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Endogenous.
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Abstract

The study of matching problems typically assumes that agents pre-

cisely know their preferences over the goods to be assigned. Within ap-

plied contexts, this assumption stands out as particularly counterfac-

tual. Parents typically do invest a large amount of time and resources

to find out which school would be best for their children, doctors run

costly tests to establish which kidney might be best for a given patient.

In this paper I introduce the assumption of endogenous information

acquisition into otherwise standard house allocation problems. I find

that there is a unique ex ante Pareto-optimal, strategy-proof and non-

bossy allocation mechanism: serial dictatorship. This stands in sharp

contrast to the very large set of such mechanisms for house allocation

problems without endogenous information acquisition.

Keywords: Serial Dictatorship, House Allocation Problems, Endoge-

nous Information. JEL Classification Numbers: C78.
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1 Introduction

Many allocation problems of indivisible goods have to be solved without ex-

plicit markets. For some such goods, be it school slots or kidneys, the use

of markets to determine allocations is perceived as immoral or repugnant.

In many cases markets are explicitly forbidden. The subfield of mechanism

design, which addresses the question on how to best allocate such objects to

recipients, has prospered and many mechanisms that are optimal according

to a host of different criteria have been found. These mechanisms have usu-

ally been designed for the case of agents precisely knowing their preferences

over the goods to be assigned. However, this assumption seems particu-

larly counterfactual in many of the contexts to which these mechanisms have

been applied. Parents typically invest a significant amount of time on school

choice; doctors need to run costly tests on kidneys to figure out which would

be best for a given patient.

This paper sets out to study the allocative properties of mechanisms

in conjunction with their impact on the agents’ incentives to acquire infor-

mation. The agents’ decision to become informed about the objects to be

assigned should be modeled together with their optimal choices for some

given amount of information. To this end I modify the standard model of

house allocation problems in which a set of agents needs to be matched to

a set of equally many objects, henceforth called houses, allowing for costly

information acquisition on these houses. The goal is to characterize the set

of strategy-proof, non-bossy and Pareto-optimal mechanisms in this environ-

ment.

Over the years, various classes of such mechanisms have been identified

for the case of the agents’ preferences being given. Pycia and Unver [8] char-

acterize the – very large – set of all such mechanisms. Lots of room remains to

impose additional requirements to select among these mechanisms. The case

of housing problems with endogenous information acquisition differs sharply.

In that case there is a unique strategy-proof, non-bossy and ex-ante-Pareto-
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optimal mechanism: serial dictatorship.1 The following example illustrates

the outstanding role of serial dictatorship.

Example 1 Consider a simple allocation mechanism for two agents to obtain

some intuition for the outstanding role played by serial dictatorship. Let

agents 1 and 2 start out owning two houses, k and g, respectively; this initial

allocation only changes if both agents agree to exchange the houses. This

mechanism is Gale’s top trading cycles mechanism for two agents and two

houses; a formal definition can be found in Section 2.2. In an environment

without endogenous leaning, this mechanism is strategy-proof, non-bossy and

Pareto-optimal. Each agent’s valuation of house k is an independent draw

from the distribution, according to which it is equally likely that the agents’

value of house k is 8 or 0. Both agents value house g at 2. The agents only

differ in their cost of learning: agent 1 has to pay .8 to learn his value of

house k, whereas learning is free for agent 2. Assume furthermore that both

agents need to announce simultaneously whether they would like to exchange

houses.

Now let’s consider agent 1’s decision problem. If he does not learn the

value of house k, he prefers to keep it (expected value of 4 vs. 2, the known

value of g). If he learns the value, he would like to exchange with agent 2 if

and only if he values house k at 0. Agent 2, in turn, is willing to exchange

with a probability of 1
2
.2 If agent 1 learns his value of house k, he obtains an

expected utility of 1
2
× 8 + 1

2
(1

2
× 2 + 1

2
× 0) − .8 = 3.7, with the last term

reflecting agent 1’s cost of learning. However, not learning is associated with

an expected utility of 4 for player 1. So agent 1 keeps house k in equilibrium,

which in turn implies that agent 2 is stuck with house g, yielding an ex ante

utility profile of (4, 2). No consider serial dictatorship with agent 1 as the

first dictator and observe that this alternative mechanism ex-ante Pareto-

dominates the given mechanism. In the serial dictatorship it is worthwhile

1Note that this statement refers to ex-ante Pareto-optimality instead of Pareto optimal-

ity. The reason is that agents do not a priori know their preferences, so Pareto optimality,

which uses these preferences, cannot be the correct measuring stick. Instead, I use ex-ante

Pareto optimality which also takes the learning decisions of agents into account.
2Since learning is costless agent 2 will be willing to exchange with agent 1 if and only

if he values house k at 8, which happens with probability 1
2 .
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for agent 1 to learn the value of house k and to choose it if and only if he

finds it of high value (expected utility: 1
2
× 8 + 1

2
× 2− .8 = 4.2). So agent 2

faces a probability of 1
2

of ending up up with either house. The profile of ex

ante utilities is (4.2, 3).

This example shows that some of the bedrock of the theory on house allo-

cation problems starts to crumble once one allows for endogenous information

acquisition. Both mechanisms described in the example, the top trading cy-

cles mechanism and serial dictatorship, are Pareto-optimal, strategy-proof

and non-bossy in an environment without endogenous information acquisi-

tion. Moreover, the two mechanisms are in a sense “equivalent” as shown by

Abdulkadiroglu and Sonmez [1]. With endogenous information acquisition,

something very different happens: Serial dictatorships not only differ from

top trading cycles as allocation rules, Example 1 provides a case of a house

allocation problem in which a top trading cycles mechanism is strictly ex ante

Pareto-dominated by a serial dictatorship. The main result of the paper sig-

nificantly generalizes Example 1. In particular, I show that for any non-bossy

and strategy-proof mechanism that is not itself a serial dictatorship one can

find a housing problem and a (path-dependent) serial dictatorship, such that

the serial dictatorship strictly ex ante Pareto-dominates the named mecha-

nism in the given housing problem. Conversely, serial dictatorships are never

dominated in this way.

The essential difference between the two mechanisms in Example 1 is that

the strong incentives for learning in serial dictatorship are dampened in top

trading cycles. While agent 1’s knowledge of the value of house k is always

valuable under serial dictatorship, the same knowledge is irrelevant in half

of all cases in the alternative mechanism. Serial dictatorship stands out as

the only mechanism which always combines optimal learning incentives with

optimal allocation incentives. It is well known that serial dictatorship sets

the “right” incentives for allocations: serial dictatorship is strategy-proof and

Pareto-optimal. What stands out here is that it is the only mechanism that at

the same time optimally incentivezes information acquisition. Any agent who

acquires information knows the exact set he is choosing from at the time he

does acquire information. This ensures that information is never wastefully

acquired. The paper gives two variants of the uniqueness statement on serial

4



dictatorship pertaining to the case of sequential and simultaneous learning,

Theorems 1 and 2.

While I do allow for a large set of possible information structures to obtain

this result, I disallow certain conditions which cause some well-documented

problems for the design of matching mechanisms. I rule out indifferences. A

deviation from strict preferences is also problematic when one does not con-

sider endogenous information acquisition. Ehlers [4] argues in this respect

that “one cannot go much beyond strict preferences if one insists on effi-

ciency and group strategy-proofness.” In addition, I assume that the agents’

preferences are independent draws. If one was to allow for correlated pref-

erences any mechanism with sequential announcements would turn into a

game of signalling. In sum, the uniqueness result does not exploit arguments

that pertain to these two well-known trouble makers for the theory of house

allocation problems.

The compromise between optimal information acquisition and optimal

allocations is one of the main themes of the growing literature on mecha-

nism design with endogenous information acquisition. Mechanisms are of-

ten characterized in terms of the optimal trade-off between the two criteria.

Gerardi and Yariv [5] as well as Bergemann and Valimaki [2] respectively

illustrate this trade-off in voting and auctions environments. This trade-off

is relevant in the present paper: under a simple serial dictatorship allocative

and informative efficiency coexist, it is the one mechanism under which the

designer can avoid the trade off. The optimality of sequential learning is an-

other theme of the literature on mechanisms with endogenous learning that

is echoed in the present paper. Gershkov and Szentes [6] as well as Smorodin-

sky and Tennenholtz [11] present voting models in which the voters’ optimal

acquisition of information is sequential. Similarly, for auctions, Compte and

Jehiel [3] find that ascending price auctions can dominate sealed bid auc-

tions in terms of expected welfare. In this vein the present paper shows the

unique optimality of sequential simple serial dictatorship when allowing for

any sequence of information elicitation.

In Section 2 I provide formal definitions of the environments and mecha-

nisms under study. Using an example (Example 2), I argue that sequential

elicitation procedures might outperform simultaneous ones in the present
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context. With all the relevant terminology in hand, I state the two main

results of the article Theorems 1 and 2 in Section 3. The proof of these two

theorems revolves around three examples: Example 2, which is presented in

Section 2, the introductory Example 1, which is revisited in Section 4, and

Example 5 which is presented in the same section. After a presentation of

these examples, I devote a section to the presentation of Pycia and Unver’s

[8] “trading cycles” mechanisms, which constitute the appropriate starting

point for the characterization of the present paper. This is followed by a

section devoted to the proof of the two main results of the paper (Section 6).

2 The Model

2.1 Agents, Houses, Values

Fix two sets of agents I = {1, · · · , n} and houses H with equally many

elements (| H |= n) and generic elements i, j, i′, j′ ∈ N and h, d, g, k ∈ H.

An environment (for (H, I)) E has three components: (Ω, π, c). The finite

state space Ω consists of profiles of values ω : = (ωih)h∈H,i∈I , where ωih is

the value that agent i assigns to house h. The state ω ∈ Ω is drawn from

the probability distribution π. The vector c : = (ci)i∈N of cost functions

ci : P → R+
0 ∪ {∞} describes the agents’ learning technologies and assigns

every partition P ∈ P of the state space Ω a non-negative and possibly

infinite cost. A partition P with ci(P ) = ∞ is called prohibitively costly

(for agent i). Conversely, all other partitions are called i-affordable, also

an event E is called i-affordable if it is part of an i-affordable partition.

The vector ωi : = (ωih)h∈H summarizes agent i’s valuations of all houses

at the given state ω. Define the algebra ζ i on Ω as the algebra generated

by all events Ei : = {ω | ωi = ωi} for some fixed ωi ∈ Rn. It is assumed

that the agents’ preferences are independently drawn, formally, π(Ei∩Ej) =

π(Ei)π(Ej) for all Ei ∈ ζ i and Ej ∈ ζj. Every state occurs with positive

probability, π(ω) > 0 for all ω ∈ Ω. The prior π is common knowledge

among the designer and all agents. Agent i can only learn something about

his own preferences ωi; formally, a partition P containing an event E /∈ ζ i
is prohibitively costly for agent i. Next, staying ignorant is free; that is
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ci({Ω, ∅}) = 0. Define P i(ω) as the event E that agent i knows at state ω

when his information partition is P i. Let P
i

be the partition according to

which agent i knows his value for each of the houses.

The posterior value that agent i assigns to house h when he knows event E

is calculated as ωih(E) : =

∑
ωi
h
∈E π(ωi

h)ωi
h∑

ωi
h
∈E π(ωi

h)
. It is assumed that ωih(E) 6= ωig(E)

for any two houses h 6= g and any i-affordable event E, so agents are never

indifferent between two houses for any ex post preferences. Moreover, it

is assumed that the following inequality holds for all i-affordable partitions

P 6= Q and all subsets of houses S ⊂ H:∑
E∈P

π(E) max
h∈S

ωih(E)− c(P ) 6=
∑
E∈Q

π(E) max
h∈S

ωih(E)− c(Q).

This implies that any agent has a unique best learning choice that maximizes

his ex ante utility of his – informed – choice from any set S ⊂ H. The sets

of agents and houses I and H together with the environment E constitute a

housing problem (with endogenous information acquisition), since

only the size n =| I | of I and H matters such a housing problem is denoted

by 〈n, E〉.
Mechanisms are used to obtain matchings for housing problems. A match-

ing is a bijective function µ : I → H, where µ(i) is called agent i’s assign-

ment under µ. A submatching σ : Iσ → Hσ is a bijective function with

Iσ ( I and Hσ ( H. Analogously σ(i) is called agent i’s assignment un-

der the submatching σ. The sets of all matchings and of all submatchings,

respectively are denoted by M and by M. For any particular submatching

σ ∈ M the sets of unmatched agents and houses are denoted as Iσ and Hσ

respectively.

2.2 Standard Housing Problems

The set of housing problems with endogenous learning embeds the set of

standard housing problems: A housing problem 〈n, E〉 is a standard hous-

ing problem if E = (Ω, π, c) is such that Ω is a singleton {ω}.3 I denote

3The most general way to embed standard housing problems in the set of housing

problems with endogenous information acquisition would be to demand that {Ω} is the

unique i-affordable partition for all agents i.
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a standard housing problem by 〈n, ω〉. Let Θ be the space of all possible

vectors of values of an agent (ωi). The set of all standard housing problems

(of some fixed size n) is denoted by Θn, the set of all profiles of values ω

without any indifferences.

A (direct) mechanism is a mapping ϕ : Θn →M that assigns a match-

ing for each preference profile ω ∈ Θn. Such a mechanism is considered

strategy-proof if the truthful revelation of preferences is a weakly dominant

strategy. A mechanism is considered non-bossy (as defined by Satterthwaite

and Sonnenschein [9]) if an agent can only change the allocation of some

other agent if he also changes his own allocation. This implies that any

misreport of preferences that does not change the agent’s own assignment

does not change anyone else’s assignment.4 The mechanism ϕ is considered

Pareto-optimal if ϕ(ω) is Pareto-optimal for any ω. The set of strategy-

proof, non-bossy, and Pareto-optimal mechanisms has been characterized by

Pycia and Unver [8]. Since this characterization plays a crucial role for the

development of the arguments in the present article, I present it in Section

5. I next define three canonical examples of strategy-proof, non-bossy, and

Pareto-optimal matching mechanisms.

Serial dictatorships and top trading cycles play an outstanding role in

the theory of matching. According to a simple serial dictatorship, one

agent, the first dictator, gets to choose a house out of the grand set of houses

H. Next, another agent, the second dictator, gets to choose a house out of

the remainder, and so forth, until all houses are matched. I denote a simple

serial dictatorship as a direct mechanism by δ : Θn → M. The bijection

[δ] : I → {1, · · · , n} denotes the ordering of the dictators in the sense that

agent i is the [δ](i)-th dictator under the serial dictatorship δ.

The reason for the prefix “simple” arises since path-dependent serial

dictatorships also play a role in the present paper. According to this type

of serial dictatorship, the identity of the dictator in some round depends

4Papai [7] shows that a direct mechanism (for standard house allocation problems) is

strategy-proof and non-bossy if and only if it is group strategy-proof, in the sense that

no group of agents can misreport their preferences to make at least one member of the

group better off without hurting any member in the group. Takamiya [12] shows that

group strategy-proofness is equivalent to Maskin monotonicity in the context of standard

housing problems.
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on the houses chosen by the preceding dictators. A path-dependent serial

dictatorship is denoted by a function γ that maps any vector of already

chosen houses to the agent who becomes the dictator after this sequence of

choices. A simple serial dictatorship is path-dependent serial dictatorship

with the special property that the identity of the dictator only depends on

the length of the vector of houses already chosen.

Gale’s top trading cycles mechanism5 is the other canonical example

of a matching mechanism. This mechanism starts out with a matching ρ

called the initial endowment. All agents are asked to point to the agent

who has been endowed with their most preferred house. At least one cycle

forms. All agents in such cycles are assigned the houses that they point

to. The procedure is repeated until all houses are assigned. I denote Gale’s

top trading cycles mechanism, starting with the endowment ρ by τ ρ. The

mechanism discussed in Example 1 is a top trading cycles mechanism.

2.3 Dynamic Direct Revelation Mechanisms

In this section I define the grand set of mechanisms considered in the present

article together with a list of canonical examples. Let me first use the example

of serial dictatorship to argue that the sequence of preference announcements

can be essential in direct revelation mechanisms with endogenous information

acquisition.

Example 2 Two different dynamic versions of serial dictatorship stand out:

The designer might either simultaneously elicit the preferences of all agents;

alternatively the designer might elicit the preferences of some agents only

once he becomes a dictator – and thereby leave him the choice to tailor his

information acquisition to his actual choice set. To see that this difference

matters, consider a housing problem 〈3, Eb〉 withH = {d, g, k}, Eb = (Ω, π, c),

such that the three agents are a priori identical with the value of house d

being either 8 or 0, each with probability 1
2
, and the values of houses g and

k known to be 5 and 2, respectively. Assume that it costs each agent c = .1

to learn his type. If the designer simultaneously elicits preferences, it is

5This mechanism was first defined by Shapley and Scarf [10], who attribute it to David

Gale.
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worthwhile for the first and second dictators to learn their type. However, if

the designer elicits preferences sequentially, then the second dictator will only

learn his type if the first did not choose house d. The sequential mechanism

ex ante Pareto-dominates the mechanism of simultaneous elicitation, as the

second dictator will avoid acquiring information (and thereby save the costs

c = .1) in the case in which it is of no consequence to his decision.

Since the timing of announcements greatly matters in mechanism de-

sign problems with endogenous information acquisition, I consider the set

of all dynamic (direct) mechanisms. The designer can fix an order of

the agents’ announcements. This order is described by a rooted tree t that

describes the agents’ communication to the designer, called a c-tree. The

initial node of a c-tree is labeled with the first agent to declare a prefer-

ence. The next agent to declare a preference is allowed to depend on the

declaration of the prior agent(s); each branch terminates with the declara-

tion of all agents’s types. Formally the space of possible declarations Θ by

the first agent (w.l.o.g.) 1 is divided into n− 1 subsets Θ2, · · · ,Θn. If agent

1’s announcement belongs to the subset Θj, then agent j is the next one to

announce. Inductively the space of the announcements of the preceding m

is partitioned into subspaces (Θ × · · · × Θ)2, · · · , (Θ × · · · × Θ)n such that

agent j gets to announce his preference after any sequence of announcements

(Θ× · · · ×Θ)j and such that no agent gets to announce their ranking twice.

The designer can freely choose the sequencing of announcements as well as

the information sets on the c-tree t. The dynamic mechanism induced by the

c-tree t, and the direct mechanism ϕ, is denoted as 〈ϕ, t〉.
Together with an environment E and an assumption on learning the dy-

namic direct revelation mechanism, 〈ϕ, t〉, induces an extensive form game

〈ϕ, t〉(E). This game starts with a chance node in which nature determines

the state of the world ω. Agents get to declare their preferences according

to the c-tree t. Before each node in which an agent gets to declare his pref-

erence, he can choose an information partition on the state space Ω. The

information sets in the extensive form game reflect the privacy of learning

as well as the information sets established through the c-tree t. Utilities are

calculated based on the expected utility of the house the agent is assigned

minus the information-acquisition cost the agent incurred.
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Of course, in many contexts, sequential learning might be impractical.

This is the case when there are very many agents or when learning takes up

much time. I therefore also study the subclass of dynamic mechanisms in

which the designer simultaneously elicits all preferences. Formally a mech-

anism 〈ϕ, ts〉 is defined as a simultaneous (direct) mechanism where ts

is the c-tree according to which no agent knows anything about the other

agents’ announcements when he announces his own preferences.

Next, define a sequential simple serial dictatorship or 3S dictator-

ship as the dynamic direct revelation mechanism 〈δ, tδ〉, where tδ is the c-tree,

according to which agents announce their preference according to their order-

ing as dictators in δ (the n-th dictator knows the preference-announcement

of all n − 1 preceding dictators when it is his turn to announce his prefer-

ences). Analogously a dynamic direct revelation mechanism is a sequential

path-dependent serial dictatorship (γ, tγ) if tγ is such that agents an-

nounce their preferences in the same sequence as the sequence in which they

do become dictators.

2.4 Equilibria and Outcomes

A (mixed) strategy profile in 〈ϕ, t〉(E) is considered an equilibrium if it is

a perfect Bayesian equilibrium and if agents truthfully announce their types

in the sense that any agent i with ex post preferences ωi announces these

preferences to the designer. In the standard case it is straightforward to see

that there exists at most one equilibrium. In that case each agent knows

his ranking ωi, the question is just whether telling it is an equilibrium. In

the present case there might be multiple equilibria, since the agents’ ex post

rankings depend on the agents’ informational choices. I next give an example

of an environment E together with a mechanism 〈ϕ, t〉 such that 〈ϕ, t〉(E) has

multiple equilibria.

Example 3 Let n = 2 and H = {k, g}. Consider an environment E =

(Ω, π, c) as follows: Ω has 4 equiprobable states. Agent 1’s valuation of house

k might either be 8 or 0; he is sure to value house g at 3. Conversely, agent 2’s

valuation of house g might either be 8 or 0; he is sure to value house k at 3.

It costs each agent .1 to find out his preference. Consider Gale’s top trading
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cycles mechanism τ ρ with the initial endowment ρ, according to which agent

1 starts out owning house k. The game 〈τ ρ, ts〉(E) (in which both agents need

to announce their rankings simultaneously) has two equilibria. According to

the first, neither agent learns anything and always points to the house he was

endowed with. According to the other, both agents learn their true values

and point to the house they find to be of higher value. Note that in either

one of these equilibria the agents tell the truth.

Any strategy profile in 〈ϕ, t〉(E) is associated with an outcome function

f : Ω → (M,P) which maps any state ω to a profile of information parti-

tion (P i[ω])i∈I and a matching µ[ω] ∈ M6. A mechanism 〈ϕ, t〉 is said to

implement an outcome function f at the environment E if 〈ϕ, t〉(E) has

an equilibrium strategy profile that is associated with the outcome function

f . The set of all outcome functions implemented by 〈ϕ, t〉 at E is denoted

by o(〈ϕ, t〉(E)). The ex-ante utility U i of agent i associated with a given

outcome function f : Ω→ (M,P) is defined as

U i(f) =
∑
ω∈Ω

π(ω)
(
ωiµ[ω](i)(P

i[ω](ω))− ci(P i(ω))
)
.

One outcome function f is said to ex ante Pareto-dominate another out-

come function f ′ if U i(f) ≥ U i(f ′) holds for all i ∈ I and if U j(f) > U j(f ′)

holds for some j ∈ I. If all outcome functions implemented by 〈ϕ, t〉(E)

ex ante Pareto-dominate all outcome functions implemented by a different

dynamic direct revelation mechanism 〈ϕ′, t′〉 at E , then I write 〈ϕ, t〉(E) �∗
〈ϕ′, t′〉(E). I then say that mechanism 〈ϕ, t〉 ex ante Pareto-dominates mech-

anism 〈ϕ′, t′〉 at environment E .

3 The Uniqueness of Serial Dictatorship

It is the goal of this article to characterize all strategy-proof and non-bossy

mechanisms ϕ with c-trees t such that the dynamic direct revelation mecha-

6This needs to be distinguished from P i(ω) which is the event known by agent i at

ω, when he holds the partition P i. So at ω agent i knows the event P i[ω](ω) when he

acquires the partition prescribed by the outcome function P i[ω].
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nism 〈ϕ, t〉 is ex ante Pareto-optimal for any housing problem with endoge-

nous information acquisition. The next two theorems show that simple serial

dictatorship is the only such mechanism - whether one allows for all dynamic

direct revelation mechanisms or only for the simultaneous ones.

Theorem 1 1) Fix any environment E. No outcome function implemented

by some dynamic direct revelation mechanism, f ∈ o
(
〈ϕ, t〉(E)

)
, ex ante

Pareto-dominates the outcome function implemented by 3S dictatorship o
(
〈δ, tδ〉(E)

)
.

2) For any strategy-proof and non-bossy dynamic direct revelation mech-

anism that is not a 3S dictatorship, there exists an environment and a path-

dependent serial dictatorship such that any outcome function implemented by

the given dynamic direct revelation mechanism is Pareto-dominated by the

outcome function implemented by the sequential path-dependent serial dic-

tatorship. Formally, for all 〈ϕ, t〉 with ϕ strategy-proof and non-bossy there

exists a path-dependent serial dictatorship γ and an environment E, such that

〈γ, tγ〉(E) �∗ 〈ϕ, t〉(E).

An important asymmetry should be noted between the first and the sec-

ond part of the theorem: the first part says that simple serial dictatorship

goes undominated. However, not all mechanisms can be dominated by serial

dictatorships: the second part of the theorem refers to path-dependent se-

rial dictatorships. If one restricts attention to simultaneous direct revelation

mechanisms (ϕ, ts), a nearly identical result holds:

Theorem 2 1) Fix any environment E. No outcome function implemented

by some simultaneous direct revelation mechanism, f ∈
(
〈ϕ, ts〉(E)

)
, ex ante

Pareto-dominates all outcome functions implemented by simultaneous simple

serial dictatorship o
(
〈δ, ts〉(E)

)
.

2) For any strategy-proof and non-bossy simultaneous direct revelation

mechanism that is not a simultaneous simple serial dictatorship, there ex-

ists an environment and a path-dependent serial dictatorship such that the

outcome function implemented by the simultaneous path-dependent serial dic-

tatorship Pareto-dominates any outcome function implemented by the given

simultaneous direct revelation mechanism. Formally, for all 〈ϕ, ts〉 with ϕ
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strategy-proof and non-bossy there exists a path-dependent serial dictatorship

γ and an environment E, such that 〈γ, ts〉(E) �∗ 〈ϕ, ts〉(E).

Note that the two theorems are nearly identical up to a switch of “dy-

namic” and “simultaneous” in all the relevant places (including a replacement

of the c-trees t and tδ for the dynamic mechanisms with the simultaneous

c-tree ts). However, there is another – minor – difference which concerns

the first part of each theorem. In Theorem 1 it is claimed that no dynamic

direct revelation mechanism Pareto-dominates any outcome of 3S dictator-

ship. Differently, Theorem 2 makes the corresponding statement with respect

to all outcomes of simultaneous simple serial dictatorship. The reason for

this difference is that 3S dictatorship always has a unique outcome, whereas

simultaneous simple serial dictatorship might have multiple equilibria. Be-

fore going into any further detail, let me discuss two examples, that on the

one hand, illustrate the two theorems and, on the other hand, constitute the

backbone of their proof.

4 Two Examples

This section provides two examples of very small housing problems together

with dynamic direct revelation mechanisms 〈ϕ, t〉 that are not 3S dictator-

ships. In either case I present an environment E , such that the mechanism

〈ϕ, t〉 is ex ante Pareto-dominated by some sequential path-dependent serial

dictatorship γ at E : formally 〈γ, tγ〉(E) �∗ 〈ϕ, t〉(E). These examples show

that Theorems 1 and 2 hold for the special mechanisms provided in the two

examples. The proof of Theorems 1 and 2 relies on generalizing the insights

gained in these two examples and Example 2 to the large set of dynamic

direct choice mechanisms.

Example 4 Here I revisit Example 1 to argue that part 2 of Theorems 1

and 2 holds for n = 2. To see this, observe that with only two agents there

is only one strategy-proof and Pareto-optimal mechanism that is not a serial

dictatorship: fixing an initial endowment and letting agents trade freely,

as defined in Example 1. Observe that at least one agent in this mechanism

needs to declare his preferences to the designer before knowing the preference
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of the other. Assume that this is agent 1. To see that there is an environment,

such that serial dictatorship ex ante Pareto-dominates the given mechanism,

consider the environment defined in Example 1.

With the formalism developed so far, this environment Ea can be de-

scribed succinctly as follows: Take n = 2 and H = {k, g}, let π(ωik = 8) =

π(ωik = 0) = 1
2

and π(ωig = 2) = 1 for i = 1, 2, c1(P
1
) = .8 and c2(P

2
) = 0.7

As argued in the introduction, agent 1’s costs of learning outweigh his benefit

of learning if he starts out as the owner of house k in the trading mechanism:

in equilibrium there is no exchange in this mechanism, yielding the ex ante

utility profile (4, 2). Conversely, if agent 1 is the first dictator, learning is

worthwhile for him; in this case, agent 2 has a chance to obtain the ex-ante

more valuable house g, the ex-ante utility profile of this serial dictatorship is

(4.2, 3). Observe that I made only one reference to the sequence of announce-

ments: In the trading mechanism, (at least) one agent needs to announce his

preferences before knowing the preferences of the other. As this holds for

simultaneous and sequential versions of the mechanism and as the outcome

of serial dictatorship depends on only one announcement when there are just

two agents, the above shows part 2 of Theorems 1 and 2 for n = 2.

Observe that with just 2 agents path-dependent and simple serial dic-

tatorship coincide. In the next example I show that with 3 agents path-

dependent serial dictatorships can be ex-ante dominated by other path-

dependent serial dictatorships at some environments.

Example 5 Take n = 3 and H = {g, k, d}. Consider the sequential path-

dependent serial dictatorship 〈γ, tγ〉 with agent 1 as the first dictator. If

he chooses g, then agent 2 gets to choose from {k, d}; otherwise, agent 3

becomes the next dictator. Define the environment Ec, such that agent 1’s

utility vector for the three houses ω1 is either (2, 1, 0) or (0, 2, 1) - each with

probability 1
2
. Agent 1 faces a cost of .1 to learn his type. The utility

vectors of agent 2 and 3 are known to be ω2 = (10, 2, 0) and ω3 = (2, 10, 0),

respectively. So 〈γ, tγ〉 has a unique equilibrium, the unique vector of ex ante

7Nothing of substance would change if one was to assume that it costs the other 0 <

c2 < .5 to learn his value of house k. This case is tedious since one has to solve for a mixed

strategy equilibrium.
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utilities (1.9, 1, 1). Now consider the alternative sequential path-dependent

serial dictatorship (γ′, tγ
′
) which also starts with agent 1 as the first dictator,

but then continues with 3 as the next dictator if agent 1 chose g, and agent

2 otherwise. The vector of ex ante utilities implemented by (γ′, tγ
′
)(Ec) is

(1.9, 5, 5).

Note that timing of announcements does not matter for the given envi-

ronment; formally o
(
〈γ, t〉(Ec)

)
does not depend on t. The reason is that

there is only agent who has any information to acquire. Also note that any

path-dependent serial dictatorship that is not a simple serial dictatorship is

– up to renaming – equivalent to the mechanism γ defined in the above ex-

ample. In sum, the example shows that part 2 of Theorems 1 and 2 is true

when one only considers the case of path-dependent serial dictatorships and

n = 3.

5 The Trading Cycles Mechanism

The proof of Theorem 1 starts by restricting the set of direct revelation

mechanisms ϕ to be considered. For 〈ϕ, t〉 to be strategy-proof, non-bossy,

and ex ante Pareto-optimal, the direct revelation mechanism ϕ must itself

be non-bossy, strategy-proof and Pareto-optimal in the subset of standard

housing problems. The set of such mechanisms ϕ has been characterized

by Pycia and Unver [8] as the set of trading cycles mechanisms. In trading

cycles mechanisms, just like in Gale’s top trading cycles mechanism, there

is an initial allocation of all houses to the agents, and assignments are then

determined through trade in cycles. Trading cycles mechanisms generalize

Gale’s top trading cycles mechanism in two major ways: First of all, agents

can own more than one house before they leave with their assignment. Once

an owner of multiple houses leaves the mechanism his as of yet unmatched

houses are passed on to the remaining agents via a fixed inheritance rule.8

Secondly, there are two types of control rights in trading cycles mechanisms,

in addition to ownership, as in Gale’s top trading cycles mechanism there is

8This first difference between Gale’s top trading cycles and the trading cycles mecha-

nism already appears in Papai [7].
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a new form of control called brokerage. A broker can exchange the house he

controls for a different house; however, he may not himself appropriate the

house.

Formally, any trading cycles mechanism following Pycia and Unver [8]

is fully defined through a control rights structure (c, b). Such a structure

assigns control rights for any submatching σ: (c, b) = {(cσ, bσ) : Hσ →
Iσ × (ow, br)}σ∈M with cσ(h) the agent controlling house h and bσ(i) the

type of control at submatching σ (br for brokerage, and ow for ownership).

A control rights structure (c, b) is considered consistent if it satisfies the

following requirements R1-R6, which I take word by word from Pycia and

Unver [8]:

Within round requirements. Consider any σ ∈M :

(R1) There is at most one brokered house at σ.

(R2) If i is the only unmatched agent at σ, then i owns all unmatched houses

at σ.

(R3) If agent i brokers a house at σ, then i does not own any houses at σ.

Across-round requirements. Consider any submatchings σ, σ′, such that

|σ′| = |σ|+1 and σ ⊂ σ′ ∈M, and any agent i ∈ Iσ′ and any house h ∈ Hσ′ :

(R4) If i owns h at σ then i owns h at σ′.

(R5) Assume that at least two agents from Iσ own houses at σ′. If i brokers

house h at σ then i brokers h at σ′.

(R6) Assume that at σ agent i controls h and agent i′ ∈ Iσ controls h′ ∈ Hσ.

Then, i′ owns h at σ ∪ {(i, h′)}, and if, in addition, i brokers h at σ but not

at σ′ and i′ ∈ Iσ′ , then i′ owns h at σ′.

The following algorithm, consisting of a finite sequence of rounds r =

1, 2, ... establishes the outcome of the trading cycles mechanism ψc,b: The

submatching of agents and houses matched before round r is denoted by

σr−1, with σ0 = ∅. In round r each house h ∈ Hσr−1 points to the agent

who controls it at σr−1. If there exists a broker at σr−1, then he points to

his most preferred house among the ones owned at σr−1. All other agents

point to their most preferred house in Hσr−1 . There exists at least one cycle

of agents and houses pointing to each other. Each agent in each such trading

cycle is matched with the house he is pointing to. The union of σr−1 and
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the newly matched agent-house pairs defines σr. If σr is a matching, the

mechanism terminates. Pycia and Unver [8] show that a direct revelation

mechanism ϕ is strategy-proof, non-bossy and Pareto-optimal if and only if

there exists a consistent control rights structure (c, b) such that ϕ = ψc,b. A

discussion of the trading cycles mechanism goes beyond of the scope of the

present paper and can be found in their paper. Here I just wish to note that

path-dependent serial dictatorships (for each σ there exists an iσ such that

cσ(h) = iσ), simple serial dictatorships (iσ = iσ′ if | σ |=| σ′ | has to hold in

addition to the preceding requirement), and Gale’s top trading cycles (there

exists a matching µ such that c∅(h) = µ−1(h), bσ(h) = ow for all h ∈ H) are

special cases of trading cycles mechanisms.

6 Proof of Theorems 1 and 2

Observe first of all that the claim has been shown for n = 2 by Example 4.

So, assume throughout that I, H with n ≥ 3 are fixed. The proof of part 1)

of Theorem 1 uses the following result on the unique equilibrium outcome of

any sequential path-dependent serial dictatorship, which is essentially derived

from the no-indifference assumptions on the environments E under study.

Lemma 1 Any sequential path-dependent serial dictatorship 〈γ, tγ〉 imple-

ments a unique outcome function at any environment E; o(〈γ, tγ〉(E)) is a

singleton.9

To see that 3S dictatorship can never be ex ante Pareto-dominated fix

some 3S dictatorship 〈δ, tδ〉 together with an environment E . Suppose that

some other mechanism 〈ϕ, t〉 has an ex ante Pareto dominating outcome at E .

It cannot be that the first dictator [δ]−1(1) is any better off under 〈ϕ, t〉(E).

The first dictator has a unique optimal and truthful strategy and cannot be

made any better off by a different mechanism. Now observe that the unique-

ness of best strategies implies again that second dictator [δ]−1(2) cannot be

made any better off conditional on the distribution of choice sets associated

with the first dictator’s unique equilibrium strategy. This argument can be

9The proof of all Lemmas appears in the Appendix.
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applied inductively to all following dictators. This proves part 1) of Theorem

1.

To prove part 2) of Theorem 1, I subdivide the set of dynamic direct

mechanisms 〈ϕ, t〉 that are not 3S dictatorships into three categories: I)

ϕ is not a path-dependent serial dictatorship, II) ϕ is a path-dependent

serial dictatorship without being a simple serial dictatorship, III) ϕ is a

simple serial dictatorship δ, but t is not equal to tδ. Based on the work of

Pycia and Unver [8], I show that any strategy-proof, non-bossy and Pareto-

optimal ϕ that is not a path-dependent serial dictatorship is a trading cycles

mechanism with at least two owners in some round (Lemma 2). With this

observation in mind, one can see that for each of the three subclasses I

already provided a generic example of a mechanism that belongs to this class

together with an environment E , such that the exemplary mechanism is ex

ante Pareto-dominated by some path-dependent serial dictatorship at E . In

Examples 1 and 4 I discussed the example of a trading cycles mechanism

with two owners, and defined an environment Ea at which this mechanism

is ex ante Pareto-dominated by an (appropriately defined) 3S dictatorship.

Example 5 covers the case of a path-dependent serial dictatorship that is

not a simple serial dictatorship in a housing problem with just 3 agents.

In Example 2 I discussed a dynamic simple serial dictatorship (δ, t) that is

not sequential and showed that this mechanism is ex ante Pareto-dominated

by a 3S- dictatorship at the environment Eb. In Lemmas 3, 4, and 5 I use

the arguments made with respect to these three small scale examples in the

context of housing problems with a large number of agents and houses. The

technique of proof in all three cases is to embed the environment constructed

in the examples into an environment for a housing problem of any size.

Lemma 2 Consider a trading cycles mechanism ψc,b, if ψc,b 6= γ for γ any

path-dependent serial dictatorship. Then there exists a submatching σ and

two houses d, g, such that (cσ, bσ)(d) = (i, ow) and (cσ, bσ)(g) = (j, ow) with

i 6= j.

Together with the characterization by Pycia and Unver, this implies that

any strategy-proof, non-bossy and Pareto-optimal direct revelation mecha-

19



nism ϕ is either a path-dependent serial dictatorship or is a trading cycles

mechanism with at least two owners at some round.

Lemma 3 Fix any control rights structure (c, b) and assume that ψc,b is

has a round with at least two owners. Fix any c-tree t. There exists an

environment E and serial dictatorship δ such that any outcome of 〈ϕ, t〉(E)

is ex ante Pareto-dominated by the outcome of 〈δ, tδ〉(E).

Lemma 4 Fix a path-dependent serial dictatorship γ, that is not a simple

serial dictatorship, together with a c-tree t. There exists an environment E
and another path-dependent serial dictatorship γ′ such that the unique out-

come of (γ′, tγ
′
)(E) Pareto-dominates the all outcomes of 〈γ, t〉(E).

Lemma 5 Fix a serial dictatorship δ together with a c-tree t 6= tδ. There

exists an environment E such that the outcome of the sequential serial dicta-

torship (δ, t)(E) is ex ante Pareto-dominated by the outcome of the 3S dicta-

torship 〈δ, tδ〉(E).

Observe that Lemma 3 was proven by Example 1 for the case of n = 2,

and that Lemmas 4 and 5 were proven by Examples 5 and 2, respectively,

for the case of n = 3. The proof of these Lemmas for n > 3 consists in

embedding the environments defined in these examples into environments

with n houses and agents. Also observe that in sum Lemmas 2 through 5

constitute the proof of part 2 of Theorem 1. These Lemmas show that for any

conceivable deviation from 3S dictatorship there exists an environment such

that some path-dependent serial dictatorship dominates that mechanism at

this environment.

The proof of Theorem 2 follows from the observation that the sequen-

tiality of announcements neither matters for the arguments brought forward

with respect to Examples 5 and 4, nor for their embedding in larger envi-

ronments. The environments E chosen to prove Lemmas 3 and 4 are defined

such that in all relevant cases the outcome of the relevant direct mechanism

ϕ together a simultaneous c-tree ts coincides with the outcome of 〈ϕ, t〉 for

any other c-tree. The proof of Theorem 2 can be found in the Appendix.
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7 Conclusion

If one allows for endogenous information acquisition in housing problems,

simple serial dictatorships stand out from the large set of strategy-proof, non-

bossy and Pareto-optimal mechanisms. Whether one looks at mechanisms

that dynamically elicit preferences or only at the subset of mechanisms in

which preferences are elicited simultaneously: simple serial dictatorships are

the only ex-ante Pareto-optimal mechanisms.

Within the set of strategy-proof and non-bossy mechanisms, serial dicta-

torships are unique in the sense that they always provide optimal learning

incentives. When agents need to decide on learning in a serial dictatorship

they know all relevant information about their choice sets to tailor their in-

formation acquisition optimally. Example 1 shows that this is not the case

for Gale’s top trading cycles mechanism with just two agents: Here it might

be that an agent needs to decide what to learn when he only knows the dis-

tribution over his possible choice sets. That example was constructed such

that agent 1 avoids learning. In addition, agent 2 would rather award agent

1 dictator rights, to get agent 1 to learn, than to stay with the equilibrium

allocation of the case that agent 1 does not learn. The main argument of

the proof was that any strategy-proof, non-bossy and Pareto-optimal direct

choice mechanism that is not a serial dictatorship in a sense embeds Gale’s

top trading cycles mechanism with just two agents.

Abdulkadiroglu and Sonmez [1] show that serial dictatorship with the

order of dictators randomly drawn from a uniform distribution (random pri-

ority mechanism) is equivalent to Gale’s top trading cycles mechanism with

the endowment drawn from a uniform distribution. To see that this equiva-

lence result does not hold for the case of endogenous information acquisition,

reconsider the environment Ea defined and discussed in Examples 1 and 4.

The distribution over ex ante utility profiles for the two serial dictatorships

in which agents get to learn once they know whether they are the first or sec-

ond dictator is 1
2
(3, 5) + 1

2
(4.2, 3), so the profile of ex-ante utilities is (3.6, 4).

Conversely, for the case of Gale’s top trading cycles mechanism with random

endowments and simultaneous announcements, we have 1
2
(3, 5) + 1

2
(4, 2) as

the distribution, so the profile of ex ante utilities is (3.5, 3, 5). So, in this ex-
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ample, the random priority mechanism fares better than Gale’s top trading

cycles mechanism with random endowments. The question to what extent

this observation can be generalized remains open.

It could also be interesting to study ex-ante Pareto optimality without

the assumption of endogenous learning. This study could be couched in

a version of the model considered here with ci(P ) = 0 for any partition P

containing only elements E ∈ ζ i, meaning that agents face no cost of learning

their own types. Observe that the cost of learning in Example 5 played no

role, so the argument that any path-dependent serial dictatorship is ex-ante

Pareto-dominated by another path-dependent serial dictatorship for some

environment E also applies to this special case.

Observe that Example 5 can be re-interpreted to see a conflict between

bossiness and ex ante Pareto optimality. To see this, change the mechanism

γ defined in that example to a very similar type of bossy serial dictatorship

in which the identity of the second dictator does not depend on whether

agent 1 chooses house g or k, but rather on whether he ranks house d at

the bottom or not. Say agent 2 becomes the second dictator if and only

if agent 1 ranks house d at the bottom. This is a bossy mechanism, since

agent 1’s assignment does not change when announcing either (2, 1, 0) or

(2, 0, 1). However, the assignments to the following two dictators will vary

with agent 1’s announcement if their preferences are aligned. Now observe

that for Ec the environment given in Example 5 this bossy mechanism is

essentially identical to the path-dependent serial dictatorship defined there:

Ec is defined such that agent 1 chooses house g if and only if he ranks house d

lowest. Consequently, for Ec the given form of bossy serial dictatorship is ex-

ante Pareto-dominated by the alternative path-dependent serial dictatorship

γ′ provided the same example. This is but one example, it is not known

whether ex-ante Pareto optimality generally conflicts with bossiness.

8 Appendix

Proof of Lemma 1.
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The assumption that∑
E∈P

π(E) max
h∈S

ωih(E)− c(P ) 6=
∑
E∈Q

π(E) max
h∈S

ωih(E)− c(Q)

holds for any i, any two i-affordable partitions P 6= Q, and all subsets of

houses S ⊂ H, implies that for any pair of an agent and a choice set, (i, S),

there exists a unique best learning choice P that maximizes agent i’s ex ante

utility of his - informed - choice. Next the assumption that ωih(E) 6= ωig(E) for

any two houses h 6= g and for any i-affordable event E, implies that agents are

never indifferent between two houses for any ex post preferences. Together

these assumptions imply that any 〈γ, tγ〉(E) has a unique equilibrium (and

thereby also a unique outcome).10 �

Proof of Lemma 2. Suppose ψc,b is such that there is no σ, d, g with

(cσ, bσ)(d) = (i, ow), (cσ, bσ)(g) = (j, ow) and i 6= j. For ψc,b not to be a

path-dependent serial dictatorship, there has to be at least one σb with a

broker. Let σ◦ be a last matching following on σb with a broker. Let j be

broker of d at σ◦, formally σb ⊂ σ◦, (cσ◦ , bσ◦)(d) = (j, br) and there does not

exist a σ′′ such that σ◦ ⊂ σ′′, (cσ′′ , bσ′′)(h) = (i, br) for some i, h.

Define a set of functions (c′, b′) = {(c′σ, b′σ) : Hσ → Iσ × (ow, br)}σ∈M by

(c′σ◦ , b
′
σ◦)(h) = (i∗, ow) for all h ∈ Hσ◦ and i∗ ∈ Iσ◦ the only owner at σ◦

according to (c, b). Otherwise (c, b) and (c′, b′) are identical, that is (cσ, bσ) =

(c′σ, b
′
σ) for all σ 6= σ◦. Next observe that (c′, b′) satisfies conditions R1-R6

10Without the refinement of truthtelling, there might be multiple equilibria. To see this

observe that the first dictator is indifferent between the announcement of any preferences

that rank his choice out of the grand set H highest. However, even if we do not impose

the refinement This is implied by the non-bossiness of serial dictatorship.
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and is therefore a control rights structure.11 Now to see that ψc
′,b′ = ψc,b,

observe that under (c, b) agent i∗ can choose among all houses still available

at σ◦ since the broker is forced to point to some house owned by i∗. On the

other hand, if i∗ does point to house d at σ◦ agent j’s choice set is that of all

houses still available but d: Hσ◦ \ {d}. Agent j has the same choices under

(c′, b′) since (cσ∗ , bσ∗) = (c′σ∗ , b
′
σ∗) for σ∗ = σ◦∪{(i∗, d)}. And by R6 we must

have that (cσ∗ , bσ∗)(h) = (j, ow) for all h ∈ Hσ∗ = Hσ◦ \ {d}. If σ◦ was the

only σ with a broker, then we are done, since ψc
′,b′ is a path-dependent serial

dictatorship. If not, define another control rights structure which eliminates

brokerage from a submatching σ that is a last submatching with a broker

according to (c′, b′). Repeated application of this procedure terminates with

a control rights structure (c∗, b∗) such that ψc
∗,b∗ is a path-dependent serial

dictatorship and ψc
∗,b∗ = ψc,b. So any ψc,b is either a path-dependent serial

dictatorship or has two owners at some submatching σ. �

Proof of Lemma 3.

Fix any ψc,b such that there are two owners at some submatching σ. Let

σ∗ be the first in a sequence of such submatchings, formally (cσ∗ , bσ∗)(k) =

(j, ow) and (cσ∗ , bσ∗)(g) = (j′, ow) for some agents j 6= j′, houses k, g; and

σ ( σ∗ implies that there exists an agent iσ that is the sole owner at σ.

Assume w.l.o.g. that j = 1, j′ = 2 and that the c-tree t is such that 1 has to

announce his preferences before he learns the announcement of agent 2. Fix

a submatching σ′ such that σ∗ ⊂ σ′ with Iσ′ = I \{1, 2} and Hσ′ = H \{k, g}
and define the environment EA as follows:

Restricted to agents 1,2 and houses k, g, the environment EA is identical

to the environment Ea as defined in Example 4: for i = 1, 2: ωik = 8 and

11R1 and R3 are satisfied since there are no more brokered houses under (c, b) than

under (c′, b′) and since the brokers under (c′, b′) do control the same houses under (c, b)

as under (c′, b′). R2 is satisfied as the case of only one unmatched agent arises only for

| σ |= n − 1 for housing problems as they are defined here and since (c, b) and (c′, b′)

coincides for such submatchings. R4 is satisfied since (c′, b′) since the sole owner at σ◦

owns more houses under (c′, b′) than under (c, b). R5 is vacuously satisfied since under

(c′, b′) there is no submatching σ with two owners in Iσ. R6 is satisfied since for the only

pairs submatchings σ ⊂ σ′ with | σ′ |=| σ | +1 for which (c′, b′) differs from (c, b) the

antecedent of R6 (that there should be two different agents controlling houses at σ) is not

satisfied.
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ωik = 0, each with probability 1
2
; ωig = 2, c1(P

1
) = .8 and c2(P

2
) = 0. Agents

1,2 prefer houses k, g to all other houses: ωih < 0 for all h ∈ Hσ \ {k, g}.
Finally, each remaining agent knows his preferences and strictly prefers his

assignment under σ′ to all other houses: ωiσ′(i) > ωih for all h 6= σ′(i).

I claim that 〈ϕ, t〉(EA) has a unique truth-telling equilibrium, this equi-

librium results in the matching µ : I → N with µ(i) = σ′(i) for i ∈ Iσ′ ,

µ(1) = k and µ(2) = g. All agents but 1 and 2 know their preferences. All

these agents have a unique truthtelling strategy, which entails for agent i to

point to house σ′(i) as long as this house is still available. By assumption

ψc,b is a serial dictatorship until the submatching σ∗ obtains. Since σ∗ ⊂ σ′

the first Iσ∗ dictators will choose houses in accordance with σ∗. At this point

agent 1 becomes an owner of k and agent 2 becomes an owner of g. Given

that ωih < 0 is known for all h ∈ Hσ′ for i = 1, 2, agents 1 and 2 point

to houses k and g in any truthtelling equilibrium. Conversely, none of the

remaining agents Iσ∗ \{1, 2} points to either house k or g. So agents 1 and 2

find themselves in the same choice-situation as they did in the housing prob-

lem constructed in Example 4, which implies that agent 1 appropriates k and

agent 2 appropriates g in the unique equilibrium of 〈ϕ, t〉(EA). Each of the

remaining agents i points to σ′(i) in the following rounds. Since σ′(i) 6= σ′(i′)

for all i 6= i′, each agent i ∈ Iσ′ is matched to σ′(i). To see that truthtelling

is an equilibrium observe that each agent i ∈ I \ {1, 2} obtains their most

preferred house under the truthtelling strategy profile and can therefore not

possibly be made better off through a deviation. So the profile of ex ante

utilities implemented by 〈ϕ, t〉(EA) is (4, 2, ω3
σ′(3), · · · , ωnσ′(n)).

Now consider a serial dictatorship 〈δ, tδ〉 with [δ] is the identity function.

Since agents 1 and 2 prefer houses k and g to all other houses, their choices

are as in the serial dictatorship discussed in Example 4. On the other hand,

since each agent i strictly prefers his assignment under σ′ to all other houses,

all remaining agents will choose in accordance with σ′. So the unique pro-

file of expected utilities implemented by the serial dictatorship 〈δ, tδ〉(EA)

is (4.2, 3, ω3
σ′(3), · · · , ωnσ′(n)), which Pareto-dominates the unique outcome of

(ψc,b, t)(EA). �

Proof of Lemma 4.
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For γ not to be a simple serial dictatorship there have to be some sub-

matchings σ and σ̃ such that | Iσ |=| Iσ̃ | but γ(σ) 6= γ(σ̃). Let σ and σ̃

be such pair of minimal length and assume without loss of generality that

σ(i) 6= σ̃(i) for exactly one agent i. Assume that this agent is agent 1 and

that σ(1) = g, σ̃(1) = k, γ(σ) = 2, and γ(σ̃) = 3.

Now consider a submatching σ′ with Iσ′ = I \ {1, 2, 3} and Hσ′ = H \
{g, k, d}. Define an environment EC , such that restricted to agents 1,2,3

and houses g, k, and d the environment is identical to Ec, the environment

presented in Example 5. Furthermore, assume that all agents in Iσ′ know

their values of all houses, in particular they know that ωiσ′(i) > ωih holds for

all h 6= σ′(i). Finally, agents 1,2,3 know that ωih < 0 for any i = 1, 2, 3 and

h /∈ {g, k, d}.
In the unique equilibrium of 〈γ, t〉(EC), all agents in Iσ′ are matched to

σ′. The situation faced by agents 1,2 and 3 is identical to that they face

in Example 5. Just as in that example, it would be a Pareto improvement

for agents 2 and 3 to “switch”. So the alternative path-dependent serial

dictatorship (γ′, t′) with γ′(σ) = 2 if γ(σ) = 3 and γ′(σ) = 3 if γ(σ) = 2 ex

ante Pareto-dominates the given mechanism 〈γ, t〉 for the environment just

constructed.

�

Proof of Lemma 5.

Consider a dynamic simple serial dictatorship 〈δ, t〉 such that the c-tree

t is not δt. Assume without loss of generality that δ is the identity function,

so agents become dictators in the order of their names (one, two, three, ...).

For t not to be tδ there has to be some submatching σ such that some agent

i >| Iσ | +1 needs to announce his preferences after σ. Consider σ∗ as the

shortest submatching with this property. And let i∗ >| Iσ∗ | +1 be such

that t prescribes for i∗ to announce his ranking at the submatching σ∗. Let

| Iσ | +1: i. Observe that i∗, i′ < n as agent n need not announce any ranking

in the simple serial dictatorship δ with δ the identity.

Consider a submatching σ′ such that σ∗ ⊂ σ′, Iσ′ = I \ {i∗, i′, n} and

Hσ′ = H \ {g, k, d}. Now use this submatching to define an environment
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EB as follows: For any i ∈ Iσ′ , assume that he knows his preferences over

all houses and that ωiσ′(i) > ωih holds for all h 6= σ′(i). For agents i∗, i′, n

assume that ωih < 0 is known for all h ∈ Hσ′ . Assume furthermore that

restricted to houses {d, g, k} and agents i∗, i′, n the environment is identical

to Eb, the environment defined in Example 2, meaning each of these agents

faces a small cost to learn his value of house d which has a high variance.

Each of these two agents knows the value of houses g and k.

In the unique equilibrium of 〈δ, t〉(EB), all agents i ∈ Iσ′ obtain house

σ′(i). Moreover both agent i and i∗ will spend to learn their value of house

d and the allocation of houses g, k, d to agents i∗, i′ and n is such as if they

knew its value. To see that 〈δ, t〉 is dominated by a 3S dictatorship at EB ob-

serve that unique equilibrium of the corresponding 3S dictatorship 〈δ, tδ〉(EB)

differs from the unique equilibrium of 〈δ, t〉(EB), only in one respect: agent

i∗ will only learn his value of house d if this information is relevant to his

decision, that is if agent i′ does not himself acquire house d. The equilibrium

allocation is identical for both cases. In sum, the ex-ante utility of all agents

but agent i∗ remains unchanged: the allocations of both equilibria, more-

over agent i′ acquires information under both equilibria. Agent i∗ prefers the

equilibrium of 〈δ, tδ〉(EB) since his expected cost of information acquisition

is lower in this equilibrium. �

Proof of Theorem 2.

This proof consists in a few amendments of the proof of Theorem 1.

To prove the first part, I define a selection procedure among the outcomes

o((δ, ts)(E)) in case there are any indifferences. The problem of the first dic-

tator in the game (δ, ts)(E) is identical to his problem in the game (δ, tδ)(E).

So he has a unique best strategy. However, the second dictator may not

condition his learning on the first dictator’s choice. He might have multiple

best strategies. If he does so, choose the strategy most preferred by the third

dictator; if that does not lead to a unique strategy, choose the one that is best

according to the next dictator until one arrives at the last dictator. If this

procedure does not lead to a unique best strategy, pick any strategy among

the set of strategies for which all agents are indifferent. Now, conditioning

on the second dictator’s strategy, choose the third dictator’s strategy in the
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same fashion and so forth. This procedure leads to a subset of outcomes

o∗((δ, ts)(E)) ⊂ o((δ, ts)(E)). The proof of the part 1) of the present theorem

consists in an application of the proof of part 1) of Theorem 1 to this subset

of outcomes.

Next, for part 2), observe that, following Lemma 2, we can partition

the set of strategy-proof and non-bossy 〈ϕ, ts〉 that are not simultaneous

simple serial dictatorships into two subcategories: 〈ϕ, ts〉 with ϕ a path-

dependent serial dictatorship and ϕ has a round with at least two owners.

Now reconsider Lemma 3 and observe that the mechanism with at least

two owners in some round ϕ together with the environment EA, and the 3S

dictatorship 〈δ, tδ〉 constructed in the proof of that Lemma are such that

o(〈δ, tδ〉(EA)) = o((δ, ts)(EA)). The reason for this is that according to the

equilibrium strategies in 〈δ, tδ〉(EA) only one agent learns anything, all other

agents announce their ex-ante preferences. Therefore it does not matter

whether all agents are forced to announce simultaneously. So the construction

in the proof of Lemma 3 also serves to show that for any 〈ϕ, ts〉 with ϕ a

trading cycles mechanism with at least two owners in some round there exists

a simple serial dictatorship such that 〈δ, ts〉(EA)) �∗ 〈ϕ, ts〉(EA).

Next, observe that the environment used to prove Lemma 4 has only one

agent with a priori unknown preferences. Therefore within that environment

the choice of a c-tree never matters 〈ϕ, t〉(EC) = 〈ϕ, ts〉(EC). Therefore the

conclusion of Lemma 4 remains valid when restricting attention to simulta-

neous mechanisms. It can be concluded for the two relevant cases an environ-

ment together with a Pareto-dominating path-dependent serial dictatorship

is available. �
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