesticides and for sowing, harvesting and transport; especially the production

² In general, the Eastern European rapeseed system is characterized by a more extensive cultivation (including lower fertilizer input) resulting in a lower crop output per hectare.

and application of N-fertilizers could result in such high emissions of greenhouse gases which are estimated to be worse than for conventional diesel (Reijnders and Huijbregts 2008).

The production of N-fertilizers in the Haber-Bosch process has increased by over 800% in the past 50 years (Haberl et al. 2012, Foley et al. 2011). Although, the GHG emissions from the fossil energy requirement of N2 formation and N2 reduction increased somewhat less because of the higher process efficiency (Haberl et al. 2012), more than 1% of the global primary energy is consumed in this process (Schulze et al. 2010).

However, through the implementation of new production technologies a further reduction of energy input and resulting CO2 emissions in the fertilizer production is possible (Jenssen and Kongshaug 2003). Therefore, significant potential for GHG emissions reduction in the whole process may be achieved by using the best available technology in fertilizer production.

Direct and indirect GHG-emissions due to N2O field effluents from N-fertilizers are very important when it comes to the GHG performance of agriculture. With a 298 fold global warming potential³, N2O has a much higher potential greenhouse effect than CO2 (default value in RED (EU 2009)). Human activities are supposed to be responsible for about 30% of the global N2O emissions. According to Wuebbles (2009), the largest human related N2O source (67%) comes from agricultural practices and activities, including the production of nitrogen-fixing crops and the use of synthetic and organic fertilizers (application of livestock manure to plantation).

The size of the biogenic N2O emissions is subject to considerable debate (Reijnders and Huijbregts 2008). These emissions occur irrespective of whether the applied form of nitrogen is organic (manure, harvest residue biological fixation) or inorganic N (artificial fertilizer) (Haberl et al. 2012). According to Davidson (2009), approximately 2% to 3% of the applied N-fertilizers and N in crop residues (straw) will end up as N2O that escapes into the atmosphere. The N2O emission factor (expressed as mass of N: N2O_N) is the percentage of N as fertilizer or biologically fixed N emitted as N2O includes direct N2O emissions from N and additions from mineral fertilisers, organic amendments and crop residues and N mineralised from mineral soil as a result of loss of soil carbon following land use change⁴, as well as indirect N2O emissions from atmospheric deposits of N on soils and water surfaces volatilised as NH3 or NOx and N2O emissions from N leaching and runoff as nitrate (IPCC 2011). This overall factor is estimated to be between 1.18 % (Bouwman et al. 2002) and 5% of applied N-fertilizers and N in crop residues (Crutzen et al. 2007, 2008, Smith 2012), with the IPCC's (2006) estimates (1.3%) ranging at the lower bound.

Mosier et al. (1998) estimate that direct N2O emissions from agricultural fields planted with European rapeseed and Brazilian soybeans may be about 1.25% of added fixed nitrogen. They argue that fixed nitrogen lost from agricultural fields is also subject to additionally

³ Some sources suggest a global warming potential of N2O that is more than 300 times higher than the global warming potential of CO2.

⁴ Land use chance is not considered here.

Jena Economic Research Papers 2013 - 015

microbial conversion to N2O (estimated at 2.5% of fixed N lost). In sum the resulting N2O emission factor is estimated with 3.75% of fixed (fertiliser plus crop residues) nitrogen. Lower global mean nitrogen field emissions are estimated by Bouwman et al. (2002) with 0.9 % N2O and 0.7% NOx emissions of applied N summing up to 1.18% N2O_N (N-mass in N2O) emissions per applied N in fertilizers and crop residues.

According to Reay et al. (2012) the direct and indirect emission estimates by the IPCC (2006) do not cover subsequent recycling of the added nitrogen and resulting N2O emissions. Instead these are covered by additional IPCC emission factors such as those for crop residues, manure and sewage nitrogen. More current estimates by Crutzen et al. (2007, 2008) and Smith et al. (2012) taking a different approach ('top-down') suggest that the combined direct and indirect emission are rather 3 to 5% of the fixed nitrogen added. However, there is some uncertainty since local conditions may significantly affect local conversion rates (Mosier et al. 1998, Reijnders and Huijbregts 2008).⁵

Hence, in most of our calculations, we use the same methodology and standard values as the IPCC (2006); calculated with the Biograce (2012) model.

First, we use the emission factor for direct N2O field emissions (EF1) of 1.00 per cent N2O emissions (calculated as N-mass in N2O: N2O_N) per kg N additions from N-fertilisers (synthetic or organic) and N-content of crop residues (IPCC 2006). Thus, EF1 refer to the fraction of all added N that is lost directly as N2O (estimated as N2O_N) per kg N applied as N-fertilizer and crop residues (and N mineralised from mineral soil as a result of loss of soil carbon due to LUC).

Second, the emission factor for NH3 and NOx volatilization (EF4) of 1.00 per cent N2O_N per kg N deposited from NH3 or NOx (10% of N from synthetic, 20% from organic N-fertiliser) is applied. More precisely, this emission factor accounts for the N2O_N that is atmospherically deposited from volatized NH3. The fraction of synthetic fertiliser N that volatilises as NH3 and NOx is expected as 10% N-mass volatilised as NH3 per kg of N applied as synthetic N-fertilizer and 20% per kg organic fertilizer (IPCC 2006).⁶ Hence, an additional fraction of 0.1% of the applied synthetic N-fertilizer (0.2% of organic N-fertilizer) effluents as N2O (calculated as N-mass content).

Third, we use an emission factor (EF6) for nitrate leaching and runoff of 0.75 per cent N2O_N per kg N leached and runoff as nitrate (30% of N from N-fertilizers and crop residues). This emission factor measures the N2O_N emissions from leached nitrate. The fraction of all added N from (synthetic and organic) fertilizers, N-mass in crop residues and soil mineralization that is lost through leaching and runoff as nitrate is expected as 30% N-mass leached as nitrate per kg of applied / mineralised N (IPCC 2006). Thus, an additional fraction

⁵ A measure to reduce N2O and NOx field emissions could be the use of enhanced-efficiency fertilizers (i.e. nitrification inhibitors and polymer-coated fertilizers) (Akiyama et. al. 2010).

⁶ This denote that using organic fertilizers like needs no prime energy input in fertilizer production, but results in higher (indirect) N2O field emissions.

of 0.225% of all added N-mass (fertilizer and N in crop residues) effluents as N2O (calculated as N-mass content) will be included in our estimation. In sum, the N2O emissions regarding the applied N in fertilizers and crop residues are estimated with 1.3% N2O_N (N-mass in N2O) per added N in the baseline scenario.

Additionally, as suggested by Crutzen et al. (2007, 2008) and Smith (2012) we estimate some scenarios taking alternative - and maybe more realistic - N2O field emissions into account. Moreover, some researchers of IPCC (2011) assume that the default values do not account for the observed atmospheric increase of N2O, so that the ranges of default emission factors are logarithmic: e.g., EF1 = 1% (range 0.3-3.0%). Following these suggestions, we calculate further scenarios with higher N2O-field emission factors. In some scenarios we use the upper bound of emission factors as suggested by IPCC (2006). Hence, 3% as EF for direct N2O field emissions, 5% as EF for NH3 volatilization, and 2.5% EF for nitrate leaching and runoff are applied; adding up to 4.1% N2O N emissions per kg applied N-mass in fertilizers and crop residues. In further scenarios the halve of the IPCC (2006) maximum emission factors is used: 1.5% EF for direct N2O field emissions, 2.5% EF for NH3&NOx volatilization, and 1.25% EF for nitrate leaching and runoff. The outcome of these values is an overall emission factor of 2.0% per kg added N-mass. Depending on the very conditions in the field, lower N2O field emissions may occur in case of ideal weather conditions and perfect soils (Brentrup and Pallière 2008) with adjusted field management (e.g. ploughing just after fertilizing). Hence, we calculate additional scenarios with 80% of the IPCC (2006) standard emission factors: 0.8% EF for direct N2O field emissions, 0.8% EF for NH3&NOx volatilization, and 0.6% EF for nitrate leaching and runoff; adding up to an overall emission factor of 1.0% per kg added Nmass.

Again, it should be noted that in each scenario 27 kg N-fertilizer of the applied input is credited in the plantation step, as some N-mass in the soil and crop residues can be used for the following crops in a rotation scheme. The 27 kg N-credit correspond to a GHG emissions credit of 3.14 g CO2eq / MJ FAME (not allocated) at the plantation step. As a result, our values estimated regarding the N-fertilizer production and N2O field emissions represents the lower band of most scientific assumptions. It should be noted that perennial woody coppice species (e.g. oil palm) have more favourable climate impacts (Crutzen et al. 2007), as these crops have a lesser N demand. Thamsiriroj and Murphy (2009) show that oilseed rape requires 147.4% of the fertilizer input (per energy output) to grow respective to oil palm. This is due to the fact that oilseed rape needs annual fertilizer not only for the fruit but also to emerge roots and trunks, whereas perennial crop species need fertilizers solely to build fruits and new leaves.

2.3 Milling and Refinery

Different to Pehnelt and Vietze (2012), we do not consider hexane emissions in the milling stage, as the successional CO2eg emissions are rather minor. Moreover, hexane emissions in the production step are prohibited by German environmental law. However, such emissions

may still occur. Whereas a minor share comes from storage tanks, a considerable share of the hexane input goes with the rapeseed meal to final processing and effluent during this process (Schmidt 2007).

At the refinery stage we do not change inventory data compared to Pehnelt and Vietze (2012), as the total GHG emissions of the refinery step assumed in Pehnelt and Vietze (2012) have been already below the standard value suggested by the JRC (EU 2009). The deodorization step has only been part of the description of production process in the above mentioned paper, but is not part of there inventory data because it is not necessary for the production of biodiesel.⁷

2.4 Transport

In our more supply-chain specific calculations we have also adjusted the inventory of the transportation stage. Thus, it is assumed that the rapeseed oil refined in Germany, Poland, or Romania respectively is transported to final consumption for (co-generated) electricity production or further processing to FAME / biodiesel within Europe (Schmidt 2007). Following our conservative approach, in case of German rapeseed oil we calculate shorter transport distances as most of the German rapeseed oil is intended to be refined and used in Germany. However, since crude oil has to be transported from the field / mill to the subsequent production facilities and – not least – the final product (FAME) has to be transported to the very fuel station, it is rather unlikely that most of the transport takes place by ship which has been suggested in comments by the industry (e.g. Brankatschk 2012, Brünning 2012) on Pehnelt and Vietze (2012).

Hence, we assume transportation in a diesel truck averaging about 350 km.⁸ The resulting CO2eq emissions (0.87 g CO2eq per MJ RefRSO) are below the standard values (1.0 g CO2eq per MJ RefRSO) suggested by the EU (2009).

In our scenarios of Polish rapeseed plantation system we calculate a diesel truck transport distance of 300 km from the geographic centre of Poland to the Port Gdansk (Falk 2012), followed by a 1,500 km distant ship transport (Fuel oil Tanker 50kt) to the Port of Rotterdam (PortWorld Distances 2012).

In the case of the Romanian scenarios a diesel truck transport distance of 615 km from the geographic centre of Romania to the Port of Constanţa (Falk 2012), followed by a 6,150 km distant ship transport (Fuel oil Tanker 50 kt) to the Port of Rotterdam (PortWorld Distances 2012) is applied. This is plausible since esterification plants are usually situated in big ports. Moreover, it should be noted that we include no other transport emissions in our LCA (e.g. transport from oil mill to refinery) except for collecting the rapeseed from plantations.

⁷ Note: The whole discussion is rather of academic nature since these adjustments have a very small impact on the overall result since the refinery step accounts for roughly one per cent of the total GHG emissions of rapeseed biodiesel.

⁸ This equals the distance between the geographic center of Germany to the Port of Hamburg (Falk 2012), where huge production facilities for FAME are located.

3. Results

9

In order to provide the highest possible transparency we calculate and publish the GHG emissions of every step of the rapeseed biodiesel production chain and provide a list of all inputs used in our calculations and corresponding data sources. For all of our scenarios, we calculate the GHG emission saving potentials of refined rapeseed oil as an input in power plants (electricity production) as well as the GHG emissions saving potentials of rapeseed oil based transportation biodiesel (FAME) according to RED and by using common esterification technologies. This is why we present three GHG emission saving values regarding the respective fossil fuel comparator. We calculate two values for the GHG emissions saving potential.

First, we compare the GHG emissions of rapeseed biodiesel to the emission value of fossil diesel as stated by the EU-Directive (EU 2009). Second, we calculate values for the GHG saving potential of rapeseed biodiesel to current LCA of fossil fuel emissions, as applied by Silva et al. (2006) and CONCAWE et al. (2006).

In sum we calculate 28 scenarios regarding Germany, Poland and Romania distinguishing between different N2O field emissions and esterification methodologies respectively.

In scenario 1 (Table 1), we use the average yield in Germany in the period 2006-2010. As in all scenarios, the energy content of rapeseed cake and glycerine is considered as a by-product.⁹ For esterification, the EU's standard value of the accordant GHG emissions is applied in scenario 1. The results of scenario 1 indicate that GHG emissions savings of German rapeseed biodiesel are around the EU's 35% threshold. More precisely, the GHG emissions of the production of rape biodiesel (FAME) is estimated with 55.12 g CO2eq per MJ FAME resulting in an GHG emission saving value of 34.2% compared with the RED (EU 2009) fossil fuel comparator and in an saving value of 36.9% according current comparator of fossil fuel emissions (Silva et al. 2006) and CONCAWE et al. 2006).

Note: This allocation method is rather in favor of rapeseed biodiesel. Other application methodologies (e.g. economic value) may create less favorable results.

Table 1: Scenario 1 – German average, Esterification EU (2009)

Plantation	value	unit	source			
output						
yield rape seed (RS) (tresh matter)	3823.5	kg RS / ha / year	German-average 2006-2010: FAOSTAT 2012 Schmidt 2007, Dansk Landhrug 2004			
invisiture content in rape seed	9.0		ratio of straw production (150% of dry matter RS yield): Biograce 2012: ratio of straw removed from			
straw removed from field	678.4	kg straw / ha / year	field (13% of produced straw): Schmidt 2007			
input		la secie (b.s. (Debuids 0007. Develo Landhusenideissian 0005a. Norreschert d. 0000			
N-fertiliser	9.0	kg seeus / na / year kg N / ha / vear	Raiffeisen 2012 (average); N-credit for crop rotation: Schmidt 2007. Jacobsen et al. 2002			
P2O5-fertiliser	85.0	kg P2O5 / ha / year	Raiffeisen 2012 (average)			
K2O-fertiliser	200.0	kg K2O / ha / year	Raiffeisen 2012 (average)			
CaU-tertiliser Pesticides	0 00	kg CaO / ha / year	de Vries et al. 2010. Halleux et al. 2008			
	2.30	ing ai / ina / yedi	Schmidt 2007, values average of Nemecek et al. 2003, Dalgaard et al. 2001, 2006; no. field work			
Diesel (all activities and transport)	112.1	I / ha / year	processes: Nemecek et al. 2003, Dalgaard et al. 2001, 2006, Dansk Landbrugsrådgivning 2005a,			
electricity (storage, drying of RS)	60.83	kWh / t BS	Jensen et al. 2005 Schmidt 2007, Dalgaard et al. 2001, Nemecek et al. 2003			
Emission factors N2O-field emissions	00.00		Commer 2007, Suiguard of al. 2007, Nomodor of al. 2000			
		per cent N2O_N / kg N additions	IPCC 2006, fraction of all added N that is lost directly as N2O per kn N applied as N-fertilizer and cron			
EF for direct N2O field emissions	1.00	from N-fertilisers and crop	residues			
		per cent N2O_N / kg N deposited	IPCC 2006, fraction of ourthatic facilities N that valatilities as NII IC and NOV is surged of a 4001 N			
EF for NH3&NOx volatilization	1.00	as NH3 or NOx (10% of N from	mass volatilised as NH3&Nox per kg of N applied as synthetic N-fertilizer (IPCC 2006)			
		per cent N2O_N / kg N leached				
EF for Nitrate leaching and runoff	0.75	and runoff as nitrate (30% of N	IPCC 2006, fraction of all added N that is lost through leaching and runoff as nitrate is expected as			
in third indoning and fution	0.75	trom N-fertilizers and crop	30% N-mass leached as nitrate per kg of N applied as N-fertilizer and crop residues (IPCC 2006)			
	L	100100001				
GHG emissions after plantation	813.49	g CO2eq per kg RS	Note: 190 Kg N/ha N-fertilizer is applied, but 27 kg N/ha can be saved for the crop after rapeseed.			
GHG emissions of plantation (alloc.)	1227.82	g CO2eq per kg RefRSO	Inererore, the 27 kg N/ha is credited to rapeseed. The value of input-seed is normed to convential rapeseed. Diesel consumption including miscellaneaus transport, e.g. inspection of field, with 6.1.1			
GHG emissions of plantation (alloc.)	34.11	a CO2ea per MJ RefRSO	diesel/ha (Dalgaard 2007).			
	U	3 1 100 100 100100				
Oil Mill	value	unit	source			
output						
produced Rape Seed Oil (RSO)	418.9	t RSO / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, efficiency: Oil World 2005			
nape Seed Cake (HSC) (by-product) Residual oil content BSC	563.8	t HSU / 1000 t HS / year per cent of RSC	Aarrius United 2005a, Schmidt 2007, Korning 2006, Kronborg 2006, Hansen 2006 Møller et al. 2000			
input	<u> </u>					
processed Rape Seed (RS) per year	1000	t RS per year	reference value			
RS losses (drying, washing, transport)	1.7	per cent of RS	Oil World 2005 Schwidt 2007, Kranberg 2006, Acthur United 2005-			
Energy consumption	498	kg / 1000 t HS / year	ocimilar 2007, Kronborg 2006, Aarnus UNITeo 2005a			
Evel oil (light)	01010	1/ 1000 t PS / voor	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy efficiency of boiler: Energistyrelsen			
	21210	i/ iouu i no / year	1995, Aarhus United 2004, 2005b; energy content fuel oil: JEC 2011			
Natural gas	0	kWh / 1000 t RS / year	scrimici 2007, Kronborg 2006, Aarnus United 2005b; energy consumption of boiler considered as fuel oil			
Electricity (external)	38236	kWh / 1000 t BS / vear	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; excess electricity of boiler: Energistyrelsen			
	00200	internet internet year	1995, Aarhus United 2004, 2005b			
Electricity mix			Schmidt 2007, Aarhus United 2004, 2005b			
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b			
Electricity mix Transport average distance plantation/oil mill	EU 100	km	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products	EU 100 0.622	km	Sonmiat 2007, Aarhus United 2004, 2005b Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill	EU 100 0.622 1387.90	km g CO2eg per ka RSO	Sonmiat 2007, Aarhus United 2004, 2005b Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill CHG amissions of Oil Mill CHG amissions of Oil Mill	EU 100 0.622 1387.90	km g CO2eq per kg RSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.)	EU 100 0.622 1387.90 183.66	km g CO2eq per kg RSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.)	EU 100 <i>0.622</i> 1387.90 183.66 5.10	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Pofingen/	EU 100 0.622 1387.90 183.66 5.10	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output	EU 100 0.622 1387.90 183.66 5.10 value	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO	EU 100 0.622 1387.90 183.66 5.10 value 983.3	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input	EU 100 0.622 1387.90 183.66 5.10 value 983.3	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Elufore earth	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 reference value Februidt 2007, Hansen 2006			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO Fuller's earth Energy consumption	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO Fuller's earth Energy consumption Natural gas	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 0	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006;			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year l / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, energy			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year l / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil. JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil. JEC 2011			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input Energy consumption Natural gas Fuel oil Electricity (external)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler. Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year KWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; Schmidt 2007, Aarhus United 2004, 2005b			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery	EU 100 0.622 1387.90 183.66 5.10 value 983.3 0 0 7100 24880 EU 1439.65	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery (BHG amission after Refinery (BHG amission after Refinery	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 29.22	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural agai is used to produce steam in the power central. There is excess electricity from congeneration.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emission after Refinery GHG emissions of Refinery (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 28.18	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy context of fuel oil. JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy context of fuel oil. JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year i / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b, energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year KWh / 1000 t RSO / year i / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year i / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input produced RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (to Hamburg) Transport (overland) average distance mil/refinery/port	EU 100 0.622 1387.90 183.66 5.10 value 983.3 0 0 7100 24880 EU 1439.65 28.18 0.78 value 350	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (to Hamburg) Transport (overland) average distance mill/refinery/port vehicle used transporting RefPO	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 350 Truck for Diesel	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year KWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorla (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) CHG emissions of Refinery (alloc.) Transport (verland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity for boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorla (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery GHG emissions of Refinery (alloc.) Transport (to Hamburg) Transport (overland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 7.100 24880 EU 1439.65 7.100 1439.65 1459.65	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (to Hamburg) Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.13 1439.65 28.14 1439.65 28.14 1439.65 28.14 1439.65 28.14 1439.65 28.14 1439.65 28.14 1439.65 1440.65 1459.65	km g CO2eq per kg RsO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gras) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions after Transport GHG emissions of Transport (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 1449.65 1447.69	km g CO2eq per kg RsO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery (alloc.) GHG emissions after Transport GHG emissions of Transport (alloc.). GHG emissions of Transport (alloc.).	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value Signification of the selection of the selectio	km g CO2eq per kg RsO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorla (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (to Hamburg) ransport (overland) average distance mill/refinery/port vehicle used transportin GHG emissions of Transport (alloc.) GHG emissions of Transport (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 28.18 0.78 1439.65 1449.65 1439.65 1439.65 1439.65 1449.65 1449.65 1447.09 1447.00 1447.00 1447.00 1447.00	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy consumption of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorla (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (to Hamburg) Transport (verland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport (alloc.) GHG emissions of Transport (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 350 Truck for Diesel Diesel 1471.09 31.44 0.87 1471.09 40.86	km g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorla (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007 Schmidt 2007			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO input produced RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (verland) average distance mil/refinery/port vehicle used transport(alloc.) GHG emissions of Transport (alloc.)	EU 100 0.622 1387.90 183.66 5.10 value 983.3 00 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 1471.09 31.44 0.87 1471.09 1471.09 1471.09	km g CO2eq per kg RsO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year KWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.			
Electricity mix Transport average distance plantation/oil mill Allocation factor after by-products GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) GHG emissions of Oil Mill (alloc.) Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery (alloc.) GHG emissions of Refinery (alloc.) Transport (verland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport (alloc.) Total GHG emissions RefPO GHG emissions savings compared to fossil comparator (electricity	EU 100 0.622 1387.90 183.66 5.10 value 983.3 1000 8.9 0 7100 24880 EU 1439.65 28.18 0.78 value 1439.65 28.18 0.78 value 1439.65 1471.09 31.44 0.87 1471.09 355.1%	km g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007 Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Niederdorfa (geographic center Germany) - Port Hamburg, Germany: Falk 2012 Schmidt 2007 Schmidt 2007			

Esterification EU	value	unit	source				
output							
produced FAME	988.25	t FAME / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Glycerine	104.36	t Glyc. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
input							
processed RefRSO	1000.00	t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Methanol	151.19	t Meth. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Phosphoric acid (H3PO4)	2.35	t H3PO4 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Hydrochloric acid (HCI)	27.67	t HCI / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Sodium carbonate (Na2CO3)	3.46	t Na2CO3 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Sodium Hydroxide (NaOH)	9.30	t NaOH / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Energy consumption							
Natural gas	1141314	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Electricity (external)	62050	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Electricity mix	EU		IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Allocation factor after by-products	0.957						
CO2 emissions after Esterification	2050.43	g CO2eq per kg FAME					
CO2 emissions of Esterification (ac.)	626.51	g CO2eq per kg FAME					
CO2 emissions of Esterification (ac.)	16.84	g CO2eq per MJ FAME					
Total CO2 emissions EAME	2050.43	g CO2eq per kg FAME					
Total CO2 emissions TAME	55.12	g CO2eq per MJ FAME					
GHG emission savings compared to fossil comparator I (fuel diesel)	34.2%	83.8 g CO2eq/MJ RED 2009/28/EC					
GHG emission savings compared to fossil comparator II (fuel diesel)	36.9%	87.3 g CO2eq/MJ Silva et al. 2006; CONCAWE et al. 2006					

Table 1: Scenario 1 (continued)

Using more current production values for the transesterification stage (WTT Appendix 1 (v3) according to Pehnelt and Vietze 2013) the GHG emission savings of rapeseed diesel turn more in favour: In scenario 2 (table A-1) the GHG emission savings of rape diesel lie between 38.1% and 40.6% respectively. In this case German rapeseed biodiesel easily reaches the EU 35% threshold, but – however – still fails to reach the 50 % threshold which will enter into force in 2017.

More interestingly, we evaluate the variance of the German rapeseed yields. Using the five year high (4286.7 kg RS/ha/year in 2009) and low (3436.6 kg RS/ha/year in 2007) of German rapeseed plantation yields we gain rather mixed results. The GHG emission savings values ranging between 30.7 % (scenario 5, low plantation yields, esterification step and fossil fuel comparator according RED EU (2009)) and 44.0% (scenario 4, high plantation yields, WTT (Pehnelt and Vietze 2013) esterification step, and fossil fuel comparator according Silva et al. (2006) and CONCAWE et al. (2006)).

Scenario No		GHG emi	ssions (g CO	GHG emissions s	avings rape FAME			
	Plantation	Oil mill	Refinery	Transport	Esterification	total FAME	% reference value I (RED)	% reference value II
Scenario 1: Germany average yield, EU-ester	31.95	4.78	0.73	0.82	16.84	55.12	34.2%	36.9%
Scenario 2: Germany average yield, WTT-ester	32.75	4.90	0.75	0.84	12.65	51.89	38.1%	40.6%
Scenario 3: Germany high yield, EU-ester	29.10	4.73	0.73	0.82	16.84	52.22	37.7%	40.2%
Scenario 4: Germany high yield, WTT-ester	29.82	4.85	0.75	0.84	12.65	48.92	41.6%	44.0%
Scenario 5: Germany low yield, EU-ester	34.88	4.83	0.73	0.82	16.84	58.11	30.7%	33.4%
Scenario 6: Germany low yield, WTT-ester	35.76	4.95	0.75	0.84	12.65	54.95	34.4%	37.1%

able 2: GHG	emissions of	German	rapeseed	FAME
-------------	--------------	--------	----------	------

Jena Economic Research Papers 2013 - 015

Our estimations show a volatility of 43.3% between best and worse conditions and the resulting plantation yields and emission savings. However, even in the best case the 50% threshold entering into force in 2017 is not reached. See table 2 and figure 1 and 2 for a comparison of German rapeseed diesel.

Figure 2: GHG emissions of German rapeseed FAME

In further scenarios, we assess the GHG emissions from Polish rapeseed. Using the five-year average of Polish rapeseed FAME production using assumptions on the GHG emissions of the esterification process according to the EU (2009) (scenario 7, table A-2), we obtain an emission saving value of 22.5% and 25.6% respectively, depending on the fossil fuel estimator. When relying on WTT esterification technology (scenario 8, table A-2) somewhat better results can be reached (26.1% fossil comparator I; and 29.1% fossil comparator II). In none of the scenarios for Poland the threshold of 35% is reached by rapeseed biodiesel.

Simulating a supply-chain starting with Romanian rapeseed plantation (table A- 3), emission saving values fall far below the 35% threshold. Even when calculating with modern esterification technologies (scenario 9) the GHG emissions saving values are 23.2% (comparator I) and 26.3% (comparator II). Using the esterification values according to the EU (2009) as done in scenario 10, the GHG emission saving decline to 19.7% compared to the fossil fuel comparator according to RED (EU 2009). When comparing with fossil fuel emissions as suggested by Silva et al. (2006) and CONCAWE et al. (2006) the results are slightly better but still way below the 35% threshold.

Figure 3 gives a comparison of the average European results regarding GHG emissions per MJ produced rapeseed. The resulting emissions saving values depending on the fossil fuel comparator are displayed in figure 4.

Figure 3: GHG emissions of rapeseed FAME – comparison Germany, Poland and Romania (5-year average)

Figure 4: GHG emissions savings of rapeseed FAME – comparison Germany, Poland and Romania (5-year average) and fossil fuel comparator

Figure 4 continued

In a further step we investigate the effect of different N2O field emissions. As further explained in our methodology section, N2O field emissions estimates according to IPCC (2006) currently in use are widely criticised by other research papers. Following these criticisms and taking the wide range of possible variations into account we gain a tremendous range of results regarding the GHG emissions savings. Hence, we calculate four different scenarios for rapeseed cultivation in Germany, Poland and Romania respectively. Relying on very good soil and whether conditions in connection with perfect field management we derive scenarios with 80% of the IPCC (2006) N2O field emissions estimates. Beside our average scenarios (strictly according to IPCC 2006), we calculate scenarios with the maximum (high N2O EF) and with semi-maximum N2O field emissions (medium N2O EF) as suggested by IPCC (2006). The last scenario is closer to current research findings on N2O field emissions (e.g. Crutzen et al. 2007, 2008; Smith 2012) and the comments we received.

Our calculations (see table A-4) show a broad range of results. Precisely, regarding Germany our results on GHG emission savings are ranging from a clear fulfilment of the RED threshold (low N2O EF) to even slightly negative values (high N2O EF). The results are ranging from 44.12% GHG emissions saving if considering 80% of the standard N2O emissions factor suggested by IPCC (2006 (WTT-esterification and fossil fuel comparator II) to -5.6% GHG emission saving if considering the maximum possible N2O field emissions according IPCC (2006) (EU-esterification, fossil fuel comparator I). See figure 5 for further details.

Figure 5: GHG emissions savings of German rapeseed FAME – comparison of N2O field emissions (5-year average) and fossil fuel comparator

In the case of Polish and Romanian rapeseed the results also show broad variability. However, none of our scenarios result in GHG emissions saving above the 35% threshold. Instead, some results indicate the possibility of negative GHG emissions savings meaning that under very unfavourable conditions (e.g. very high N2O field emissions) rapeseed biofuels may cause even more GHG emissions than fossil diesel, and depart significantly from current official GHG emission estimates claimed by the European Commission.

For Poland (see table A-5 and figure 6), we calculate a best case GHG emissions saving value of 33.5% by assuming 80% of the standard N2O emissions factor proposed by the IPCC (2006), esterification values according WTT (Pehnelt and Vietze 2013) and a fossil fuel comparator as suggested by Silva et al. (2006) and CONCAWE et al. (2006). The worst case scenario is calculated with the maximum N2O field emissions as suggested by IPCC (2006),

and EU (2009) esterification technology. By comparing this value with emission from fossil fuel according RED, we obtain a GHG emissions saving value of -25.8%.

As displayed in table A-6 and figure 7, in case of Romanian rapeseed biodiesel our best case scenario result in an GHG emissions saving value of 30.8% while in the worst case we obtain a value of -29.1%.

In sum, all scenarios of rapeseed biodiesel production from both Poland and Romania – even when relying on rather favourable assumptions regarding the subsequent production steps – indicate a rather poor GHG emissions performance of rapeseed biodiesel. It is hardly imaginable that improvements in the production process will lead to a fulfilment of the advanced RED requirements in the near future.

A Note on Indirect Land-Use Change

During the last couple of years, the issue of indirect land-use change (ILUC) has attracted much attention and has become one of the most prominent sources of uncertainty for biofuel production and regulation.

Theoretically, the phenomenon of indirect land-use change cannot be dismissed. Any activity in the context of tradable goods that is associated with land-use may create indirect effects on

Jena Economic Research Papers 2013 - 015

land-use elsewhere. Biofuel production is prone to this phenomenon. By trend, the ecobalance of biofuels is affected negatively if ILUC is taken into account. Though, estimating the concrete mode of action, scale and scope of certain activities with respect to indirect effects on land-use on a global scale is very ambitious and cannot be done with a sufficient degree of certainty on the basis of existing methods. Using such 'guestimates' as a basis for the regulation of markets or single products comes along with a high risk – both with respect to the correct policies and incentives and within the framework of (international) trade and competition law. Because of these uncertainties regarding the reasons and effects of indirect land use change it is not possible to calculate realistic scenarios. Hence, just as in Pehnelt and Vietze (2012, 2013) we do not consider this problem explicitly in this paper.

However, since ILUC is one of the most prominent issues in the whole biofuel discussion, it cannot be foreclosed that ILUC-factors will make it into the regulation scheme. This creates an additional risk for European biofuel producers.

4. Conclusion and Policy Implications

The assessment of the sustainability of rapeseed biodiesel heavily depends on the very production conditions and assumptions regarding the N2O field emissions. As a matter of fact, not every liter of rapeseed biodiesel produced in the EU is 'sustainable' in the sense of RED. Therefore, the use of standard values (e.g. default values) in order to categorize rapeseed biodiesel – or any other biofuel – as sustainable or not is not justifiable.¹⁰

Our results can be interpreted as a claim for a comprehensive analysis and proof of the GHG emissions of every single production step. Therefore, a clear cut certification using the actual inventory data of the supply chain seems to be the only way to sufficiently assess the sustainability of certain biofuel fractions.

Given the results presented above, it is inevitable to use the most efficient sources for primary products, including cost efficient imports of raw material or intermediate products with a superior GHG emissions performance. Biodiesel using base materials originating from rather unproductive plantations (e.g. low yields per hectare) are very unlikely to fulfill even moderate sustainability criteria (e.g. 35% threshold) – not to mention the advanced requirements that will come into force in 2017/2018.

Existing potentials for efficiency improvements on every single step of the supply chain should be consequently utilized. The most significant potentials for such efficiency improvements with respect to the GHG emissions performance of rapeseed biodiesel are in the production and application of fertilizers, the yields and the esterification process. The overall GHG emissions

¹⁰ Note: The introduction of general 'penalizing factors' (e.g. 1.4) to calculate default values may create incentives to prove the GHG emissions of the whole production chain but cannot be justified from a scientific point of view.

of the refinery process and transportation are already rather negligible and the potentials for further emissions reductions very modest.

From a regulatory perspective, incentives to enhance the efficiency and GHG performance of biodiesel production are appropriate whereas fixed quota (e.g. limiting the share of energy from first generation biofuels to 5 percent of the final energy consumption as suggested in a recent proposal by the EC) may not contribute to an enhancement of the overall efficiency of biofuel production.

There are significant annual and field specific fluctuations of the output in the field and the subsequent GHG emissions of the according fraction of biodiesel. As a matter of fact, a physical separation of single fractions is not practicable. Therefore, biofuel-specific emissions trading system with (intertemporally) tradable certificates seem to be a pragmatic policy option to – on the one hand – assure the sustainability of biofuel production and – on the other hand – to provide a certain extent of investment security and reliability to biofuel producers. Biofuel producers may be committed to prove that their output of the last three years on average fulfills the sustainability criteria. Within such a regulatory framework biofuel producers may compensate the gap between the GHG emissions savings of their output and the GHG emissions saving threshold in years with inferior efficiency (e.g. low yields per hectare) with a better than required GHG emissions performance of their output in subsequent years (e.g. higher yields per hectare).

So far, the EU's biofuel policy is not stringent and reliable especially given the upcoming negotiations regarding an amendment of RED. This causes a high uncertainty for all stakeholders. Consequently, the EU's biofuel policy has been heavily criticized by all sorts of stakeholders. Currently, there is no investment security for producers. That is why further growth of the European market for first generation biofuels is rather questionable under the current conditions, regulations and uncertainties.

The current ILUC-discussion and uncertainties about N2O emissions factors are the most important risk factors for producers and regulators.¹¹ The existing scientific basis for concrete ILUC-factors is not sufficient. Probably, field specific N2O analyses are necessary, but maybe not practicable and expensive.

¹¹ Note: The current food vs. energy discussion creates another political uncertainty because the issue is highly emotional and already has a remarkable impact on the public perception of biofuel production. However, without analyzing this issue explicitly in this paper, the whole argumentation is somehow exaggerated and partially misleading.

References

- Aarhus United (2004), Aarhus United Energirapport (English: Aarhus United Energy report), Aarhus: Aarhus United.
- Aarhus United (2005a), Aarhus United Miljørapport (English: Aarhus United Environmental report), Aarhus: Aarhus United.
- Aarhus United (2005b), Aarhus United Energirapport (English: Aarhus United Energy report), Aarhus: Aarhus United.
- Akiyama, H., X. Yan, K. YAGI (2010), Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: metaanalysis, *Global Change Biology* 16: 1837–1846.
- Baquero, G., B. Esteban, J.-R. Riba, A. Rius, and R. Puig (2011), An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture, *Biomass and Bioenergy* 35: 3687-3697.
- Baquero, G., B. Esteban, R. Puig, J.-R. Riba, and A. Rius (2013), Environmental life cycle assessment of rapeseed straight vegetable oil as self-supply agricultural biofuel, *Renewable Energy* 50: 142-149.
- BioGrace (2012), Harmonised calculations of biofuel greenhouse gas emissions in Europe, BioGrace_GHG_calculations_-_version_4b_-_Public.xls Utrecht, The Netherlands et al.: BioGrace.
- Bouwman, A.F., L.J.M. Boumans, and N.H. Batjes (2002), Modeling global annual N2O and NO emissions from fertilized fields, *Global Biogeochemical Cycles* 16(4): 28/1–28/9.
- Brentrup, F., and C. Pallière (2008), *GHG emissions and energy efficiency in European nitrogen fertilizer production and use*, Proceedings 639, York, UK: International Fertilizer Society.
- Brünning, F. (2012), Personal communication with Frank Brühning, spokesman of Verband der Deutschen Biokraftstoffindustrie e.V., Berlin.
- Brankatschk, G. (2012), Personal communication with Gerhard Brankatschk, consultant of OVID Verband der ölsaatenverarbeitenden Industrie in Deutschland e. V., Berlin.
- CONCAWE, EUCAR, and JRC (2006), Well-to-wheels analysis of future automotive fuels and powertrains in the European context, Well-to-tank Report Version 2b, Brussels: European Commission.
- Crutzen, P.J., A.R. Mosier, K.A. Smith, and W. Winiwarter (2007), N2O release from agrobiofuel production negates global warming reduction by replacing fossil fuels, *Atmospheric Chemistry and Physics Discussions* 7: 11191-11205.
- Crutzen, P.J., A.R. Mosier, K.A. Smith, and W. Winiwarter (2008), N2O release from agrobiofuel production negates global warming reduction by replacing fossil fuels, *Atmospheric Chemistry and Physics* 8(2): 389-395.
- Dalgaard, T. (2007), Personal communication with R. Dalgaard, co-author of the LCAfood database, Department of Development and Planning, Aalborg University and Danish

Institute of Agricultural Science. Denmark, In: Schmidt, J.H. (2007), Life assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil, Diss. Department of Development and Planning, Aalborg University.

- Dalgaard, T., N. Halberg, and J.R. Porter (2001), A model for fossil energy use in Danish agriculture used to compare organic and conventional farming, *Agriculture, Ecosystems and Environment* 87: 51-65.
- Dalgaard, R., N. Halberg, I. S. Kristensen, and I. Larsen (2006), Modelling representative and coherent farm types based on accountancy data for use in environmental assessments, *Agriculture, Ecosystems and Environment* 117: 223-237.
- Dansk Landbrug (2004), Kornafregningsaftalen (English: Agreement on payment of cereals), Copenhagen: Dansk Landbrug.
- Dansk Landbrugsrådgivning (2005a), Dyrkningsvejledning, Vinterraps (English: Cultivation guideline, winter rapeseed), Aarhus: Dansk Landbrugsrådgivning.
- Dansk Landbrugsrådgivning (2005b), Dyrkningsvejledning, Vårraps (English: Cultivation guideline, spring rapeseed), Aarhus: Dansk Landbrugsrådgivning.
- Davidson, E.A. (2009), The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, *Nature Geoscience* 2: 659-662.
- de Vries, S.C., G.W.J. van de Ven, M.K. van Ittersum, and K.E. Giller (2010), Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques, *Biomass and Bioenergy* 34: 588-601.
- Energistyrelsen (1995), Teknologidata for el- og varmeproduktionsanlæg (English: Data on technology of electricity- and heat cogeneration), Copenhagen: Energistyrelsen.
- European Union (EU) (2009), Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Official Journal of the European Union L140, pp. 16-61.
- Falk (2012), Routenplaner (English: route planner), http://www.falk.de (Accessed October 2012).
- FAOSTAT (2012), Production Crops, Rapeseed, http://faostat3.fao.org/home/index. html#DOWNLOAD (Accessed October 2012).
- Firrisa, M.T. (2011), Energy Efficiency for Rapeseed Biofuel Production in Different Agro-Ecological Systems, Master thesis, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands.
- Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M.Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, and D.P.M. Zaks (2011), Solutions for a cultivated planet, *Nature* 478: 337-342.
- GM, LBST, BP, ExxonMobil, Shell, and TotalFinaElf (2002), Well-to-Wheel Analysis of Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems – A European Study, Ottobrunn, Germany: Ludwig-Bölkow-Systemtechnik GmbH.

- Haberl, H., C. Körner, C. Lauk, U. Schmid-Staiger, V. Smetacek, E.D. Schulze, R. Thauer, P. Weiland, and K. Wilson (2012), The availability and sustainability of biomass as an energy source, In: Leopoldina (Ed.), *Bioenergy: Chances and Limits*, Halle (Saale): German National Academy of Sciences, 9-42.
- Halleux, H., S. Lassaux, R. Renzoni, and A. Germain (2008), Comparative Life Cycle Assessment of Two Biofuels, Ethanol from Sugar Beet and Rapeseed Methyl Ester, *International Journal of Life Cycle Assessment*13 (3): 184-190.
- Hansen, A.K. (2006), Personal communication with A.K. Hansen, engineer, AarhusKarlshamn Denmark, Aarhus, In: Schmidt, J.H. (2007), Life assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil, Diss. Department of Development and Planning, Aalborg University.
- Institut für Energie- und Umweltforschung Heidelberg GmbH (IFEU) (2011), Plant Oil GHG Calculator (rapeseed, sunflower, soy), 11 Plant_oil GHG Calculator IFEU_version1.xls, Heidelberg, Germany: IFEU.
- IPCC (2006), IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Chapter 11, N2O emissions from managed soils, and CO2 emissions from lime and urea application, Hayama, Japan: Institute for Global Environmental Strategies.
- IPCC (2011), IPCC Expert Meeting on HWP, Wetlands and Soil N₂O, Meeting Report of the IPCC Expert Meeting on HWP, Wetlands and Soil N₂O, Geneva, Switzerland, 19-21 October, 2010, Hayama, Japan: Institute for Global Environmental Strategies.
- Jacobsen, B.H., C.G. Sørensen, and J.F. Hansen (2002), Håndtering af husdyrgødning en teknisk-økonomisk systemanalyse (English: Handling of animal manure in Denmark a technical and economical system analysis), Rapport nr. 138, Copenhagen: Fødevareøkonomisk Institut.
- Jensen, E.B., K. Jørgensen, C. Haldrup, K.A. Nielsen, B. Christensen, M. Wegge, T. Serup, F. Udesen, and J.J. Høy (2005), Budgetkalkuler 2006, for de enkelte produktionsgrene, (English: Budget estimates 2006, for single production lines), Aarhus: Dansk Landbrugsrådgivning.
- Jenssen, T.K., and G. Kongshaug (2003), *Energy consumption and greenhouse gas emissions in fertilizer production*, Proceedings 509, York, UK: International Fertilizer Society.
- JEC (2011), Database, http://ies.jrc.ec.europa.eu/jec-research-collaboration/download sjec.html (Accessed May 2011).
- Korning, J. (2006), Personal communication with J. Korning, quality manager, AarhusKarlshamn Denmark, Aarhus, In: Schmidt, J.H. (2007), Life assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil, Diss. Department of Development and Planning, Aalborg University.
- Kronborg, L. (2006), Personal Communication with L. Kronborg, quality engineer, AarhusKarlshamn Denmark, Aarhus, In: Schmidt, J.H. (2007), Life assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil, Diss. Department of Development and Planning, Aalborg University.

- Landwirtschaftskammer Nordrhein-Westfalen (LNW) (2012), Stickstoffdüngung im Raps (English: Nitrogen fertilizer in rapeseed), http://www.landwirtschaftskammer.de/ landwirtschaft/ackerbau/raps/n-duengung-pdf.pdf (Accessed October 2012).
- Lehuger, S., B. Gabrielle, P. Laville, M. Lamboni, B. Loubet, and P. Cellier (2011), Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe, *Agricultural and Forest Meteorology* 151: 1654-1671.
- Møller, J., R. Thøgersen, A.M. Kjeldsen, M.R. Weisberg, K. Soegaard, T. Hvelplund, and C.F. Børsting (2000), Fodermiddeltabel - Sammen-sætning og foderværdi af fodermidler til kvæg (English: Feeding component table – Composition and feeding value of feeding components for cattle), Rapport nr 91, Foulum, Denmark: Landsudvalget for Kvæg.
- Mosier, A, C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. van Cleemput (1998), Closing the global N2O budget; nitrous oxide emissions through the agricultural nitrogen cycle, *Nutrient Cycles in Agroecosystems* 52: 225-248.
- Nemecek, T., A. Heil, O. Huguenin, S. Meier, S. Erzinger, S. Blaser, D. Dux, and A. Zimmermann (2003), Life Cycle Inventories of Agricultural Production Systems, Data v1.01, Final report ecoinvent 2000 No. 15, Dübendorf, Switzerland: FAL Reckenholz, FAT Tänikon, Swiss Centre for Life Cycle Inventories.
- Nmin-NRW (2012), Düngeempfehlung (English: Fertilizer recommendations), http://www.nmin.de/nminnrw/DuengeStartAction.do?duengeStart=0 (Accessed October 2012).
- Oil World (2005), Oil World Annual 2005, www.oilworld.biz (accessed Dezember 2005).
- Pehnelt, G., and C. Vietze (2012), Uncertainties about the GHG Emissions Saving of Rapeseed Biodiesel, *Jena Economic Research Paper* 2012/39: 1-34.
- Pehnelt, G., and C. Vietze (2013), Recalculating GHG emissions saving of palm oil biodiesel, *Environment, Development and Sustainability* 15(2): 429-479.
- PortWorld Distances (2012), Distance Calculation, http://www.portworld.com/map (Accessed October 2012).
- Raiffeisen (2012), Ackermanager Raps/Ölfrüchte Düngung (English: plantation manager rapeseed/oilcrops fertilizers), http://www.raiffeisen.com/pflanzen/ackermanager/ raps_duengung_html (Accessed October 2012).
- Rathke, G.-W., and W. Diepenbrock (2006), Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop, *European Journal of Agronomy* 24: 35-44.
- Rathke, G.-W., O. Christen, and W. Diepenbrock (2005), Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations, *Field Crops Research* 94: 103-113.
- Rathke, G.-W., T. Behrens, and W. Diepenbrock (2006), Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review, *Agriculture, Ecosystems and Environment* 117, 80-108.

- Reay, D.S., E.A. Davidson, K.A. Smith, P. Smith, J.M. Melillo, F. Dentener, and P.J. Crutzen (2012), Global agriculture and nitrous oxide emissions, *Nature Climate Change* 2: 410-416.
- Reijnders, L., and M.A.J. Huijbregts (2008), Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans, *Journal of Cleaner Production* 16: 1943-1948.
- Silva, C.M., G.A. Goncalves, T.L. Farias, and J.M.C. Mendes-Lopes (2006), A tank-to-wheel analysis tool for energy and emissions studies in road vehicles, *Science of the Total Environment* 367: 441-447.
- Schmidt, J.H. (2007), Life assessment of rapeseed oil and palm oil. Ph.D. thesis, Part 3: Life cycle inventory of rapeseed oil and palm oil, Diss. Department of Development and Planning, Aalborg University, Aalborg, Denmark.
- Schulze, E.D., P. Ciais, S. Luyssaert, M. Schrumpf, I.A. Janssens, B. Thiruchittampalam, J. Theloke, M. Saurat, S. Bringezu, J. Lelieveld, A. Lohila, C. Rebmann, M. Jung, D. Bastviken, G. Abril, G. Grassi, A. Leip, A. Freibauer, W. Kutsch, A. Don, J. Nieschulze, A. Börner, J.H. Gash, and A.J. Dolman (2010), The European carbon balance, Part 4: integration of carbon and other trace-gas fluxes, *Global Change Biology* 16(5): 1451-1469.
- Smith, K.A., A.R. Mosier, P.J. Crutzen, and W. Winiwarter (2012), The role of N2O derived from crop based biofuels, and from agriculture in general, in Earth's climate, *Philosophical Transactions of the Royal Society B: Biological Sciences* 367: 1169-1174.
- Thamsiriroj, T., and J.D. Murphy (2009), Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?, *Applied Energy* 86: 595-604.
- Thamsiriroj, T., and J.D. Murphy (2010), Can Rape Seed Biodiesel Meet the European Union Sustainability Criteria for Biofuels?, *Energy Fuels* 24: 1720-1730.

Wuebbles, D.J. (2009), Nitrous Oxide: No Laughing Matter, Science 326(5949): 56-57.

Appendix

Table A-1: Scenario 2 – German average, Esterification WTT

Plantation	value	unit	source			
output						
yield rape seed (RS) (fresh matter)	3823.5	kg RS / ha / year	German-average 2006-2010: FAOSTAT 2012 Sebmidt 2007, Dapek Landbrug 2004			
moisture content in tape seed	9.0	per cent of H3	ratio of straw production (150% of dry matter RS yield): Biograce 2012; ratio of straw removed from			
straw removed from field	678.4	kg straw / ha / year	field (13% of produced straw): Schmidt 2007			
seed - rape seed (normed)	9.0	ka seeds / ha / year	Schmidt 2007. Dansk Landbrugsrådgivning 2005a. Nemecek et al. 2003			
N-fertiliser	163.0	kg N / ha / year	Raiffeisen 2012 (average); N-credit for crop rotation: Schmidt 2007, Jacobsen et al. 2002			
P2O5-fertiliser	85.0	kg P2O5 / ha / year	Raiffeisen 2012 (average)			
CaQ-fertiliser	200.0	kg K2O / ha / year	Haineisen 2012 (average)			
Pesticides	2.35	kg ai / ha / year	de Vries et al. 2010, Halleux et al. 2008			
Discol (all activities and terrors at)	110.1	1/h=/=	Schmidt 2007, values average of Nemecek et al. 2003, Dalgaard et al. 2001, 2006; no. field work			
Diesei (all activities and transport)	112.1	1 / na / year	processes: Nemecek et al. 2003, Dalgaard et al. 2001, 2006, Dansk Landbrugsradgivning 2005a, Jensen et al. 2005			
electricity (storage, drying of RS)	60.83	kWh / t RS	Schmidt 2007, Dalgaard et al. 2001, Nemecek et al. 2003			
Emission factors N2O-field emissions						
EF for direct N2O field emissions	1.00	from N-fertilisers and crop residues	IPCC 2006, fraction of all added N that is lost directly as N2O per kg N applied as N-fertilizer and crop residues			
EF for NH3&NOx volatilization	1.00	per cent N2O_N / kg N deposited as NH3 or NOx (10% of N from synthetic N-fertiliser)	IPCC 2006, fraction of synthetic fertiliser N that volatilises as NH3 and NOx is expected as 10% N- mass volatilised as NH3&Nox per kg of N applied as synthetic N-fertilizer (IPCC 2006)			
EF for Nitrate leaching and runoff	0.75	per cent N2O_N / kg N leached and runoff as nitrate (30% of N from N-fertilizers and crop	IPCC 2006, fraction of all added N that is lost through leaching and runoff as nitrate is expected as 30% N-mass leached as nitrate per kg of N applied as N-fertilizer and crop residues (IPCC 2006)			
GHG emissions after plantation	813.49	g CO2eq per kg RS	Note: 190 Kg N/ha N-fertilizer is applied, but 27 kg N/ha can be saved for the crop after rapeseed.			
GHG emissions of plantation (alloc.)	1227.82	g CO2eq per kg RefRSO	rapeseed. Diesel consumption including miscellaneaus transport, e.g. inspection of field, with 6.1 l			
GHG emissions of plantation (alloc.)	34.11	g CO2eq per MJ RefRSO	diesel/ha (Dalgaard 2007).			
Oil Mill	value	unit	source			
output						
produced Rape Seed Oil (RSO)	418.9	t RSO / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, efficiency: Oil World 2005			
Residual oil content BSC	563.8 A	Der cent of RSC	Aarrius United, 2005a, Schmidt 2007, Korning 2006, Kronborg 2006, Hansen 2006 Møller et al. 2000			
input / hexan-emissions	4					
processed Rape Seed (RS) per year	1000	t RS per year	reference value			
RS losses (drying, washing, transport)	1.7	per cent of RS	Oil World 2005			
n-Hexane	498	kg / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005a			
Evol oil (light)	21210	1/ 1000 t PS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy efficiency of boiler: Energistyrelsen			
Natural gas	0	kWh / 1000 t RS / year	1995, Aarhus United 2004, 2005b; energy content fuel oil: JEC 2011 Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy consumption of boiler considered as			
			Schmidt 2007, Kronborg 2006, Aarhus United 2005b; excess electricity of boiler: Energistyrelsen			
Electricity (external)	38236	kWh / 1000 t RS / year	1995, Aarhus United 2004, 2005b			
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b			
average distance plantation/oil mill	100	km	Schmidt 2007			
Allocation factor after by-products	0.622					
GHG emissions after Oil Mill	1387.00	a CO2ea per ka BSO				
	1307.30	g oozeq per kg 1150	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is			
GHG emissions of Oil Mill (alloc.)	183.66	g CO2eq per kg RefRSO	considered as non-used external electricity from grid.			
GHG emissions of Oil Mill (alloc.)	5.10	g CO2eq per MJ RefRSO				
Refinery	value	unit	source			
output		1 D (D00 (1000) D00 (
produced RSO	983.3	t RetRSO / 1000 t RSO / year	Schmidt 2007, Hansen 2006			
processed RSO	1000	t RSO / year	reference value			
Fuller's earth	8.9	t / 1000 t RSO / year	Schmidt 2007, Hansen 2006			
Energy consumption	0	kWh / 1000 t RSO / year	Schmidt 2007. Hansen 2006: energy consumption of boiler considered as fuel oil			
Fuel oil	7100	1/ 1000 + BSO /	Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004,			
	/100	1/ 1000 LHSO / year	2005b; energy content of fuel oil: JEC 2011			
Electricity (external)	24880	kWh / 1000 t RSO / year	2005b			
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b			
GHG emission after Refinerv	1439.65	g CO2ea per ka RefRSO				
GHG emissions of Petinery (alloc)	20 10	a CO2ea per ka BefBSO	Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural			
	20.10		which is considered (substracted) as non-used external electricity from grid.			
and emissions of Refinery (alloc.)	0.78	g COzeq per MJ RetHSO				
Transport (to Hamburg)	value	unit	source			
Iransport (overland)	950	km	Dictance Niederdorla (geographic center Cormanu) - Det Hamburg, Cormonus Falls 2012			
vehicle used transporting RefPO	350 Truck for Diesel	n(11	Schmidt 2007			
used fuel for vehicle	Diesel		Schmidt 2007			
GHG emissions after Transport	1/71 00	a CO2ea per ka PofPEO				
	1471.09	y COZEY per ky HEIHSO				
GHG emissions of Transport (alloc.)	31.44	g CO2eq per kg RefRSO				
GHG emissions of Transport (alloc.)	0.87	g CO2eq per MJ RefRSO				
			-			
Total GHG emissions RefPO	1471.09 40.86	g CO2eq per kg RetRSO g CO2eq per MJ RefRSO				
GHG emission savings compared to fossil comparator (electricity production)	55.1%	91 gCO2eq/MJ RED 2009/28/EC				

Esterification WTT	value	unit	source
output			
produced FAME	964.35	t FAME / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Glycerine	101.26	t Glyc. / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
input			
processed RefRSO	1000.00	t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Methanol	106.36	t Meth. / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Phosphoric acid (H3PO4)	1.79	t H3PO4 / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Hydrochloric acid (HCI)	19.73	t HCI / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Sodium carbonate (Na2CO3)	2.44	t Na2CO3 / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Sodium Hydroxide (NaOH)	6.64	t NaOH / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Energy consumption			
Natural gas	825102	kWh / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Electricity (external)	71748	kWh / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Electricity mix	EU		Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Allocation factor after by-products	0.957		
CO2 emissions after Esterification	1930.29	g CO2eq per kg FAME	
CO2 emissions of Esterification (ac.)	470.74	g CO2eq per kg FAME	
CO2 emissions of Esterification (ac.)	12.65	g CO2eq per MJ FAME	
Total CO2 omissions EAME	1930.29	g CO2eq per kg FAME	
Total CO2 emissions PAME	51.89	g CO2eq per MJ FAME	
GHG emission savings compared to	38.1%	83.8 g CO2eq/MJ	
fossil comparator I (fuel diesel)	50.1 /6	RED 2009/28/EC	
GHG emission savings compared to fossil comparator II (fuel diesel)	40.6%	87.3 g CO2eq/MJ Silva et al. 2006; CONCAWE et al. 2006	

Table A-1: Scenario 2 (continued)

Table A-2: Scenario 7 and 8 – Polish average, Esterification EU (2009) and WTT

value	unit	source			
2767.0	kg RS / ha / year	Polish-average 2006-2010: FAOSTAT 2012			
9.0	per cent of RS	Schmidt 2007, Dansk Landbrug 2004			
491.0	kg straw / ha / year	ratio of straw production (150% of dry matter RS yield): Biograce 2012; ratio of straw removi field (13% of produced straw): Schmidt 2007			
9.0	kg seeds / ha / year	Schmidt 2007, Dansk Landbrugsrådgivning 2005a, Nemecek et al. 2003			
156.0	kg N / ha / year	Firrisa 2011 (average); N-credit for crop rotation: Schmidt 2007, Jacobsen et al. 2002			
157.0	kg P2O5 / ha / year	Firrisa 2011 (average); standardization: Schmidt 2007			
132.0	kg K2O / ha / year	Firrisa 2011 (average); standardization: Schmidt 2007			
0	kg CaO / ha / year				
2.35	kg ai / ha / year	de Vries et al. 2010, Halleux et al. 2008			
112.1	l / ha / year	Schmidt 2007, values average of Nemecek et al. 2003, Dalgaard et al. 2001, 2006; no. field work processes: Nemecek et al. 2003, Dalgaard et al. 2001, 2006, Dansk Landbrugsrådgivning 2005a, Jensen et al. 2005			
60.83	kWh/t RS	Schmidt 2007, Dalgaard et al. 2001, Nemecek et al. 2003			
1.00	per cent N2O_N / kg N additions from N-fertilisers and crop residues	IPCC 2006, fraction of all added N that is lost directly as N2O per kg N applied as N-fertilizer a residues			
1.00	per cent N2O_N / kg N deposited as NH3 or NOx (10% of N from synthetic N-fertiliser)	IPCC 2006, fraction of synthetic fertiliser N that volatilises as NH3 and NOx is expected as 10% mass volatilised as NH3&Nox per kg of N applied as synthetic N-fertilizer (IPCC 2006)			
0.75	per cent N2O_N / kg N leached and runoff as nitrate (30% of N from N-fertilizers and crop residues)	IPCC 2006, fraction of all added N that is lost through leaching and runoff as nitrate is expected as 30% N-mass leached as nitrate per kg of N applied as N-fertilizer and crop residues (IPCC 2006)			
1051.00	a COltan and In BC				
1051.08	g CO2eq per kg RS	Note: 183 Kg N/ha N-tertilizer is applied, but 27 kg N/ha can be saved for the crop after rapeseed.			
1586.42	g CO2eq per kg RefRSO	rapeseed. Diesel consumption including miscellaneaus transport, e.g. inspection of field, with 6.1 l			
44.07	g CO2eq per MJ RefRSO	diesel/ha (Dalgaard 2007).			
	Value 2767.0 9.0 491.0 9.0 156.0 157.0 132.0 0 2.35 112.1 60.83 1.00 1.00 1.00 1.00 1.00 1.586.42 1586.42 44.07	Value Unit 2767.0 kg RS / ha / year 9.0 per cent of RS 491.0 kg straw / ha / year 9.0 kg straw / ha / year 9.0 kg straw / ha / year 9.0 kg seeds / ha / year 9.0 kg seeds / ha / year 156.0 kg N / ha / year 157.0 kg P205 / ha / year 132.0 kg K20 / ha / year 0 kg CaO / ha / year 132.0 kg K20 / ha / year 112.1 1 / ha / year 60.83 kWh / t RS per cent N20_N / kg N additions 1.00 as NH3 or NOx. (10% of N from synthetic N-fertiliser) per cent N20_N / kg N leached and runoff as nitrate (30% of N from Synthetic N-fertilizers and crop residues) 1051.08 g CO2eq per kg RS 1586.42 g CO2eq per kg RefRSO 44.07 g CO2eq per MJ RefRSO			

	value		001//00
	Value	unin	Source
output			
produced Rape Seed Oil (RSO)	418.9	t RSO / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, efficiency: Oil World 2005
Rape Seed Cake (RSC) (by-product)	563.8	t RSC / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, Korning 2006, Kronborg 2006, Hansen 2006
Residual oil content RSC	4	per cent of RSC	Møller et al. 2000
input			
processed Rape Seed (RS) per year	1000	t RS per year	reference value
RS losses (drying, washing, transport)	1.7	per cent of RS	Oil World 2005
n-Hexane	498	kg / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005a
Energy consumption			
Fuel oil (light)	21210	I / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content fuel oil: JEC 2011
Natural gas	0	kWh / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy consumption of boiler considered as fuel oil
Electricity (external)	38236	kWh / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b
Transport			
average distance plantation/oil mill	100	km	Schmidt 2007
Allocation factor after by-products	0.622		
GHG emissions after Oil Mill	1746.51	g CO2eq per kg RSO	
GHG emissions of Oil Mill	189.75	g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.
GHG emissions of Oil Mill	5.27	g CO2eq per MJ RefRSO	

Table A-2: Scenario 7 (continued)

Refinery	value	unit	source				
produced RSO	983.3	t RefRSO / 1000 t RSO / year	Schmidt 2007, Hansen 2006				
input							
processed RSO Fuller's earth	1000	t RSO / year t / 1000 t RSO / year	reterence value Schmidt 2007. Hansen 2006				
Energy consumption							
Natural gas	7100	kWh / 1000 t RSO / year	Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004,				
Fueron	7100	1/ 1000 t HSO / year	2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hanson 2006: access electricity of boiler: Energistyrelson 1995, Aarbus United 2004				
Electricity (external)	24880	kWh / 1000 t RSO / year	2005b				
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b				
GHG emission after Refinery	1804.35	g CO2eq per kg RefRSO	Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural				
GHG emissions of Refinery	28.18	g CO2eq per kg RefRSO	gas) is used to produce steam in the power central. There is excess electricity from cogeneratio which is considered (substracted) as non-used external electricity from grid.				
GHG emissions of Refinery	0.78	g CO2eq per MJ RefRSO	which is considered (substracted) as non-used external electricity from grid.				
Transport (to Botterdam)	value	unit	SOURCE				
Transport (overland)	value	um	Jource				
average distance mill/refinery/port	300 Truck for Diesel	km	Distance Ozorków (geographic center of Poland) - Port Gdansk, Poland: Falk 2012 Schmidt 2007				
used fuel for vehicle	Diesel		Schmidt 2007				
Transport (ship)	1500	km	Distance Port Gdansk, Poland - Port Botterdam, The Natherlands: PortWorld Distances 2012				
vehicle used transporting RefPO	Tanker 50kt	MI	Schmidt 2007				
used fuel for vehicle	HFO		Schmidt 2007				
GHG emissions after Transport	1847.35	g CO2eq per kg RefRSO					
GHG emissions of Transport	43.01	g CO2eq per kg RefRSO					
GHG emissions of Transport	1.19	g CO2eq per MJ RefRSO					
	1847.35	a CO2ea per ka RefRSO					
I otal GHG emissions RefPO	51.32	g CO2eq per MJ RefRSO					
GHG emission savings compared to	42.69/	91 gCO2eg/MJ					
production)	43.0%	RED 2009/28/EC					
Esterification EU	value	unit	source				
output	099.25	+ EAME / 1000 + BofBSO / year	IEEL 2011 (according to ELL Directive 2000/28/EC (ELL 2000))				
Glycerine	104.36	t Glyc. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
input	1000.00	t BofBSO / year	IEEU 2011 (according to EU Directive 2000/09/EC (EU 2000))				
Methanol	151.19	t Meth. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Phosphoric acid (H3PO4)	2.35	t H3PO4 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Sodium carbonate (Na2CO3)	3.46	t Na2CO3 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Sodium Hydroxide (NaOH)	9.30	t NaOH / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Natural gas	1141314	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Electricity (external)	62050 FU	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009)) IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))				
Allocation factor after by-products	0.957						
CO2 emissions after Esterification	2414.62	g CO2eq per kg FAME					
CO2 emissions of Esterification	626.51	g CO2eq per kg FAME					
CO2 emissions of Esterification	16.84	g CO2eq per MJ FAME					
	0414.60	a CO2ea per ka EAME					
Total CO2 emissions FAME	64.91	g CO2eq per MJ FAME					
GHG emission savings compared to	22.5%	83.8 g CO2eq/MJ					
GHG emission savings compared to		87.3 a CO2ea/MI					
fossil comparator II (fuel diesel)	25.6%	Silva et al. 2006; CONCAWE et al. 2006					
Esterification WTT	value	unit	source				
produced FAME	964.35	t FAME / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Glycerine	101.26	t Glyc. / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
processed RefRSO	1000.00	t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Methanol	106.36	t Meth. / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Hydrochloric acid (HCI)	1.79	t HCI / 1000 t RefRSO / year	Pennelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Sodium carbonate (Na2CO3)	2.44	t Na2CO3 / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Energy consumption	0.04	(NaOH / 1000 (Heiriso / year	rement and vietze 2015 (according to with Appendix 1 (v3))				
Natural gas	825102	kWh / 1000 t RefRSO / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Electricity mix	EU	With 1000 Lineinou / year	Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))				
Allocation factor after by-products	0.957						
CO2 emissions after Esterification	2303.60	g CO2eq per kg FAME					
CO2 emissions of Esterification	470.74	g CO2eq per kg FAME					
CO2 emissions of Esterification	12.65	g CO2eq per MJ FAME					
Total CO2 amingiana 5445	2303.60	g CO2eq per kg FAME					
I Utal CO2 emissions FAME	61.92	g CO2eq per MJ FAME					
GHG emission savings compared to fossil comparator I (fuel diesel)	26.1%	83.8 g CO2eq/MJ RED 2009/28/EC					
GHG emission savings compared to	20.10/	87.3 g CO2eq/MJ					
fossil comparator II (fuel diesel)	23.1%	Silva et al. 2006; CONCAWE et al. 2006					

Table A-3: Scenario 9 and 10 – Romanian average, Esterification EU (2009) and WTT Plantation

output	1500 5	he DC (he (mean					
moisture content in rape seed	1366.3	nor cont of PS	Rollidil-average 2000-2010. FAOSTAT 2012				
moisture content in tape seed	0.0	per cent of his	ratio of straw production (150% of dry matter BS yield): Biograce 2012: ratio of straw removed from				
straw removed from field	309.4	kg straw / ha / year	field (13% of produced straw): Schmidt 2007				
input							
seed - rape seed (normed)	6.1	kg seeds / ha / year	Baquero et al. 2011, 2013, standardization: Nemecek et al. 2003				
N-fertiliser	88.0	kg N / ha / year	Baquero et al. 2011, 2013 (average): N-credit for crop rotation: Schmidt 2007, Jacobsen et al. 2002				
DOOF fastilizer	105.0	he POOE (he (week					
P2O5-tertiliser	125.9	kg K2O / ha / year	Baquero et al. 2011, 2013; standardization: Schmidt 2007				
CaO-fertiliser		kg CaO / ha / year					
Pesticides	2.35	kg ai / ha / year	de Vries et al. 2010. Halleux et al. 2008				
Diesel (all activities and transport)	70.0	I / ha / year	Baquero et al. 2011				
electricity (storage, drying of RS)	0	kWh / t RS	Baquero et al. 2011, 2013				
Emission factors N2O-field emissions							
		per cent N2O_N / kg N additions	IPCC 2006 fraction of all added N that is lost directly as N2O per kg N applied as N-fertilizer and cron				
EF for direct N2O field emissions	1.00	from N-fertilisers and crop	residues				
		per cent N2O_N / kg N deposited					
EF for NH3&NOx volatilization	1.00	as NH3 or NOx (10% of N from	IPCC 2006, fraction of synthetic fertiliser N that volatilises as NH3 and NOx is expected as 10% N-				
		synthetic N-fertiliser)	mass volatilised as NH3&Nox per kg of N applied as synthetic N-fertilizer (IPCC 2006)				
		per cent N2O_N / kg N leached					
EF for Nitrate leaching and runoff	0.75	and runoff as nitrate (30% of N	IPCC 2006, fraction of all added N that is lost through leaching and runoff as nitrate is expected as				
5		from N-fertilizers and crop	30% N-mass leached as hitrate per kg of N applied as N-fertilizer and crop residues (IPGC 2006)				
		iesiddes)					
GHG emissions after plantation	1060.08	g CO2eq per kg RS	Note: 115 Kg N/ha N-fertilizer is applied, but 27 kg N/ha can be saved for the crop after rapeseed.				
GHG emissions of plantation	1600.00	a CO2ea per ka BofBSO	Therefore, the 27 kg N/ha is credited to rapeseed. The value of input-seed is normed to convential				
and emissions of plantation	1000.00	g cozeq per kg nemoo	rapeseed. The drying stage is usually unnecessary thanks to climate conditions in south Europe				
GHG emissions of plantation	44.44	g CO2eq per MJ RefRSO	(Baquero et al. 2011). Thus, no drying is considered in the study.				
Oil Mill	value	unit	source				
output							
produced Rape Seed Oil (RSO)	418.9	t RSO / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, efficiency: Oil World 2005				
Rape Seed Cake (RSC) (by-product)	563.8	t RSC / 1000 t RS / year	Aarhus United 2005a, Schmidt 2007, Korning 2006, Kronborg 2006, Hansen 2006				
Residual oil content RSC	4	per cent of RSC	Møller et al. 2000				
input							
processed Rape Seed (RS) per year	1000	t RS per year	reference value				
RS losses (drying, washing, transport)	1.7	per cent of RS	Oil World 2005				
n-Hexane	498	kg / 1000 t RS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005a				
Energy consumption			Sabmidt 2007, Kranbarz 2006, Aarbus United 2005b; aparaty officianay of bailer: Eporaistyralaan				
Fuel oil (light)	21210	I / 1000 t RS / year	1995. Aarhus United 2004, 2005b: energy content fuel oil: JEC 2011				
Material and			Schmidt 2007, Kronborg 2006, Aarhus United 2005b; energy consumption of boiler considered as				
Natural gas	0	kwn/1000 t RS/year	fuel oil				
Electricity (external)	38236	kWh / 1000 t BS / year	Schmidt 2007, Kronborg 2006, Aarhus United 2005b; excess electricity of boiler: Energistyrelsen				
			1995, Aarhus United 2004, 2005b				
Electricity mix	EU		Schmidt 2007, Aarhus United 2004, 2005b				
nuerose distance plantation/ail mill	100	km	Sebmidt 2007				
average distance diamanon/or mult	100	NII	Schmidt 2007				
Allocation factor after by products	0.622						
Allocation factor after by-products	0.622						
Allocation factor after by-products GHG emissions after Oil Mill	0.622 1760.10	g CO2eq per kg RSO					
Allocation factor after by-products GHG emissions after Oil Mill GHG oppingions of Oil Mill	0.622 1760.10	g CO2eq per kg RSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill	0.622 1760.10 189.99	g CO2eq per kg RSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill	0.622 1760.10 189.99 5.28	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill	0.622 1760.10 189.99 5.28	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery	0.622 1760.10 189.99 5.28 value	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output	0.622 1760.10 189.99 5.28 value	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO	0.622 1760.10 189.99 5.28 value 983.3	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input	0.622 1760.10 189.99 5.28 value 983.3	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input processed RSO File	0.622 1760.10 189.99 5.28 value 983.3 1000	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Charter constant cons				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Enterse	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural age	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of holier: Energistrateen 1905, Aartyne United 2004				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 0 7100	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year l / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. source schmidt 2007, Hansen 2006 schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of tuel oil: JEC 2011				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external)	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24890	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year l / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Soburce Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external)	0.622 1760.10 189.99 5.28 value 983.3 0 0 7100 24880	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24880 EU	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; schmidt 2007, Aarhus United 2004, 2005b				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24880 EU 1818.16	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24880 EU 1818.16	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b, energy content of the loil. JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input produced RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery GHG emissions of Refinery	0.622 1760.10 189.99 5.28 value 983.3 0 0 7100 24880 EU 1818.16 28.18	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006, energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006, energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b, energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is energistered to produce steam in the power central.				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24880 EU 1818.16 28.18 0.78	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solution Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission after Refinery GHG emissions of Refinery GHG emissions of Refinery	0.622 1760.10 189.99 5.28 value 983.3 1000 8.9 0 7100 24880 EU 1818.16 28.18 0.78	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of the loil: JEC 2011 Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery Transport (fo Rottardom)	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 0 7100 24880 EU 1818.16 28.18 0.78 value	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland)	0.622 1760.10 189.99 5.28 value 983.3 00 0 7100 24880 EU 1818.16 28.18 0.78 value	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit tRefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid.				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average disarce mil/refinery/ord	0.622 1760.10 189.99 5.28 value 983.3 00 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year i / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanta. Romania: Falk 2012				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year l / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanţa, Romania: Falk 2012 Schmidt 2007				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO used fuel for vehicle	0.622 1760.10 189.99 5.28 value 983.3 00 0 7100 24880 EU 1818.16 28.18 0.78 value 6115 Truck for Diesel Diesel	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery Coverland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle Transport (ship)	0.622 1760.10 189.99 5.28 value 983.3 0 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanţa, Romania: Falk 2012 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery CHG emissions of Refinery GHG emissions of Refinery average distance mill/refinery/port vehicle used transport (prot average distance Spain-Europe	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emission after Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO average distance Spain-Europe vehicle used transporting RefPO	0.622 1760.10 189.99 5.28 value 983.3 00 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007 Distance Port Constanța, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery Cransport (to Rotterdam) Transport (to Rotterdam) Transport (ship) average distance Spain-Europe vehicle used transporting RefPO used fuel for vehicle	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel Diesel 0515 Truck for Diesel 0515 1818.16 0515 0515 0515 0515 0515 0515 0515 05	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanta, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Distance Port Constanta, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle CHG emissions of gain-Europe vehicle used transporting RefPO used fuel for vehicle	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt HFO 1920.04	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit tRefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil. JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanta, Romania: Falk 2012 Schmidt 2007 Distance Port Constanta, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007				
GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery CHG emissions of Refinery Che emissions of Refinery Che emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Che emissions after Transport vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport </td <td>0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt HFO 1939.24</td> <td>g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit km km</td> <td>Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solurce Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Distance Port Constanța, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007</td>	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt HFO 1939.24	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit km km	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solurce Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Distance Port Constanța, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity mix GHG emission after Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport GHG emissions after Transport GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel 0Iesel 6150 Tanker 50kt HF0 1939.24 121.07	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit km km	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanța, Romania: Falk 2012 Schmidt 2007 Distance Port Constanța, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Uransport (to Rotterdam) Transport (to Rotterdam) Transport (ship) average distance Spain-Europe vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport GHG emissions of Transport GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 06150 Tanker 50kt HFO 1939.24 121.07 3.36	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit tRefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanta, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (ship) average distance mil/Refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions after Transport GHG emissions of Transport GHG emissions of Transport GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt HFO 1939.24 121.07 3.36	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit tRefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year i / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solution Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanta, Romania: Falk 2012 Schmidt 2007 Distance Port Constanta, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				
Califordia factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (ship) average distance Spain-Europe vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport GHG emissions of Transport GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 1818.16 28.18 0.78 value 1818.16 28.18 0.78 1818.16 181	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solurce Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Soturce Distance Dealu Frumos (geographic center Romania) - Port Constanţa, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Distance Port Constanţa, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity mix GHG emission of Refinery GHG emissions of Refinery GHG emissions of Refinery Transport (to Rotterdam) Transport (overland) average distance mil/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 05 Truck for Diesel 1939.24 121.07 3.36 1939.24 53 87	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Schmidt 2007 Distance Dealu Frumos (geographic center Romania) - Port Constanţa, Romania: Falk 2012 Schmidt 2007 Distance Port Constanţa, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Cransport (to Rotterdam) Transport (overland) average distance mill/refinery/port vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport GHG emissions of Transport GHG emissions of Transport ChG emissions of Transport CHG emissions RefPO CHG emissions RefPO	0.622 1760.10 189.99 5.28 value 983.3 00 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel Diesel 1839.24 121.07 3.36 1939.24 53.87	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 reference value Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b; energy content of fuel oil: JEC 2011 Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity from grid. Schmidt 2007 Distance Dealu Frumos (geographic center Romania) - Port Constanta, Romania: Falk 2012 Schmidt 2007 Distance Port Constanta, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007				
Allocation factor after by-products GHG emissions after Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery GHG emissions of Refinery Used transport (to Rotterdam) Transport (to Rotterdam) Transport (ship) average distance Spain-Europe vehicle used transporting RefPO used fuel for vehicle GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 0 0 7100 24880 0 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt 1939.24 121.07 1939.24 53.87 40.8%	g CO2eq per kg RSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit tRefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per MJ RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Solution Solutio				
Allocation factor after by-products GHG emissions of Oil Mill Refinery output produced RSO Input processed RSO Fuller's earth Energy consumption Natural gas Fuel oil Electricity (external) Electricity (external) Electricity mix GHG emissions of Refinery ChG emissions of Refinery GHG emissions after Transport GHG emissions of Transport GHG emissions of Transport GHG emissions of Transport GHG emissions of Transport ChG emissions of Transport GHG emissions of Transport ChG emissions of Transport GHG emissions of Transport	0.622 1760.10 189.99 5.28 value 983.3 000 1000 8.9 0 7100 24880 EU 1818.16 28.18 0.78 value 615 Truck for Diesel Diesel 6150 Tanker 50kt HFO 1939.24 121.07 3.36 1939.24 53.87 40.8%	g CO2eq per kg RefRSO g CO2eq per kg RefRSO g CO2eq per MJ RefRSO unit t RefRSO / 1000 t RSO / year t / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year kWh / 1000 t RSO / year g CO2eq per kg RefRSO g CO2eq per kg RefRSO	Note: Fuel oil is used to produce steam in the power central. Excess electricity from cogeneration is considered as non-used external electricity from grid. Source Schmidt 2007, Hansen 2006 Schmidt 2007, Hansen 2006; energy consumption of boiler considered as fuel oil Schmidt 2007, Hansen 2006; energy efficiency of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Schmidt 2007, Hansen 2006; excess electricity of boiler: Energistyrelsen 1995, Aarhus United 2004, 2005b Note: The inventory date do not include deodorisation. Different to IFEU (2011) fuel oil (not natural gas) is used to produce steam in the power central. There is excess electricity from cogeneration which is considered (substracted) as non-used external electricity form grid. Source Distance Dealu Frumos (geographic center Romania) - Port Constanţa, Romania: Falk 2012 Schmidt 2007 Schmidt 2007 Distance Port Constanța, Romania - Port Rotterdam, Netherlands: PortWorld Distances 2012 Schmidt 2007 Schmidt 2007				

t.b.c.

E

	value	unit	source
output			
produced FAME	988.25	t FAME / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Glycerine	104.36	t Glyc. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
input			
processed RefRSO	1000.00	t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Methanol	151.19	t Meth. / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Phosphoric acid (H3PO4)	2.35	t H3PO4 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Hydrochloric acid (HCI)	27.67	t HCI / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Sodium carbonate (Na2CO3)	3.46	t Na2CO3 / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Sodium Hydroxide (NaOH)	9.30	t NaOH / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Energy consumption			
Natural gas	1141314	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Electricity (external)	62050	kWh / 1000 t RefRSO / year	IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Electricity mix	EU		IFEU 2011 (according to EU Directive 2009/28/EC (EU 2009))
Allocation factor after by-products	0.957		
CO2 emissions after Esterification	2503.55	a CO2ea per ka FAME	
CO2 emissions of Esterification	626.51	a CO2ea per ka FAMF	
CO2 emissions of Esterification	16.94	a CO2ea per M L EAME	
CO2 emissions of Esternication	10.84	y cozeq per mo PAME	
	2503-55	a CO2ea per ka FAMF	
Total CO2 emissions FAME	67.30	a CO2ea per MJ FAME	
GHG omission savings compared to			
fossil comparator I (fuel diosel)	19.7%	83.8 g CO2eq/MJ BED 2009/28/EC	
		1120 2000 20 20	
GHG emission savings compared to	22.9%	87.3 g CO2eq/MJ	
fossil comparator II (fuel diesel)		Silva et al. 2006; CONCAWE et al. 2006	
Esterification WTT	value	unit	source
Esterification WTT output	value	unit	source
Esterification WTT output produced FAME	value 964.35	unit t FAME / 1000 t RefRSO / year	source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine	value 964.35 101.26	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input	value 964.35 101.26	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input processed RefRSO	value 964.35 101.26 1000.00	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol	value 964.35 101.26 1000.00 106.36	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4)	value 964.35 101.26 1000.00 106.36 1.79	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCl)	value 964.35 101.26 1000.00 106.36 1.79 19.73	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t HCl / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium carbonate (Na2CO3)	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H02C03 / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium Lydroxide (Na2C03) Sodium Hydroxide (NaOH)	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t Na2H / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinet and Vietze 2013 (according to WTT
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PC4 / 1000 t RefRSO / year t HCI / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium Carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H2C/ 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t Na0H / 1000 t RefRSO / year kWh / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3))
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external)	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 7.1748	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t Na0H / 1000 t RefRSO / year kWh / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium Hydroxide (Na2CO3) Sodium Hydroxide (Na2OH) Energy consumption Natural gas Electricity (external) Electricity mix	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EEU	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phint and Vietze 2013 (according to WTT Appendix 1 (v3)) Phint and Vietze 2013 (according to WTT Appendix 1 (v3)) Phint and Vietze 2013 (according to WTT Appendix 1 (v3)) Phint and Vietze 2013 (according to WTT
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity mix Allocation factor after by-products	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EU 0.957	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium Hydroxide (Na2CO3) Sodium Hydroxide (Na2CO3) Sodium Hydroxide (Na2H) Energy consumption Natural gas Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions after Esterification	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EU 0.957 2394.76	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year kWh / 1000 t RefRSO / year	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydroxhoric acid (HCI) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions of Esterification	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 771748 EU 0.9557 2394.76 470.74	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H3C / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phote Appendix 1 (v3)) Phote Appendix 1 (v3)
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (HCI) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions of Esterification	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 7/1748 EU 0.957 2394.76 470.74 12.65	unit t FAME / 1000 t RefRSO / year t Giyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H3C / 1000 t RefRSO / year t NaOH / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per kg FAME	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phote Appendix 1 (v3)) Phote Appendix 1 (v3)
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (H3PO4) Hydrochloric acid (HCI) Sodium Carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions of Esterification	value 964.35 101.26 1000.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EU 0.957 2394.76 470.74 12.65	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H3CV / 1000 t RefRSO / year t Na2C03 / 1000 t RefRSO / year t Na2C03 / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per MJ FAME	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Pehnelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (H3PO4) Hydrochloric acid (HCI) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions of Esterification CO2 emissions of Esterification	value 964.35 101.26 100.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EU 0.957 2394.76 470.74 12.65 2394.76	unit t FAME / 1000 1 RefRSO / year t Glyc. / 1000 1 RefRSO / year t RefRSO / year t Meth. / 1000 1 RefRSO / year t H32C03 / 1000 1 RefRSO / year t Na2C03 / 1000 1 RefRSO / year t Na2C03 / 1000 1 RefRSO / year kWh / 1000 1 RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per kg FAME	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phote 2013 (a
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (H3PO4) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity (external) Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions of Esterification Total CO2 emissions FAME	value 964.35 101.26 100.00 106.36 1.79 19.73 2.44 6.64 825102 7.1748 EU 0.957 2.394.76 470.74 12.65 2.394.76 6.4.38	unit t FAME / 1000 t RefRSO / year t Glyc. / 1000 t RefRSO / year t RefRSO / year t Meth. / 1000 t RefRSO / year t H3PO4 / 1000 t RefRSO / year t H3CO3 / 1000 t RefRSO / year t Na2CO3 / 1000 t RefRSO / year kWh / 1000 t RefRSO / year kWh / 1000 t RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per kg FAME g CO2eq per kg FAME	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phinelt and Vietze 2013 (accordin
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (H2O4) Hydrochloric acid (H2O4) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity mix Allocation factor after by-products CO2 emissions of Esterification CO2 emissions avings compared to fossil comparator 1 (fuel diesel)	value 964.35 101.26 100.00 106.36 1.79 19.73 2.44 6.64 825102 71748 EU 0.957 2394.76 470.74 12.65 2394.76 64.38 23.2%	unit t FAME / 1000 1 RefRSO / year t Glyc. / 1000 1 RefRSO / year t RefRSO / year t RefRSO / year t Meth. / 1000 1 RefRSO / year t H3PO4 / 1000 1 RefRSO / year t H2/1000 1 RefRSO / year t H2/2003 / 1000 1 RefRSO / year t NaOH / 1000 1 RefRSO / year kWh / 1000 1 RefRSO / year g CO2eq per kg FAME g CO2eq/by Kg FA	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phote 2013 (according to W
Esterification WTT output produced FAME Glycerine input processed RefRSO Methanol Phosphoric acid (H3PO4) Hydrochloric acid (H3PO4) Hydrochloric acid (H2O4) Sodium carbonate (Na2CO3) Sodium Hydroxide (NaOH) Energy consumption Natural gas Electricity (external) Electricity (external) Electricity (external) CO2 emissions after Esterification CO2 emissions of Esterification CO2 emissions of Esterification CO2 emissions of Esterification CO2 emissions of Esterification CO2 emissions savings compared to fossil comparator I (fuel diesel)	value 964.35 101.26 100.00 106.36 1.79 19.73 2.44 6.64 825102 7.1748 EU 0.957 2394.76 470.74 12.65 2394.76 6.4.38 23.2%	unit t FAME / 1000 1 RefRSO / year t Giyc. / 1000 1 RefRSO / year t RefRSO / year t Meth. / 1000 1 RefRSO / year t H3PO4 / 1000 1 RefRSO / year t H3PO4 / 1000 1 RefRSO / year t Na2CO3 / 1000 1 RefRSO / year t NaOH / 1000 1 RefRSO / year kWh / 1000 t RefRSO / year g CO2eq per kg FAME g CO2eq per kg FAME 	Source Pehnelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (according to WTT Appendix 1 (v3)) Phonelt and Vietze 2013 (was appe

Table A-3: Scenario 9 and 10 (continued)

Table A-4: GHG emissions of German rapeseed FAME – comparison of N2O-field emissions (5-year average)

Scenario No		GHG emi	ssions (g CO2	GHG emissions s	avings rape FAME			
	Plantation	Oil mill	Refinery	Transport	Esterification	total FAME	% reference value I (RED)	% reference value II
Scenario 1: Germany, standard N2O EF, EU-ester	31.95	4.78	0.73	0.82	16.84	55.12	34.2%	36.9%
Scenario 2: Germany, standard N2O EF, WTT-ester	32.75	4.90	0.75	0.84	12.65	51.89	38.1%	40.6%
Scenario 11: Germany low N2O EF, EU- ester	28.95	4.73	0.73	0.82	16.84	52.07	37.9%	40.4%
Scenario 12: Germany low N2O EF, WTT-ester	29.67	4.85	0.75	0.84	12.65	48.76	41.8%	44.1%
Scenario 11: Germany, medium N2O EF, EU-ester	40.64	4.93	0.73	0.82	16.84	63.96	23.7%	26.7%
Scenario 12: Germany, medium N2O EF, WTT-ester	41.66	5.05	0.75	0.84	12.65	60.95	27.3%	30.2%
Scenario 13: Germany, high N2O EF, EU ester	64.36	5.33	0.73	0.82	16.84	88.08	-5.1%	-0.9%
Scenario 14: Germany, high N2O EF, WTT-ester	65.97	5.46	0.75	0.84	12.65	85.68	-2.2%	1.9%

Table A-5: GHG emissions of Polish rapeseed FAME – comparison of N2O-field
emissions (5-year average)

Scenario No		GHG emi	ssions (g CO2	GHG emissions savings rape FAME					
	Plantation	Oil mill	Refinery	Transport	Esterification	total FAME	% reference value I (RED)	% reference value II	
Scenario 7: Poland standard, EU-ester	41.28	4.94	0.73	1.12	16.84	64.91	22.5%	25.6%	
Scenario 8: Poland standard, WTT-ester	42.31	5.06	0.75	1.15	12.65	61.92	26.1%	29.1%	
Scenario 17: Poland 80%, EU-ester	37.60	4.87	0.73	1.12	16.84	61.17	27.0%	29.9%	
Scenario 18: Poland 80%, WTT-ester	38.54	5.00	0.75	1.15	12.65	58.09	30.7%	33.5%	
Scenario 19: Poland semi- max, EU-ester	51.98	5.12	0.73	1.12	16.84	75.79	9.6%	13.2%	
Scenario 20: Poland semi- max, WTT-ester	53.28	5.25	0.75	1.15	12.65	73.08	12.8%	16.3%	
Scenario 21: Poland max, EU-ester	81.08	5.61	0.73	1.12	16.84	105.39	-25.8%	-20.7%	
Scenario 22: Poland max, WTT-ester	83.11	5.75	0.75	1.15	12.65	103.41	-23.4%	-18.5%	

Table A-6: GHG emissions of Romanian rapeseed FAME – comparison of N2O-field
emissions (5-year average)

Scenario No		GHG emi	ssions (g CO2	GHG emissions savings rape FAME				
	Plantation Oil mill Refinery Transport Esterification total FAME						% reference value I (RED)	% reference value II
Scenario 9: Romania standard, EU-ester	41.63	4.94	0.73	3.15	16.84	67.30	19.7%	22.9%
Scenario 10: Romania standard, WTT-ester	42.67	5.07	0.75	3.23	12.65	64.38	23.2%	26.3%
Scenario 23: Romania 80%, EU- ester	37.87	4.88	0.73	3.15	16.84	63.47	24.3%	27.3%
Scenario 24: Romania 80%, WTT- ester	38.82	5.00	0.75	3.23	12.65	60.45	27.9%	30.8%
Scenario 25: Romania semi-max, EU-ester	52.47	5.13	0.73	3.15	16.84	78.33	6.5%	10.3%
Scenario 26: Romania semi-max, WTT-ester	53.79	5.26	0.75	3.23	12.65	75.68	9.7%	13.3%
Scenario 27: Romania max, EU- ester	81.83	5.63	0.73	3.15	16.84	108.19	-29.1%	-23.9%
Scenario 28: Romania max, WTT- ester	83.88	5.77	0.75	3.23	12.65	106.29	-26.8%	-21.7%

BACKGROUND DATA												LHV	Fuel	Transport exhaust			
q	parameter:		GHG emission coefficient							Fossil energy inp		MJ/kg	efficiency	gas emissions		Source	
	unit:		aCO₂/ka	aCH₄/ka	aN₂O/ka	aCO200/ka	aCO₂/MJ	aCH₄/MJ	aN₂O/MJ	gCO _{2-eq} / MJ	MJ _{fossil} /ka	MJrossii/MJ	(at 0% water)	MJ/t.km	aCH₄/t.km	aN₂O/t.km	
			92-9	1	<u>g. 2 g</u>	92-649	92	1	9.20		103317	iosair ·····	,	1	9	3. 2	
Global Warming Potentials (GWP's)																	
CO2		1															RED Annex V.C.5
CH₄		25															RED Annex V.C.5
N ₂ O		298															RED Annex V.C.5
Agro inputs			0007.0	0.00	0.0410	5017.0					40.00						
N-tertiliser (kg N) R \odot fortiliser (kg R \odot)			2827.0	0.00	9.0418	1012.5					48.99						JEC E3-database (version 31-7-2008)
$F_2O_5^{-1}$ entities (kg F_2O_5)			504.5	1.55	0.0313	570.2					0.69						JEC E2 database (version 31-7-2008)
$(kg R_2O)$			110 1	0.22	0.0123	130.0					1 97						JEC E3-database (version 31-7-2008)
Pasticidas			9886.5	25.53	1 6814	11025 7					268.40						JEC E3-database (version 31-7-2008)
Seeds- rapeseed			412.1	0.91	1.0014	733.7					7.87						JEC E3-database (version 31-7-2008)
Fuels- gasses																	
Natural gas (4000 km, Russian NG quality	/)						61.58	0.1981	0.0002	66.59		1.1281					JEC E3-database (version 31-7-2008)
Natural gas (4000 km, EU Mix qualilty)							62.96	0.1981	0.0002	67.98		1.1281					JEC E3-database (version 31-7-2008)
Methane													50.0				JEC E3-database (version 31-7-2008)
Fuels- liquids (also conversion inputs)																	
Diesel							87.64	-	-	87.64		1.16	43.1				JEC E3-database (version 31-7-2008)
Gasoline													43.2				JEC E3-database (version 31-7-2008)
HFO							84.98	-	-	84.98		1.088	40.5				JEC E3-database (version 31-7-2008)
HFO for maritime transport							87.20	-	-	87.20		1.088	40.5				JEC E3-database (version 31-7-2008)
Ethanol													26.81				JEC E3-database (version 31-7-2008)
Methanol							92.80	0.2900	0.0003	100.15		1.6594	19.9				JEC E3-database (version 31-7-2008)
FAME													37.2				JEC E3-database (version 31-7-2008)
Syn diesel (BtL)													44.0				JEC E3-database (version 31-7-2008)
HVO													44.0				JEC E3-database (version 31-7-2008)
PVO													36.0				JEC E3-database (version 31-7-2008)
Fuels / feedstock / byproducts - solids																	
Rapeseed													26.4				JEC E3-database (version 31-7-2008)
Waste vegetable / animal oil													37.1				JEC E3-database (version 31-7-2008)
BioOil (byproduct FAME from waste oil)													21.8				JEC E3-database (version 31-7-2008)
Crude vegetable oil													36.0				JEC E3-database (version 31-7-2008)
DDGS (10 wt% moisture)													16.0				JEC E3-database (version 31-7-2008)
Glycerol													16.0				JEC E3-database (version 31-7-2008)
Rapeseed meal													18.7				JEC E3-database (version 31-7-2008)

Table A-7: Background data

BACKGROUND DATA												LHV	Fuel	Transport exhaust			
	parameter:				G	AHG emissio	on coefficie	nt			Fossil energy input		MJ/kg	efficiency gas emissions		issions	Source
	unit:		aCO₂/ka	aCH₄/ka	aN₂O/ka	aCO2~~/ka	aCO ₂ /MJ	aCH₄/MJ	aN₂O/MJ	gCO _{2-eq} / MJ	MJ _{tossil} /ka	MJrossii/MJ	(at 0% water)	MJ/t.km	aCH₄/t.km	aN₂O/t.km	
			323	90.4.9	9.22.09	32-643	92	9	9.20		103317	10331	,		3+-	9.20,1	
Electricity																	
Electricity EU mix MV							119.36	0.2911	0.0054	128.25		2.6951					JEC E3-database (version 31-7-2008)
Electricity EU mix LV							120.79	0.2946	0.0055	129.79		2.7275					JEC E3-database (version 31-7-2008)
Conversion inputs																	
n-Hexane							80.08	0.0146	0.0003	80.53		0.3204	45.1				JEC E3-database (version 31-7-2008)
Phosphoric acid (H ₃ PO ₄)			2776.0	8.93	0.1028	3029.80					28.57						JEC E3-database (version 31-7-2008)
Fuller's earth			197.0	0.04	0.0063	199.81					2.54						JEC E3-database (version 31-7-2008)
Hydrochloric acid (HCl)			717.4	1.13	0.0254	753.17					15.43						JEC E3-database (version 31-7-2008)
Sodium carbonate (Na ₂ CO ₃)			1046.0	6.20	0.0055	1202.64					13.79						JEC E3-database (version 31-7-2008)
Sodium hydroxide (NaOH)			438.5	1.03	0.0240	471.40					10.22						JEC E3-database (version 31-7-2008)
Potassium hydroxide (KOH)			0.0	0.00	0.0000	0.00					0.00						
Hydrogen (for HVO)							80.87	0.2765	0.0003	87.87		1.4835					JEC E3-database (version 31-7-2008)
Pure CaO for processes			1013.0	0.65	0.0076	1031.49					4.60						JEC E3-database (version 31-7-2008)
Sulphuric acid (H ₂ SO ₄)			193.9	0.55	0.0045	208.83					3.90						JEC E3-database (version 31-7-2008)
Ammonia			2478.0	7.84	0.0087	2676.53					44.39						JEC E3-database (version 31-7-2008)
Cycle-hexane			723.0	0.00	0.0000	723.00					53.10						JEC E3-database (version 31-7-2008)
Lubricants			947.0	0.00	0.0000	947.00					53.28						JEC E3-database (version 31-7-2008)
Transport officiancias																	
														0.04	0.005	0.0000	
Truck for dry product (Diesel)														0.94	0.005	0.0000	JEC E3-database (version 31-7-2008)
Concerninguides (Diesei)														1.01	0.005	0.0000	
Ocean bulk carrier (Fuel oil)														0.20	0.000	0.0007	JEC E3-database (version 31-7-2008)
Ship /product tanker Sokt (Fuel oil)														0.12	0.000	0.0000	JEC E3-database (version 31-7-2008)
Local (10 km) pipeline				1	1	İ								0.00	0.000	0.0000	JEC E3-database (version 31-7-2008)
Emissions from steam production (per M heat)	1J steam or																
CH ₄ and N ₂ O emissions from NG boiler								0.0028	0.0011	0.40							JEC E3-database (version 31-7-2008)
CH ₄ and N ₂ O emissions from NG CHP								0.0000	0.0000	0.00							JEC E3-database (version 31-7-2008)
CH ₄ and N ₂ O emissions from Lignite CH	IP							0.0023	0.0126	3.82							JEC E3-database (version 31-7-2008)
CH_4 and N_2O emissions from NG gas en	ngine							0.0533	0.0000	1.33							JEC E3-database (version 31-7-2008)

Table 3 continued

Source: Own compilation according to IFEU (2011)