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Abstract

This paper presents a Heterogeneous Agent Model of a financial
market with chartist and fundamentalist traders that exhibit bounded
rationality and short-term thinking to explain the effect of under and
overreaction to news. The existence of the Market Maker’s finite
price adjustment speed leads to the fact that prices do not adjust
instantaneously to new information. Chartists use moving average
rules to make their investment decisions. Chartist can transform an
underreaction-only scenario into a market with overreaction. The use
of long moving average rules might even make the market unstable.
Furthermore, noise in financial markets can lead to long time decou-
pling from fundamental value. Higher market efficiency (low deviations
from fundamental value), on the other hand, is achieved if high ratio-
nality and long-term thinking for the agents is assumed.

JEL classification: G14 - D84 - C62 - C15
Keywords: Heterogeneous Agent Model - stock market - under and
overreaction to news - moving average rules - financial stability
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1 Introduction

This paper shows that the phenomenon of under and overreaction to news
can be explained by a Heterogeneous Agent Model (HAM) of a financial
market. This effect is only considered scantly in the literature on HAMs.!
First, an analytical discussion of a simplified linearized version of the model
without noise is presented. Instead of using Bifurcation Theory, the ana-
lytical framework of classical control theory is applied. We show that the
emergence of overreaction and instability depends on the chartists’ strategy.
Underreaction occurs due to finite price adjustment speed and risk aversion
by fundamental traders. It can be dampened by chartist behavior. In the
case of a combined under and overreaction scenario high aggressiveness of
chartists and high price adjustment speed can lead to instability. Secondly,
a simulation-based approach of the complex model shows that a low degree
of rationality of agents as well as short-term thinking increase the effect of
both under and overreaction and therefore decrease market efficiency. Sim-
ulation also confirms that market noise leads to long-term decoupling from
fundamental value.

HAMs dating back to Day and Huang (1990) have recently become very
popular for discussing the behavior of stock markets. These models rely on
two basic assumption: agents (i) exhibit bounded rationality and (ii) form
heterogeneous beliefs. The HAMs in finance normally distinguish between
fundamentalists, technical, and noise traders. The models have been applied
to different markets such as commodities (Reitz and Westerhoff, 2007), for-
eign exchange (De Grauwe and Grimaldi, 2006), options (Frijns et al., 2010),
and stocks (Westerhoff, 2008). The models are able to replicate several styl-
ized facts found in actual financial markets such as excess volatility, random
walk behavior (indicated by insignificant autocorrelations in returns), volatil-
ity clustering (as indicated by significant slowly decreasing autocorrelations
in absolute returns), skewness as well as excess kurtosis of return distribu-
tion (Lux, 2009). In a mathematical sense, these models are represented
by non-linear difference equations. Current research expands these models
to incorporate realistic trading strategies (e.g.Westerhoff (2006)), whilst the
mathematical analysis, mostly relying on the tools of Bifurcation Theory, is
brought to a more sophisticated level (e.g. Hommes and Wagener (2009)).
This analysis helps to understand which parameters or model features drive
the stylized facts (e.g. He and Li (2007)) and correspond to the stability of
the market (e.g. Chiarella et al. (2009)). Major factors seem to be the rules

'Boswijk et al. (2007) present a HAM of the S&P500 explaining the DotCom-bubble
by the overreaction to good fundamental news.



used by chartist traders (Chiarella et al., 2006) and the noise in financial
markets (Chiarella et al., 2011).

In this paper we use the HAM framework to examine the effect of un-
der and/or overreaction. This effect is inconsistent with the Efficient Market
Hypothesis assuming instant price reaction to news fundamentals. Neverthe-
less, several empirical studies seem to confirm these effects in real markets.
Underreaction describes the idea that prices only sluggishly react to new in-
formation and is therefore also often referred to as the Momentum Effect.
This effect implies that past price movements have predictive power for fu-
ture prices, since they are followed by returns of the same sign. Overreaction
on the other side states that markets overreact to good or bad news, but
returns adjust to a mean in the long run. Therefore, this effect is also known
as Mean Reversion. These effects seem to be contradictory. Note that un-
derreaction is mostly measured in the short run, whilst overreaction is found
in longer horizons of roughly three to five years (Beechey et al., 2000).

Several models explain the effects of under and overreaction based on
findings of Behavioral Finance. Daniel et al. (1998) attribute these effects
to overconfidence and biased self-attribution. Individuals overestimate the
precision of private signals (overconfidence). By contrast, reaction to public
events is asymmetrical: events that confirm the validity of private informa-
tion are attributed to high forecast ability, while public information that
disconfirms private information is blamed on noise or sabotage (biased self-
attribution). Daniel et al. (1998) provide simulations that show short-run
Momentum followed by long-run reversals. This is also measured by short-
run positive and long-run negative autocorrelations in returns. Note that the
model predicts initial overreaction followed by even more overreaction. An-
other approach for explaining both effects in a unified theoretical framework
is presented by Barberis et al. (1998). They assume the two psychological
effects of representativeness and conservatism. The former refers to the ef-
fect that market participants tend to see patterns based on few observations,
while the latter refers to the slow updating of beliefs. The combination of
these two effects is able to replicate the effect of short-term Momentum and
long-run Mean Reversion. While these models rely on the idea of a single
representative agent, the approach of Hong and Stein (1999) introduces the
interaction of different trader types as a key to understand both effects. Due
to slow diffusion of private information among so-called Information Traders,
there is underreaction and momentum in the prices, which evokes the action
of Momentum Traders with positive feedback behavior creating the effect of
overreaction. The authors present a hump-shaped price reaction function
and are also able to measure the short-run positive and long-run negative
autocorrelations. Under and overreaction are both stronger when low infor-



mation diffusion is considered. Both Hong and Stein (1999) and Barberis
et al. (1998) present a model with initial underreaction followed by subse-
quent overreaction.

In the remainder of this paper, we follow the rationale of Hong and Stein
(1999) that combined under and overreaction can be explained by the inter-
action of heterogeneous agents with bounded rationality. Therefore, a very
common representation of a HAM is presented in section 2. Based on a lin-
earized version of the model, the conditions for under and overreaction are
examined analytically in section 3. In line with Chiarella et al. (2006) it is
assumed that technical traders use moving average rules. The window length
of this rule proves to be crucial for systemic stability. Longer moving average
rules might even lead to instability. Furthermore, we discuss the interaction
of the parameters of chartist and fundamentalists aggressiveness as well as
price reaction speed of the Market Maker. One key finding is that due to the
fact that markets have a finite price adjustment speed and are therefore not
cleared at any time as assumed by Walrasian aucutioneer, trend-following
chartist traders emerge and eventually lead to overreaction or even insta-
bility. In section 4 the complex model is discussed on a simulation based
approach. The model is able to replicate several effects found in empiri-
cal studies of under and overreaction. Both analytical and simulation-based
approaches confirm that noise trading in combination with Momentum trad-
ing is a crucial factor that drives real markets and affects market stability.
Section 5 concludes and gives directions for further research.

2 Basic model

This section presents the basic model. The model presented is closely related
to well-known HAMs of financial markets as presented in recent surveys by
Hommes and Wagener (2009) and Chiarella et al. (2009). We assume mean-
variance portfolio optimization in a world with two assets: a risky asset with
expected return E;(ryy1) and a risk-free asset with safe return of 7"f2. The
demand for risky asset is derived with mean-variance portfolio optimization
(Hommes and Wagener, 2009):

i BEi(rep) =y

2The effect of dividends is neglected since we assume day-trading behavior. Since
dividends are normally only paid out once a year only, they do not matter for all but one
trading period a year.



The demand of a certain group of agents ¢ therefore crucially depends on the
group’s individual expectation of future returns.®> Demand for risky assets
increases with high expected excess returns (relative to risk-free rate). In-
versely, demand is low in the case of high risk aversion RA and high volatility
of returns o2.

The market-clearing in classic economic models is modeled as a Walrasian
auctioneer. The key idea is that after determining the excess market demand,
the auctioneer keeps announcing prices and interacts with the market feed-
back until the excess demand equals zero. This yields the classic demand
equals supply equation:

> WiD;=N, (2)
i=1

In this case, 0 < W; < 1 represents the market weight of a specific group of
agents. The aggregate demand should equal the supply N;. Since agents can
go short in stocks in the case that they expect prices to fall, they can also
supply stocks (D! < 0). Thus, no external supply N; is necessary. This case
shall be referred to as Zero Net Supply.

As presented in Chiarella et al. (2009), this modeling approach, even
though widely used in economic analysis, only plays a part in one real market
(the market for silver in London). Therefore, it is convenient to model a
so-called Market Maker mechanism for market-clearing (e.g., Chiarella et al.
(2006), Westerhoff (2008)). Even though this approach is still very simplified,
it comes closer to price determination in actual markets. The key idea here
is that an institution named Market Maker takes an offsetting long or short
position to assure that excess demand in period ¢t equals zero. In the next
period, the Market Maker announces a new log-price p;,; to reduce excess
demand*:

n
Pre1 = Pe+ M(Z W{D; — Ny) (3)
i=1
In this case, u > 0 represents the price reaction speed of the Market Maker.

If we assume infinite reaction speed, this approach reduces to a Walrasian
auctioneer:

lim (M + > WiD; - Nt> =S WiDi- N, =0 (4)

— 00
a H =1 i=1

3To improve the processing of the demand in the computational model I apply a slightly
different formation for the demand, which is presented in the appendix in section A.

4The model uses log-prices p; instead of real prices P;. This is briefly discussed in
appendix A.



This result will be of interest when the dynamic properties of the system
are analyzed in the following section. Furthermore, the parameter ;1 can be
interpreted as the liquidity of the market. In time of illiquid markets p is
high and prices react severely to excess demand.

In the basic model, the weights of the different agents vary in time. This
represents the empirical fact pointed out by Menkhoff and Taylor (2007) that
traders do not stick to a certain rule, but instead use a combination of both
technical and fundamental analysis. The weights of the groups are derived
using a Multinominal Logit Model as presented in Manski and McFadden
(1981): A

; VAL

R ?
Due to the construction of the equation, the individual weights sum up to
one. The parameter v presents a degree of rationality in choosing a strategy.
In case v equals zero, the weights of the groups are constant and amount to
1/n. The other extreme case with  converging to infinity represents the case
in which all individuals choose the optimal forecast. De Grauwe and Grimaldi
(2006) therefore interpret this parameter as a model of the behavioral effect
of Status Quos Bias as presented in Kahneman et al. (1991). This effect
implies that individuals find it difficult to change a decision rule they used
in the past. In a more general way, this parameter can also be considered
as a value for bounded rationality in the sense of Simon (1955). Due to the
limited resources of time and money, individuals use suboptimal rules.

The weight of a strategy W} in the market is evaluated by its attractive-
ness A! in a period t. This parameter is modeled in the following way®:

Ai = Difl (e — rf) + 77Ai71 ~ szl ~(In(1 + 7)) —In(1 + Tf)) + 77Ai71
=D; - (pt —p1 —In(14+71y)) +nA;_,

(6)

It considers the profits a strategy yielded between period (¢t — 1) and ¢. Note
that a profit is made in the case where risky assets are bought when returns
are higher than risk-free returns, or risky assets are sold when their return
is lower than the return of the risk-free asset. The parameter 0 < n < 1
represents the memory of the agent. If it is set to zero, myopic traders
that only value the very last success of the strategy are considered. In the
case 11 = 1, instead of profits the accumulated wealth of a group is taken
into account. This modeling approach enables us to investigate the effect

5This equation builds on results presented in appendix A.



of short-term focusing in financial markets. The parameters v and 7 are
therefore the key to measuring the degree of irrationality in markets.

The model investigates four different strategies: (i) fundamentalism, (ii)
chartism using moving average rules, (iii) noise trading, and (iv) a passive
investment strategy. Fundamental traders know the true fundamental log-
value of an asset f; and expect the prices to converge to it. Their expectations
can therefore be modeled in the following way:

EF(pt+1) — Pt = Oé(ft - pt) (7)

The parameter 0 < «a < 1 measures the speed at which fundamentalist
traders expect prices of stock to converge to their true underlying value.
This strategy can be interpreted as the the Hedge Fund strategy of so-called
Alpha Seeking trying to buy undervalued and to sell overvalued securities in
the market (securities whose «, representing the deviation from the Security
Market Line, are positive, respectively negative). Their action contributes to
higher market efficiency.

Chartists on the other hand do not consider fundamental prices, but
derive order signals from past prices. There are several studies indicating
widespread use of technical analysis (even) among professional traders in
particular in foreign exchange markets. Chartism is especially important for
short-term forecast horizons.® Hong and Stein (1999) show that chartism
can be useful in exploiting the general underreaction of markets. Chartism is
often also referred to as Technical Trading, since it derives its trading signals
from clear rules that can be automated. For this reason it is also very easy
to implement these rules in a HAM. One of the easiest rules to implement is
the moving average rule:

Ng—1 N;—1

1 1
Ec(per1) —pe =5 N Z Dt—i — N, Z Dt—i (8)
5 =0 i=0

This strategy compares a long to a short-moving average (N; < N;). The
use of the moving averages can be explained by market noise: it filters fluc-
tuations around a long-run trend (Menkhoff and Taylor, 2007).” Normally,
an intersection of the two moving averages is required to generate a trading
signal. If we neglect this condition, this rule can generate a trading signal in
each trading period implying that traders are always in the market (Brock
et al., 1992). Another important feature of this rule is that it shows Momen-
tum behavior by generating buying signals in case of increasing prices and

For a survey the reader is referred to Menkhoff and Taylor (2007).
In a control theory sense, a moving average acts as a low-pass filter, which filters away
high-frequency noise.



selling signals in case of decreasing prices (Menkhoff and Taylor, 2007)%. The
parameter 0 < [ < 1 measures the aggressiveness with which the chartist
traders take positions in the market.

A crucial factor in market trading is noise trading. According to Black
(1986), noise traders trade on noise as if it were information. Noise is modeled
as an i.i.d. process with mean zero and variance o?. This is consistent with
the consideration of Shleifer (2000) that noise should, on mean, cancel itself
out. Noise trading can also be explained by the need for liquidity (here the
need to raise capital for other reasons (Bouchaud et al., 2009)). In line with
Westerhoff (2008), noise is considered in three parts of the model. First,
there is a demand of pure noise traders a; which is included in the Market
Maker equation:

Pt+1 =Dt + M(Z WiD; — N,) + ay (9)

=1

On the other side, both fundamentalist and chartist traders have features of
noise traders. Therefore their expectations formation is also superimposed
by noisy processes b; and ¢:

Ep(pes1) —pe = o fr —pt) + b (10)
| Nl L N

Ec(piy1) —pe =0 N Z Di—i — N, Z Di—i| + ¢ (11)
S =0 i=0

Since chartists exhibit more irrational behavior, it is assumed that o, > oy.

The last remaining group are passive traders. Since they only invest in
the risk-free asset, the attractiveness of their strategy is always zero, implying
that they do not earn excess return relative to the risk-free rate. Note that if
fundamentalists or chartists fail to predict future price movements correctly,
their attractiveness can become negative. Accordingly, the weight of the
passive agents increases. Apart from that, high risk-free rates, high risk
aversions and high volatility of stocks contribute to the attractiveness of the
passive strategy modeling a flight to quality. Since passive traders do not
take orders in the market, they do not have an impact on the prices.

8The opposite is the case for a Mean Reversion strategy, which is heavily used by
Hedge Funds. If a short moving average is below a long moving average, a buying signal is
perceived. The long-moving average in the Mean Reversion strategy therefore can therefore
be considered a proxy for the fundamental value derived upon historic data.



3 Analytical approach in a linearized version of
the model

The analytical approach applies the techniques of control theory in the fre-
quency domain. These rules have been developed for linear differential equa-
tions. The use of linear differential equations for the modeling of stock market
behavior dates back to Beja and Goldman (1980) and is still widely used in
models such as Chiarella et al. (2011). Since the model consists of non-linear
difference equations, several simplifications have to be made. First, we as-
sume that prices are described by a continuous time function p(¢) instead of
a discrete function p, with the following property:

dp(t) .
Pt+1 — Dt dt p (12)
Furthermore, the simplified model assumes risk-neutral investors and a risk-
free rate of zero, which leads to the fact that demand equals the expected

change of log-prices of each group”:
D} = Ei(per1) — ps (13)

If we now consider the case of v = 0 for the weighting equation (equation 5),
we model totally irrational individuals who stick to a rule, even though it is
not profitable. Taking into account equation 5 this results in the fact that all
three rules have the same market share. If we neglect the scaling behavior of
the weighting factor, the following continuous time Market Maker equation
can be derived:

. 1 1

p=ul3-Dec+ 3Dr) = u(Dc + Dr) (14)
This result is identical to the one of Chiarella et al. (2011). The same re-
sult can be derived if totally rational (v converging to infinity) but myopic
investors (n = 0) are considered'®. Thereby the analytical results in this
chapter apply for total irrational as well as extremely myopic investors. The
noise terms in the models are set to their expected value of zero (De Grauwe
and Grimaldi, 2006).

9This formation of demand is based on the results presented in appendix A. Higher risk
aversion can be considered if low values for the aggressiveness of a strategy as measured
in the parameters  and g are assumed. Since the daily risk-free rate is close to zero it is
usually neglected (e.g. Fama (1998)).

19The derivation of the law of motion of prices assuming n = 0 and v — oo is presented
in appendix B.



First, we want to examine the fundamentalist-only case (f = 0). This
results in the following law of motion for log-prices p:

p=pla(f —p)) (15)

If we transfer this equation into the frequency domain, the following response
function F'(s) to a step-shock in fundamental value can be derived:

pls) 1
fls) 1455
By assuming a step function, we examine the effect of prices in the case where

the log-fundamental value f suddenly changes from zero to one. The result
resembles the classic PT}-behavior of control theory (Unbehauen, 2008):

K
14+ Ts

F(s) =

(16)

F(s) (17)

The system converges to a final value of K with a speed of T' (see figure 1).
Since in this case K = 1, the model converges to its fundamental value. In

Fundamental value
181 -7 — — — Step response

16 ~
141+

12F 4

0.8F /
061 /
0.4 i

0.2+ T

Figure 1: Response of a PT) system to a step function

this case an underreaction-only scenario is produced. The effect of underre-
action is stronger for high values of T
1 1 1
T=—=s=——>=—<0 (18)
o T o

The effect of underreaction is therefore stronger in case the case of low price
adjustment speed p (i.e. high market liquidity) as well as the low aggres-
siveness of fundamental agents « (i.e. high risk aversion of fundamentalists).
The system is always stable since the eigenvalue is always negative. If we fur-
thermore take into account a Walrasian auctioneer as a special case of Market



Maker with infinite conversion speed, there is no underreaction (7' = 0). The
same result can be derived for the case of risk-neutral fundamental trader
(v converging to infinity). This is consistent with the idea of the EMH that
prices adjust instantaneously to news (Menkhoff and Taylor, 2007).

Now, the effect of different technical rules on the behavior of prices is
investigated. We start by assuming the very simple case of Ny = 1 and
N; = 2. This yields the following demand for chartists:

D¢ = 5(1% - 1(Pt - ptfl)) = E(Pt - ptfl) (19)

2 2
This modeling for the demand of chartists is frequently used in HAMs (e.g.
Westerhoff (2008)). The main idea is that chartists expect the most recent
trend to continue at a speed of g Considering differential instead of difference
equation chartist demand can be presented as follows!!:

p B, .
D¢ = §(pt —Pio1) = 5(]9 —P) (20)
If we insert this into the Market Maker equation and transfer it into the fre-
quency domain, the following response function F'(s) to a step in fundamental
value can be derived!?:
p(s) 1
F(s) = = 21
(s) f(s) ﬁﬁ—f-?ﬂ—’fs—l—l (1)

2

This behavior represents the so-called PT5 function of control theory (Unbe-

hauen, 2008):
K

124 2D
wgs —|—w08+1

F(s) = (22)

The eigenvalues of the system are defined by the following equation:
81/2 = WO(—D + v D? — ]_) (23)
In this case, the variables D and wy are given as follows:

Wy = 2?06 (24)

11 A derivation of this result is presented in appendix C.

12 A short introduction to the analysis of linear differential equation in the frequency
domain is given in the appendix C. This section also presents the derivation and the
discussion of the transfer functions for the different presented cases.

10
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Depending on the value of D three cases can be distinguished (see figure 2). In
the first case D > 1, the system converges in a slow process of underreaction
to its fundamental value like the PT; transfer function. The condition for
underreaction-only therefore is as follows:

2> u/B(VB +2v2Va) (26)

Low values of price adjustment speed u as well as low aggressiveness of agents
« and [ therefore lead to the underreaction-only scenario. Keeping in mind
that low aggressiveness can also be interpreted as high risk aversion by agents
this leads to the result that underreaction is promoted in a scenario with
high risk aversion. Furthermore, low values of ;1 can be interpreted as high
liquidity. This implies that overreaction tends to occur more frequently in
illiquid markets. Note that in the presence of chartists high aggressiveness
by both chartist and fundamental traders lead to overreaction.
Overreaction on the other side occurs in second case of 0 < D < 1. As
presented in Hommes (2011), the effect of overreaction can only be produced
in the case where chartist traders with autoregressive behavior of at least
second order (AR(2) behavior) are assumed. The simulation shows the well-
known hump-shaped price pattern as presented in Daniel et al. (1998) and
Hong and Stein (1999) of underreaction in the first instance followed by
subsequent overreaction (see figure 2). In the long-run, the system converges

(25)

35
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Figure 2: Response of a P75 system to a step function with exemplary values
for D
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to its underlying fundamental value.

This does not hold in the third case (D < 0). For uf > 2 we have an
unstable system. High price adjustment speed and the high aggressiveness
of chartist traders therefore lead to instability.

The parameter wy represents the frequency of price behavior. In the case
of underreaction-only, high values of wy therefore indicate fast conversion to
fundamental value, whilst in the case of combined under and overreaction
they lead to faster swings between under and overreaction. High value for
fundamentalist aggressiveness « relative to the aggressiveness of chartists
B therefore at first sight might therefore lead to less underreaction. On the
other side, as presented in equation 26, higher values of « lead to overreaction.
In other words, high aggressiveness of fundamentalists in order to reduce
underreaction leads to the effect of overreaction of market prices to news.

If we now assume L, = 1 and L; = 3, the following chartist demand can
be derived:

1 2 1 1
D, = - = _il = Py — =Pi—1 — =Pi— 27
G [pt 3 ;pt ] B |:3pt gPe-1 — gPe-2 (27)
The price reaction function is described by the following equation:'?
P(s) 1 (28)
s) = -
—Lss B2y (1u5ﬁ)s+ 1

This system is always unstable. Therefore the theoretical results of Chiarella
et al. (2009) which show that longer moving average rules destabilize the
market are confirmed.

4 Simulation of the complex model

As discussed in section 3, the analytical approach required some simplifica-
tions. Therefore, the simulation results of the complex model are compared
with the linearized model. In the process, we also want to investigate the
parameter of autocorrelation intensely discussed in empirical studies of under
and overreaction.

Applying a shock of In(2) ~ 0.69 in log-fundamental value f; is identical
to a doubling of real fundamental value F;. Figure 3 shows simulation re-
sults for the case with L, = 1 and L; = 2 in a zero-noise-framework. The
parameters are set to 4 = 1 and a = f = 0.6 implying overreaction for

13The determination of this equation is presented in appendix C.

12
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Figure 3: (left:) Price reaction to a step shock in news in both linearized and
complex model; (right:) Weight of agents in complex model

the linearized model. Furthermore, the values of n = 0.985 for memory and
v = 20 for rationality are assumed.'* Note that the hump-shaped pattern is
only produced in the linearized case. This can be explained by the fact that
the linearized version assumes constant weights of agents (We = Wp = 1).
As presented in figure 3, the shock in news fundamentals is accompanied
by a higher weight of fundamentalist traders. Since the weight of Momentum
Traders is less important than in the linearized model there is no overreaction.
Even though there is no overreaction in the complex case, it also exhibits the
negative autocorrelation for higher time lags (see figure 4). For that reason,
long-run negative autocorrelations do not have to signify overreaction.

14The risk aversion is assumed as RA = 10 and the risk-free rate as 7 = 0.01% (equals
an annual rate of approximately ry = 2.5%).
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Figure 4: Autocorrelation of raw and absolute returns in both linearized and
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The L; = 3 is always unstable in the linearized version, whilst the complex
case produces underreaction. In figure 5 the parameters for rationality v and
memory 7 are varied for this case. High values of rationality v and memory
1 lead to lower underreaction and therefore to higher market efficiency.
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Figure 6: Price reaction to a step shock in news fundamentals in the complex
model with L; = 4, p = 1.4, and variation of rationality v and memory 7

When simulating the case with L; = 4 in the complex model and further
also assuming p = 1.4, the classic hump-shaped pattern of overreaction is
produced. As shown in figure 6, a higher degree of rationality v leads to
lower overreaction. Short-term thinking (low values for n) on the other side
amplifies the effect of overreaction. Simulation confirmed that the effect of
memory is more important than the effect of rationality. Since high mem-
ories and high rationality lead to both lower under and overreaction they
contribute to higher market efficiency.

Simulation assumed zero noise. Now, different forms of noise are applied
for the L, = 3 case. As shown in figure 7, pure noise trading noise o, and
fundamentalist noise o3, only lead to noise-induced swings around the true
fundamental value. Chartist noise o. on the other hand leads to a permanent
trend away from the fundamental value.
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Figure 9: Autocorrelation of raw and absolute returns in the complex model
after a shock in news fundamentals in the case of noise

This can be explained by the fact that high noise makes the chartist’s
process attractive. As shown in figure 8, for the case with all three forms of
noise, after the fundamental shock in period 20 which makes fundamentalism
attractive, chartist traders take over the market and destabilize it. Noise also
leads to the fact that the autocorrelations of the returns become insignificant
and lose their patterns (see figure 9). Therefore, it is difficult to derive results
from empirical studies of autocorrelation.

5 Conclusion

In this paper the phenomenon of under and overreaction to news in financial
markets is discussed within the framework of a Heterogeneous Agent Model.
This model relies on the idea that market prices are the result of the interac-
tion of fundamental and technical traders both subject to bounded rational-
ity as well as short-term thinking. Furthermore, there is noise in the trading
process. An analytical approach of the linearized model confirmed that the
existence of finite price adjustment speed and risk-aversion of fundamental
traders leads to underreaction. A fundamental-only scenario with infinite
price adjustment speed (Walrasian auctioneer) on the other hand can repli-
cate the instantaneous adjustment to news fundamentals as predicted by the
Efficient Market Hypothesis. Chartist behavior transform an underreaction-
only scenario into a scenario with under and overreaction. Consistent with
Chiarella et al. (2006), the use of longer moving average rules also leads to
systemic instability.
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Based on a simulation this paper also shows that the analytical approach
overestimates the effect of financial fragility by assuming constant agent
weights. In the simulation, news leads to a higher weight of fundamental
agents that transforms the system back to its fundamental value. The sim-
ulation is able to reproduce the short-run positive and long-run negative
autocorrelations in returns shown in empirical studies. Apart from that, the
simulation confirms that high degrees of rationality and long-term thinking
decrease the effect of underreaction. In a scenario with overreaction, high
rationality can decrease the effect of overreaction. Short-term thinking with
low values for memory on the other hand, worsens the effect of overreaction.

The simulation also considers the effect of noise. First of all, noise in
financial markets makes it difficult to derive results from empirical studies of
autocorrelation. Moreover, in combination with chartist trading noise leads
to further decoupling from fundamental value.

Further research therefore should analyze the effect of noise in more de-
tail. This paper only presents a very simplified analytical approach. Deeper
insights might be gained in the case where the model is analyzed in the so-
called z-domain developed for difference equations (e.g. Juang (1994)). Fur-
thermore, more realistic moving-average rules, as presented in Brock et al.
(1992), should be examined in a simulation-based approach. Further research
should also discuss the effect of these rules on statistical properties commonly
investigated in HAMs.
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A  Demand in the computational model

The computational model processes log-prices p; instead of real prices P,.
This has the advantage that in contrast to real prices, which cannot fall
below zero, log-prices are not bounded. Recall the following mathematical
connection for log-prices:

E(P1)

t

E(piss) — pe = n(E(Prr)) ~ In(P) = In ( ) (14 E(r)) (29)

Recall the first-order Taylor approximation for the In function:
In(1+x) =2+ 0(a?) (30)

If we now use these results, the demand of group 7 can be displayed in the
following way:

Ei(pra) —pe = +7ry)  In(l+ Ei(ri0)) —In(1 + 1)

Dt = =
K RA-02+1 RA-02 41 (31)
_ Eilre) —ry
RA-02+41

Note that the value of one is added up in the denominator. This happens for
two reasons: (i) As the variance at the beginning of computing time is zero,
simulation would otherwise run into problems of zero division. (ii) In this
modeling approach RA acts as a scaling factor. By setting this parameter to
zero we can account for risk-neutral individuals.

B A different linearization approach for the model

The linearization approach presented in the text is independent of the mem-
ory of agents 1. A similar result can be derived if we assume optimal weight-
ing (v converging to infinity) but short-term thinking due to zero memory
(n = 0). We simplify the weighting equation by using the first-order Taylor
approach for the exponential function:

e’ =14z +0(z?) (32)

The weighting in this case only depends on the attractiveness:

1+ A L+ A A
W= = 5 i [ = (33)
Yo (L+vA) e \ S+ 30 A > i1 Ai
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By also assuming a zero risk-free rate, the attractiveness can be determined
by the following differential equation:

This results in the following market equation, which can be simplified by
assuming small values for demand so that it represents the one presented in
equation 14.

c Ap
Aot An Dot A A )
|:(p_]5)'DC'DC+(p_25)'DF'DF_
(p —p)(Dc + Dr) l
_[D&+ Di]

- {DC+DF_

2D¢ - Dp

= Do+Dp — —————
M[c F De + Dy

} ~ p(Dc + Dr)

Therefore, this Market Maker equation can be derived if bounded rationality
due to suboptimal rules or myopic thinking is considered.

C Derivation of the different transfer functions

The transformation from the time domain ¢ to the frequency domain s is
given by the solution of the Fourier integral (Unbehauen (2008)):

oo = [ e (36)
0
It can be described by the following symbolism:

y(t)o—ey(s) (37)

One of the most important transformations is the one for derivatives (Unbe-
hauen (2008)):

dry(t) —~ . (dUVF)
T o—es"y(s) — Zs <W)t0+ (38)

=1

The transfer function F'(s) describes the behavior of a dynamic system y to
the input u and is defined in the following way (Unbehauen (2008, p. 60)):

y(s)  bo+bis+---+bys™  N(s)

F(s)= = =
(s) uw(s)  apgt+as+---+aps”  D(s)

(39)
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By setting the denominator to zero (D(s) = 0) we can derive the so-called
poles or eigenvalues of the system sq, so,- -+, s,, which describe the homoge-
neous solution of the system in the time domain (Unbehauen (2008)):

Ynom (t) = Z Cie*t (40)
i1

The stability condition is that the real part of the eigenvalue is negative
(Re{s;} <0) (Unbehauen (2008, p. 140)).

The chartist demand for the case Ly = 1 and L; = 2 can be derived if we
consider the following assumption for the second order derivative:

ppt) —pt —1) = (prr1 —pr) — (D6 — Pr1) = P — 20 +pe1 (41)
This results in the following chartist demand D¢:

De = g(Pt —pi-1) = g((ptﬂ = pt) = (P41 — 2+ pra)) = g(P —p) (42)

Using these results the following transfer function can be derived:

b= |53 6-i+alr-p)]

2
(5 pp
o—ep(s) (732 +A-E)s+ ua) = f(s) po (43)
176’ 1
W2+ (1— s+ pa %52+—(227L’;6)s+1

Now, the case of Ly, = 1 and L; = 3 is presented. The transformation
of the difference equation into a differential equation requires the following
connection:

Dy~ pt) — Pt —1)
~ (pe—2p—1 T pi2) — (De-1 = 2pro +Pi-3) = pr — 3pr—1 +3pr—2 — Pr3

(44)
The chartist demand can therefore be described by the following equation:
1-]-)- 4. e
3 317 p
1 1 4 8 4
= \ 3P — P + Pi—1 — 3P + 3P + 3Pt~ 3P + (Pe+1 — 1)
2 1 1 1
= gpt - gptfl - gpth - gpth

(45)
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Using this result the transfer function is calculated:

b= |35H = i)+ alr - )]
oeple) (1250 st 4 (1= ) s+ ) = f(0) (a0
1
= Fls) = —%33 + %32 + (125’8)3 +1

This system is always unstable. This system is a so-called P73 system, which
can be described as serial connection of three P77 systems. Mathematically,
this can be done by multiplying P77 functions:

K Y’ K?
F(s) = = 47
(5) (sT + 1) s3T3 4 35212 + 3sT + 1 (47)

Since the stability condition for the PT} system requires 1" > 0 all coefficients
of the denominator of the P73 function have to be positive as well. In
this case the coefficient of s3 is always negative, thus rendering the system
unstable.
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