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News Reation in Finanial Markets within aBehavioral Finane Model with HeterogeneousAgentsThomas Fisher∗TU Darmstadt�sher�vwl.tu-darmstadt.deDarmstadt, September 2011AbstratThis paper presents a Heterogeneous Agent Model of a �nanialmarket with hartist and fundamentalist traders that exhibit boundedrationality and short-term thinking to explain the e�et of under andoverreation to news. The existene of the Market Maker's �niteprie adjustment speed leads to the fat that pries do not adjustinstantaneously to new information. Chartists use moving averagerules to make their investment deisions. Chartist an transform anunderreation-only senario into a market with overreation. The useof long moving average rules might even make the market unstable.Furthermore, noise in �nanial markets an lead to long time deou-pling from fundamental value. Higher market e�ieny (low deviationsfrom fundamental value), on the other hand, is ahieved if high ratio-nality and long-term thinking for the agents is assumed.JEL lassi�ation: G14 - D84 - C62 - C15Keywords: Heterogeneous Agent Model - stok market - under andoverreation to news - moving average rules - �nanial stability
∗I am grateful to Jesper Riedler and Ingo Barens for numerous helpful omments. PhilipSavage ontributed stylisti advie. Of ourse, all remaining errors are mine.



1 IntrodutionThis paper shows that the phenomenon of under and overreation to newsan be explained by a Heterogeneous Agent Model (HAM) of a �nanialmarket. This e�et is only onsidered santly in the literature on HAMs.1First, an analytial disussion of a simpli�ed linearized version of the modelwithout noise is presented. Instead of using Bifuration Theory, the ana-lytial framework of lassial ontrol theory is applied. We show that theemergene of overreation and instability depends on the hartists' strategy.Underreation ours due to �nite prie adjustment speed and risk aversionby fundamental traders. It an be dampened by hartist behavior. In thease of a ombined under and overreation senario high aggressiveness ofhartists and high prie adjustment speed an lead to instability. Seondly,a simulation-based approah of the omplex model shows that a low degreeof rationality of agents as well as short-term thinking inrease the e�et ofboth under and overreation and therefore derease market e�ieny. Sim-ulation also on�rms that market noise leads to long-term deoupling fromfundamental value.HAMs dating bak to Day and Huang (1990) have reently beome verypopular for disussing the behavior of stok markets. These models rely ontwo basi assumption: agents (i) exhibit bounded rationality and (ii) formheterogeneous beliefs. The HAMs in �nane normally distinguish betweenfundamentalists, tehnial, and noise traders. The models have been appliedto di�erent markets suh as ommodities (Reitz and Westerho�, 2007), for-eign exhange (De Grauwe and Grimaldi, 2006), options (Frijns et al., 2010),and stoks (Westerho�, 2008). The models are able to repliate several styl-ized fats found in atual �nanial markets suh as exess volatility, randomwalk behavior (indiated by insigni�ant autoorrelations in returns), volatil-ity lustering (as indiated by signi�ant slowly dereasing autoorrelationsin absolute returns), skewness as well as exess kurtosis of return distribu-tion (Lux, 2009). In a mathematial sense, these models are representedby non-linear di�erene equations. Current researh expands these modelsto inorporate realisti trading strategies (e.g.Westerho� (2006)), whilst themathematial analysis, mostly relying on the tools of Bifuration Theory, isbrought to a more sophistiated level (e.g. Hommes and Wagener (2009)).This analysis helps to understand whih parameters or model features drivethe stylized fats (e.g. He and Li (2007)) and orrespond to the stability ofthe market (e.g. Chiarella et al. (2009)). Major fators seem to be the rules1Boswijk et al. (2007) present a HAM of the S&P500 explaining the DotCom-bubbleby the overreation to good fundamental news.1



used by hartist traders (Chiarella et al., 2006) and the noise in �nanialmarkets (Chiarella et al., 2011).In this paper we use the HAM framework to examine the e�et of un-der and/or overreation. This e�et is inonsistent with the E�ient MarketHypothesis assuming instant prie reation to news fundamentals. Neverthe-less, several empirial studies seem to on�rm these e�ets in real markets.Underreation desribes the idea that pries only sluggishly reat to new in-formation and is therefore also often referred to as the Momentum E�et.This e�et implies that past prie movements have preditive power for fu-ture pries, sine they are followed by returns of the same sign. Overreationon the other side states that markets overreat to good or bad news, butreturns adjust to a mean in the long run. Therefore, this e�et is also knownas Mean Reversion. These e�ets seem to be ontraditory. Note that un-derreation is mostly measured in the short run, whilst overreation is foundin longer horizons of roughly three to �ve years (Beehey et al., 2000).Several models explain the e�ets of under and overreation based on�ndings of Behavioral Finane. Daniel et al. (1998) attribute these e�etsto overon�dene and biased self-attribution. Individuals overestimate thepreision of private signals (overon�dene). By ontrast, reation to publievents is asymmetrial: events that on�rm the validity of private informa-tion are attributed to high foreast ability, while publi information thatdison�rms private information is blamed on noise or sabotage (biased self-attribution). Daniel et al. (1998) provide simulations that show short-runMomentum followed by long-run reversals. This is also measured by short-run positive and long-run negative autoorrelations in returns. Note that themodel predits initial overreation followed by even more overreation. An-other approah for explaining both e�ets in a uni�ed theoretial frameworkis presented by Barberis et al. (1998). They assume the two psyhologiale�ets of representativeness and onservatism. The former refers to the ef-fet that market partiipants tend to see patterns based on few observations,while the latter refers to the slow updating of beliefs. The ombination ofthese two e�ets is able to repliate the e�et of short-term Momentum andlong-run Mean Reversion. While these models rely on the idea of a singlerepresentative agent, the approah of Hong and Stein (1999) introdues theinteration of di�erent trader types as a key to understand both e�ets. Dueto slow di�usion of private information among so-alled Information Traders,there is underreation and momentum in the pries, whih evokes the ationof Momentum Traders with positive feedbak behavior reating the e�et ofoverreation. The authors present a hump-shaped prie reation funtionand are also able to measure the short-run positive and long-run negativeautoorrelations. Under and overreation are both stronger when low infor-2



mation di�usion is onsidered. Both Hong and Stein (1999) and Barberiset al. (1998) present a model with initial underreation followed by subse-quent overreation.In the remainder of this paper, we follow the rationale of Hong and Stein(1999) that ombined under and overreation an be explained by the inter-ation of heterogeneous agents with bounded rationality. Therefore, a veryommon representation of a HAM is presented in setion 2. Based on a lin-earized version of the model, the onditions for under and overreation areexamined analytially in setion 3. In line with Chiarella et al. (2006) it isassumed that tehnial traders use moving average rules. The window lengthof this rule proves to be ruial for systemi stability. Longer moving averagerules might even lead to instability. Furthermore, we disuss the interationof the parameters of hartist and fundamentalists aggressiveness as well asprie reation speed of the Market Maker. One key �nding is that due to thefat that markets have a �nite prie adjustment speed and are therefore notleared at any time as assumed by Walrasian auutioneer, trend-followinghartist traders emerge and eventually lead to overreation or even insta-bility. In setion 4 the omplex model is disussed on a simulation basedapproah. The model is able to repliate several e�ets found in empiri-al studies of under and overreation. Both analytial and simulation-basedapproahes on�rm that noise trading in ombination with Momentum trad-ing is a ruial fator that drives real markets and a�ets market stability.Setion 5 onludes and gives diretions for further researh.2 Basi modelThis setion presents the basi model. The model presented is losely relatedto well-known HAMs of �nanial markets as presented in reent surveys byHommes and Wagener (2009) and Chiarella et al. (2009). We assume mean-variane portfolio optimization in a world with two assets: a risky asset withexpeted return Ei(rt+1) and a risk-free asset with safe return of rf 2. Thedemand for risky asset is derived with mean-variane portfolio optimization(Hommes and Wagener, 2009):
Di

t =
Ei(rt+1)− rf

RA · σ2
r

(1)2The e�et of dividends is negleted sine we assume day-trading behavior. Sinedividends are normally only paid out one a year only, they do not matter for all but onetrading period a year. 3



The demand of a ertain group of agents i therefore ruially depends on thegroup's individual expetation of future returns.3 Demand for risky assetsinreases with high expeted exess returns (relative to risk-free rate). In-versely, demand is low in the ase of high risk aversion RA and high volatilityof returns σ2
r .The market-learing in lassi eonomi models is modeled as a Walrasianautioneer. The key idea is that after determining the exess market demand,the autioneer keeps announing pries and interats with the market feed-bak until the exess demand equals zero. This yields the lassi demandequals supply equation:

n
∑

i=1

W i
tD

i
t = Nt (2)In this ase, 0 < Wt < 1 represents the market weight of a spei� group ofagents. The aggregate demand should equal the supply Nt. Sine agents ango short in stoks in the ase that they expet pries to fall, they an alsosupply stoks (Di

t < 0). Thus, no external supply Nt is neessary. This aseshall be referred to as Zero Net Supply.As presented in Chiarella et al. (2009), this modeling approah, eventhough widely used in eonomi analysis, only plays a part in one real market(the market for silver in London). Therefore, it is onvenient to model aso-alled Market Maker mehanism for market-learing (e.g., Chiarella et al.(2006), Westerho� (2008)). Even though this approah is still very simpli�ed,it omes loser to prie determination in atual markets. The key idea hereis that an institution named Market Maker takes an o�setting long or shortposition to assure that exess demand in period t equals zero. In the nextperiod, the Market Maker announes a new log-prie pt+1 to redue exessdemand4:
pt+1 = pt + µ(

n
∑

i=1

W i
tD

i
t −Nt) (3)In this ase, µ > 0 represents the prie reation speed of the Market Maker.If we assume in�nite reation speed, this approah redues to a Walrasianautioneer:

lim
µ→∞

(

pt − pt+1

µ
+

n
∑

i=1

W i
tD

i
t −Nt

)

=
n
∑

i=1

W i
tD

i
t −Nt = 0 (4)3To improve the proessing of the demand in the omputational model I apply a slightlydi�erent formation for the demand, whih is presented in the appendix in setion A.4The model uses log-pries pt instead of real pries Pt. This is brie�y disussed inappendix A. 4



This result will be of interest when the dynami properties of the systemare analyzed in the following setion. Furthermore, the parameter µ an beinterpreted as the liquidity of the market. In time of illiquid markets µ ishigh and pries reat severely to exess demand.In the basi model, the weights of the di�erent agents vary in time. Thisrepresents the empirial fat pointed out by Menkho� and Taylor (2007) thattraders do not stik to a ertain rule, but instead use a ombination of bothtehnial and fundamental analysis. The weights of the groups are derivedusing a Multinominal Logit Model as presented in Manski and MFadden(1981):
W i

t =
eγA

i
t

∑n
i=1 e

γAi
t

(5)Due to the onstrution of the equation, the individual weights sum up toone. The parameter γ presents a degree of rationality in hoosing a strategy.In ase γ equals zero, the weights of the groups are onstant and amount to
1/n. The other extreme ase with γ onverging to in�nity represents the asein whih all individuals hoose the optimal foreast. De Grauwe and Grimaldi(2006) therefore interpret this parameter as a model of the behavioral e�etof Status Quos Bias as presented in Kahneman et al. (1991). This e�etimplies that individuals �nd it di�ult to hange a deision rule they usedin the past. In a more general way, this parameter an also be onsideredas a value for bounded rationality in the sense of Simon (1955). Due to thelimited resoures of time and money, individuals use suboptimal rules.The weight of a strategy W i

t in the market is evaluated by its attrative-ness Ai
t in a period t. This parameter is modeled in the following way5:

Ai
t = Di

t−1 · (rt − rf) + ηAi
t−1 ≈ Di

t−1 · (ln(1 + rt)− ln(1 + rf)) + ηAi
t−1

= Di
t−1 · (pt − pt−1 − ln(1 + rf)) + ηAi

t−1(6)It onsiders the pro�ts a strategy yielded between period (t− 1) and t. Notethat a pro�t is made in the ase where risky assets are bought when returnsare higher than risk-free returns, or risky assets are sold when their returnis lower than the return of the risk-free asset. The parameter 0 < η < 1represents the memory of the agent. If it is set to zero, myopi tradersthat only value the very last suess of the strategy are onsidered. In thease η = 1, instead of pro�ts the aumulated wealth of a group is takeninto aount. This modeling approah enables us to investigate the e�et5This equation builds on results presented in appendix A.5



of short-term fousing in �nanial markets. The parameters γ and η aretherefore the key to measuring the degree of irrationality in markets.The model investigates four di�erent strategies: (i) fundamentalism, (ii)hartism using moving average rules, (iii) noise trading, and (iv) a passiveinvestment strategy. Fundamental traders know the true fundamental log-value of an asset ft and expet the pries to onverge to it. Their expetationsan therefore be modeled in the following way:
EF (pt+1)− pt = α(ft − pt) (7)The parameter 0 < α < 1 measures the speed at whih fundamentalisttraders expet pries of stok to onverge to their true underlying value.This strategy an be interpreted as the the Hedge Fund strategy of so-alledAlpha Seeking trying to buy undervalued and to sell overvalued seurities inthe market (seurities whose α, representing the deviation from the SeurityMarket Line, are positive, respetively negative). Their ation ontributes tohigher market e�ieny.Chartists on the other hand do not onsider fundamental pries, butderive order signals from past pries. There are several studies indiatingwidespread use of tehnial analysis (even) among professional traders inpartiular in foreign exhange markets. Chartism is espeially important forshort-term foreast horizons.6 Hong and Stein (1999) show that hartisman be useful in exploiting the general underreation of markets. Chartism isoften also referred to as Tehnial Trading, sine it derives its trading signalsfrom lear rules that an be automated. For this reason it is also very easyto implement these rules in a HAM. One of the easiest rules to implement isthe moving average rule:

EC(pt+1)− pt = β

[

1

Ns

Ns−1
∑

i=0

pt−i −
1

Nl

Nl−1
∑

i=0

pt−i

] (8)This strategy ompares a long to a short-moving average (Ns < Nl). Theuse of the moving averages an be explained by market noise: it �lters �u-tuations around a long-run trend (Menkho� and Taylor, 2007).7 Normally,an intersetion of the two moving averages is required to generate a tradingsignal. If we neglet this ondition, this rule an generate a trading signal ineah trading period implying that traders are always in the market (Broket al., 1992). Another important feature of this rule is that it shows Momen-tum behavior by generating buying signals in ase of inreasing pries and6For a survey the reader is referred to Menkho� and Taylor (2007).7In a ontrol theory sense, a moving average ats as a low-pass �lter, whih �lters awayhigh-frequeny noise. 6



selling signals in ase of dereasing pries (Menkho� and Taylor, 2007)8. Theparameter 0 < β < 1 measures the aggressiveness with whih the hartisttraders take positions in the market.A ruial fator in market trading is noise trading. Aording to Blak(1986), noise traders trade on noise as if it were information. Noise is modeledas an i.i.d. proess with mean zero and variane σ2
i . This is onsistent withthe onsideration of Shleifer (2000) that noise should, on mean, anel itselfout. Noise trading an also be explained by the need for liquidity (here theneed to raise apital for other reasons (Bouhaud et al., 2009)). In line withWesterho� (2008), noise is onsidered in three parts of the model. First,there is a demand of pure noise traders at whih is inluded in the MarketMaker equation:

pt+1 = pt + µ(
n
∑

i=1

W i
tD

i
t −Nt) + at (9)On the other side, both fundamentalist and hartist traders have features ofnoise traders. Therefore their expetations formation is also superimposedby noisy proesses bt and ct:

EF (pt+1)− pt = α(ft − pt) + bt (10)
EC(pt+1)− pt = β

[

1

Ns

Ns−1
∑

i=0

pt−i −
1

Nl

Nl−1
∑

i=0

pt−i

]

+ ct (11)Sine hartists exhibit more irrational behavior, it is assumed that σc > σb.The last remaining group are passive traders. Sine they only invest inthe risk-free asset, the attrativeness of their strategy is always zero, implyingthat they do not earn exess return relative to the risk-free rate. Note that iffundamentalists or hartists fail to predit future prie movements orretly,their attrativeness an beome negative. Aordingly, the weight of thepassive agents inreases. Apart from that, high risk-free rates, high riskaversions and high volatility of stoks ontribute to the attrativeness of thepassive strategy modeling a �ight to quality. Sine passive traders do nottake orders in the market, they do not have an impat on the pries.8The opposite is the ase for a Mean Reversion strategy, whih is heavily used byHedge Funds. If a short moving average is below a long moving average, a buying signal ispereived. The long-moving average in the Mean Reversion strategy therefore an thereforebe onsidered a proxy for the fundamental value derived upon histori data.
7



3 Analytial approah in a linearized version ofthe modelThe analytial approah applies the tehniques of ontrol theory in the fre-queny domain. These rules have been developed for linear di�erential equa-tions. The use of linear di�erential equations for the modeling of stok marketbehavior dates bak to Beja and Goldman (1980) and is still widely used inmodels suh as Chiarella et al. (2011). Sine the model onsists of non-lineardi�erene equations, several simpli�ations have to be made. First, we as-sume that pries are desribed by a ontinuous time funtion p(t) instead ofa disrete funtion pt with the following property:
pt+1 − pt ≈

dp(t)

dt
= ṗ (12)Furthermore, the simpli�ed model assumes risk-neutral investors and a risk-free rate of zero, whih leads to the fat that demand equals the expetedhange of log-pries of eah group9:

Di
t = Ei(pt+1)− pt (13)If we now onsider the ase of γ = 0 for the weighting equation (equation 5),we model totally irrational individuals who stik to a rule, even though it isnot pro�table. Taking into aount equation 5 this results in the fat that allthree rules have the same market share. If we neglet the saling behavior ofthe weighting fator, the following ontinuous time Market Maker equationan be derived:

ṗ = µ(
1

3
·DC +

1

3
DF ) ≈ µ(DC +DF ) (14)This result is idential to the one of Chiarella et al. (2011). The same re-sult an be derived if totally rational (γ onverging to in�nity) but myopiinvestors (η = 0) are onsidered10. Thereby the analytial results in thishapter apply for total irrational as well as extremely myopi investors. Thenoise terms in the models are set to their expeted value of zero (De Grauweand Grimaldi, 2006).9This formation of demand is based on the results presented in appendix A. Higher riskaversion an be onsidered if low values for the aggressiveness of a strategy as measuredin the parameters α and β are assumed. Sine the daily risk-free rate is lose to zero it isusually negleted (e.g. Fama (1998)).10The derivation of the law of motion of pries assuming η = 0 and γ → ∞ is presentedin appendix B. 8



First, we want to examine the fundamentalist-only ase (β = 0). Thisresults in the following law of motion for log-pries p:
ṗ = µ(α(f − p)) (15)If we transfer this equation into the frequeny domain, the following responsefuntion F (s) to a step-shok in fundamental value an be derived:

F (s) =
p(s)

f(s)
=

1

1 + s
µα

(16)By assuming a step funtion, we examine the e�et of pries in the ase wherethe log-fundamental value f suddenly hanges from zero to one. The resultresembles the lassi PT1-behavior of ontrol theory (Unbehauen, 2008):
F (s) =

K

1 + Ts
(17)The system onverges to a �nal value of K with a speed of T (see �gure 1).Sine in this ase K = 1, the model onverges to its fundamental value. In

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

 

 
Fundamental value
Step response

K=2

TFigure 1: Response of a PT1 system to a step funtionthis ase an underreation-only senario is produed. The e�et of underre-ation is stronger for high values of T :
T =

1

µα
⇒ s = − 1

T
= − 1

µα
< 0 (18)The e�et of underreation is therefore stronger in ase the ase of low prieadjustment speed µ (i.e. high market liquidity) as well as the low aggres-siveness of fundamental agents α (i.e. high risk aversion of fundamentalists).The system is always stable sine the eigenvalue is always negative. If we fur-thermore take into aount a Walrasian autioneer as a speial ase of Market9



Maker with in�nite onversion speed, there is no underreation (T = 0). Thesame result an be derived for the ase of risk-neutral fundamental trader(α onverging to in�nity). This is onsistent with the idea of the EMH thatpries adjust instantaneously to news (Menkho� and Taylor, 2007).Now, the e�et of di�erent tehnial rules on the behavior of pries isinvestigated. We start by assuming the very simple ase of Ns = 1 and
Nl = 2. This yields the following demand for hartists:

DC = β(pt −
1

2
(pt − pt−1)) =

β

2
(pt − pt−1) (19)This modeling for the demand of hartists is frequently used in HAMs (e.g.Westerho� (2008)). The main idea is that hartists expet the most reenttrend to ontinue at a speed of β

2
. Considering di�erential instead of di�ereneequation hartist demand an be presented as follows11:

DC =
β

2
(pt − pt−1) =

β

2
(ṗ− p̈) (20)If we insert this into the Market Maker equation and transfer it into the fre-queny domain, the following response funtion F (s) to a step in fundamentalvalue an be derived12:

F (s) =
p(s)

f(s)
=

1
β
2α
s2 + 2−µβ

2µα
s+ 1

(21)This behavior represents the so-alled PT2 funtion of ontrol theory (Unbe-hauen, 2008):
F (s) =

K
1
ω2

0

s2 + 2D
ω0

s + 1
(22)The eigenvalues of the system are de�ned by the following equation:

s1/2 = ω0(−D ±
√
D2 − 1) (23)In this ase, the variables D and ω0 are given as follows:

ω0 =

√

2α

β
(24)11A derivation of this result is presented in appendix C.12A short introdution to the analysis of linear di�erential equation in the frequenydomain is given in the appendix C. This setion also presents the derivation and thedisussion of the transfer funtions for the di�erent presented ases.10



D =
2− µβ

2
√
2µ

√
αβ

(25)Depending on the value ofD three ases an be distinguished (see �gure 2). Inthe �rst ase D > 1, the system onverges in a slow proess of underreationto its fundamental value like the PT1 transfer funtion. The ondition forunderreation-only therefore is as follows:
2 > µ

√

β(
√

β + 2
√
2
√
α) (26)Low values of prie adjustment speed µ as well as low aggressiveness of agents

α and β therefore lead to the underreation-only senario. Keeping in mindthat low aggressiveness an also be interpreted as high risk aversion by agentsthis leads to the result that underreation is promoted in a senario withhigh risk aversion. Furthermore, low values of µ an be interpreted as highliquidity. This implies that overreation tends to our more frequently inilliquid markets. Note that in the presene of hartists high aggressivenessby both hartist and fundamental traders lead to overreation.Overreation on the other side ours in seond ase of 0 < D < 1. Aspresented in Hommes (2011), the e�et of overreation an only be produedin the ase where hartist traders with autoregressive behavior of at leastseond order (AR(2) behavior) are assumed. The simulation shows the well-known hump-shaped prie pattern as presented in Daniel et al. (1998) andHong and Stein (1999) of underreation in the �rst instane followed bysubsequent overreation (see �gure 2). In the long-run, the system onverges
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to its underlying fundamental value.This does not hold in the third ase (D < 0). For µβ > 2 we have anunstable system. High prie adjustment speed and the high aggressivenessof hartist traders therefore lead to instability.The parameter ω0 represents the frequeny of prie behavior. In the aseof underreation-only, high values of ω0 therefore indiate fast onversion tofundamental value, whilst in the ase of ombined under and overreationthey lead to faster swings between under and overreation. High value forfundamentalist aggressiveness α relative to the aggressiveness of hartists
β therefore at �rst sight might therefore lead to less underreation. On theother side, as presented in equation 26, higher values of α lead to overreation.In other words, high aggressiveness of fundamentalists in order to redueunderreation leads to the e�et of overreation of market pries to news.If we now assume Ls = 1 and Ll = 3, the following hartist demand anbe derived:

Dc = β

[

pt −
1

3

2
∑

i=0

pt−i

]

= β

[

2

3
pt −

1

3
pt−1 −

1

3
pt−2

] (27)The prie reation funtion is desribed by the following equation:13
F (s) =

1

− β
α3
s3 + 4β

3α
s2 + (1−µβ

µα
)s+ 1

(28)This system is always unstable. Therefore the theoretial results of Chiarellaet al. (2009) whih show that longer moving average rules destabilize themarket are on�rmed.4 Simulation of the omplex modelAs disussed in setion 3, the analytial approah required some simpli�a-tions. Therefore, the simulation results of the omplex model are omparedwith the linearized model. In the proess, we also want to investigate theparameter of autoorrelation intensely disussed in empirial studies of underand overreation.Applying a shok of ln(2) ≈ 0.69 in log-fundamental value ft is identialto a doubling of real fundamental value Ft. Figure 3 shows simulation re-sults for the ase with Ls = 1 and Ll = 2 in a zero-noise-framework. Theparameters are set to µ = 1 and α = β = 0.6 implying overreation for13The determination of this equation is presented in appendix C.12
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Figure 3: (left:) Prie reation to a step shok in news in both linearized andomplex model; (right:) Weight of agents in omplex modelthe linearized model. Furthermore, the values of η = 0.985 for memory and
γ = 20 for rationality are assumed.14 Note that the hump-shaped pattern isonly produed in the linearized ase. This an be explained by the fat thatthe linearized version assumes onstant weights of agents (WC = WF = 1).As presented in �gure 3, the shok in news fundamentals is aompaniedby a higher weight of fundamentalist traders. Sine the weight of MomentumTraders is less important than in the linearized model there is no overreation.Even though there is no overreation in the omplex ase, it also exhibits thenegative autoorrelation for higher time lags (see �gure 4). For that reason,long-run negative autoorrelations do not have to signify overreation.

14The risk aversion is assumed as RA = 10 and the risk-free rate as rf = 0.01% (equalsan annual rate of approximately rf = 2.5%).13
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Figure 4: Autoorrelation of raw and absolute returns in both linearized andomplex model after a step shok in news fundamentals
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Figure 5: Prie reation to a step shok in news fundamentals in the omplexmodel with Ll = 3 and variation of rationality γ and memory η14



The Ll = 3 is always unstable in the linearized version, whilst the omplexase produes underreation. In �gure 5 the parameters for rationality γ andmemory η are varied for this ase. High values of rationality γ and memory
η lead to lower underreation and therefore to higher market e�ieny.
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Figure 6: Prie reation to a step shok in news fundamentals in the omplexmodel with Ll = 4, µ = 1.4, and variation of rationality γ and memory ηWhen simulating the ase with Ll = 4 in the omplex model and furtheralso assuming µ = 1.4, the lassi hump-shaped pattern of overreation isprodued. As shown in �gure 6, a higher degree of rationality γ leads tolower overreation. Short-term thinking (low values for η) on the other sideampli�es the e�et of overreation. Simulation on�rmed that the e�et ofmemory is more important than the e�et of rationality. Sine high mem-ories and high rationality lead to both lower under and overreation theyontribute to higher market e�ieny.Simulation assumed zero noise. Now, di�erent forms of noise are appliedfor the Ll = 3 ase. As shown in �gure 7, pure noise trading noise σa andfundamentalist noise σb only lead to noise-indued swings around the truefundamental value. Chartist noise σc on the other hand leads to a permanenttrend away from the fundamental value.
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Figure 8: Weights of agents with step shok to news fundamentals and noise
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Figure 9: Autoorrelation of raw and absolute returns in the omplex modelafter a shok in news fundamentals in the ase of noiseThis an be explained by the fat that high noise makes the hartist'sproess attrative. As shown in �gure 8, for the ase with all three forms ofnoise, after the fundamental shok in period 20 whih makes fundamentalismattrative, hartist traders take over the market and destabilize it. Noise alsoleads to the fat that the autoorrelations of the returns beome insigni�antand lose their patterns (see �gure 9). Therefore, it is di�ult to derive resultsfrom empirial studies of autoorrelation.5 ConlusionIn this paper the phenomenon of under and overreation to news in �nanialmarkets is disussed within the framework of a Heterogeneous Agent Model.This model relies on the idea that market pries are the result of the intera-tion of fundamental and tehnial traders both subjet to bounded rational-ity as well as short-term thinking. Furthermore, there is noise in the tradingproess. An analytial approah of the linearized model on�rmed that theexistene of �nite prie adjustment speed and risk-aversion of fundamentaltraders leads to underreation. A fundamental-only senario with in�niteprie adjustment speed (Walrasian autioneer) on the other hand an repli-ate the instantaneous adjustment to news fundamentals as predited by theE�ient Market Hypothesis. Chartist behavior transform an underreation-only senario into a senario with under and overreation. Consistent withChiarella et al. (2006), the use of longer moving average rules also leads tosystemi instability. 17



Based on a simulation this paper also shows that the analytial approahoverestimates the e�et of �nanial fragility by assuming onstant agentweights. In the simulation, news leads to a higher weight of fundamentalagents that transforms the system bak to its fundamental value. The sim-ulation is able to reprodue the short-run positive and long-run negativeautoorrelations in returns shown in empirial studies. Apart from that, thesimulation on�rms that high degrees of rationality and long-term thinkingderease the e�et of underreation. In a senario with overreation, highrationality an derease the e�et of overreation. Short-term thinking withlow values for memory on the other hand, worsens the e�et of overreation.The simulation also onsiders the e�et of noise. First of all, noise in�nanial markets makes it di�ult to derive results from empirial studies ofautoorrelation. Moreover, in ombination with hartist trading noise leadsto further deoupling from fundamental value.Further researh therefore should analyze the e�et of noise in more de-tail. This paper only presents a very simpli�ed analytial approah. Deeperinsights might be gained in the ase where the model is analyzed in the so-alled z-domain developed for di�erene equations (e.g. Juang (1994)). Fur-thermore, more realisti moving-average rules, as presented in Brok et al.(1992), should be examined in a simulation-based approah. Further researhshould also disuss the e�et of these rules on statistial properties ommonlyinvestigated in HAMs.
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A Demand in the omputational modelThe omputational model proesses log-pries pt instead of real pries Pt.This has the advantage that in ontrast to real pries, whih annot fallbelow zero, log-pries are not bounded. Reall the following mathematialonnetion for log-pries:
E(pt+1)−pt = ln(E(Pt+1))− ln(Pt) = ln

(

E(Pt+1)

Pt

)

= ln(1+E(rt+1)) (29)Reall the �rst-order Taylor approximation for the ln funtion:
ln(1 + x) = x+O(x2) (30)If we now use these results, the demand of group i an be displayed in thefollowing way:

Di
t =

Ei(pt+1)− pt − ln(1 + rf)

RA · σ2
r + 1

=
ln(1 + Ei(rt+1))− ln(1 + rf )

RA · σ2
r + 1

≈ Ei(rt+1)− rf
RA · σ2

r + 1

(31)Note that the value of one is added up in the denominator. This happens fortwo reasons: (i) As the variane at the beginning of omputing time is zero,simulation would otherwise run into problems of zero division. (ii) In thismodeling approah RA ats as a saling fator. By setting this parameter tozero we an aount for risk-neutral individuals.B A di�erent linearization approah for the modelThe linearization approah presented in the text is independent of the mem-ory of agents η. A similar result an be derived if we assume optimal weight-ing (γ onverging to in�nity) but short-term thinking due to zero memory(η = 0). We simplify the weighting equation by using the �rst-order Taylorapproah for the exponential funtion:
ex = 1 + x+ 0(x2) (32)The weighting in this ase only depends on the attrativeness:

Wi =
1 + γAi

∑3
i=1(1 + γAi)

= lim
γ→∞

(

1
γ
+ Ai

3
γ
+
∑3

i=1Ai

)

=
Ai

∑3
i=1Ai

(33)19



By also assuming a zero risk-free rate, the attrativeness an be determinedby the following di�erential equation:
Ai

t = (pt − pt−1)D
i
t + 0 · Ai

t−1 ⇒ Ai = (ṗ− p̈)Di (34)This results in the following market equation, whih an be simpli�ed byassuming small values for demand so that it represents the one presented inequation 14.
ṗ = µ

[

AC

AC + AF

·DC +
AF

AC + AF

·DF

]

= µ

[

(ṗ− p̈) ·DC ·DC + (ṗ− p̈) ·DF ·DF

(ṗ− p̈)(DC +DF )

]

= µ

[

D2
C +D2

F

DC +DF

]

= µ

[

DC +DF − 2DC ·DF

DC +DF

]

≈ µ(DC +DF )

(35)
Therefore, this Market Maker equation an be derived if bounded rationalitydue to suboptimal rules or myopi thinking is onsidered.C Derivation of the di�erent transfer funtionsThe transformation from the time domain t to the frequeny domain s isgiven by the solution of the Fourier integral (Unbehauen (2008)):

y(s) =

∫

∞

0

y(t)e−stdt (36)It an be desribed by the following symbolism:
y(t) d ty(s) (37)One of the most important transformations is the one for derivatives (Unbe-hauen (2008)):

dny(t)

dtn
d tsny(s)−

n
∑

i=1

sn−i

(

d(i−1)f(t)

dti−1

)

t=0+

(38)The transfer funtion F (s) desribes the behavior of a dynami system y tothe input u and is de�ned in the following way (Unbehauen (2008, p. 60)):
F (s) =

y(s)

u(s)
=

b0 + b1s+ · · ·+ bms
m

a0 + a1s+ · · ·+ ansn
=

N(s)

D(s)
(39)20



By setting the denominator to zero (D(s)
!
= 0) we an derive the so-alledpoles or eigenvalues of the system s1, s2, · · · , sn, whih desribe the homoge-neous solution of the system in the time domain (Unbehauen (2008)):

yhom(t) =
n
∑

i=1

Cie
si·t (40)The stability ondition is that the real part of the eigenvalue is negative(Re {si} < 0) (Unbehauen (2008, p. 140)).The hartist demand for the ase Ls = 1 and Ll = 2 an be derived if weonsider the following assumption for the seond order derivative:

p̈ ≈ ṗ(t)− ṗ(t− 1) ≈ (pt+1 − pt)− (pt − pt−1) = pt+1 − 2pt + pt−1 (41)This results in the following hartist demand DC :
DC =

β

2
(pt − pt−1) =

β

2
((pt+1 − pt)− (pt+1 − 2pt + pt−1)) =

β

2
(ṗ− p̈) (42)Using these results the following transfer funtion an be derived:

ṗ = µ

[

β

2
(ṗ− p̈) + α(f − p)

]

d tp(s)

(

µβ

2
s2 + (1− µβ

2
)s+ µα

)

= f(s) · µα

⇒ F (s) =
µα

µβ
2
s2 + (1− µβ

2
)s+ µα

=
1

β
2α
s2 + (2−µβ)

2µα
s+ 1

(43)
Now, the ase of Ls = 1 and Ll = 3 is presented. The transformationof the di�erene equation into a di�erential equation requires the followingonnetion: ...

p t ≈ p̈(t)− p̈(t− 1)

≈ (pt − 2pt−1 + pt−2)− (pt−1 − 2pt−2 + pt−3) = pt − 3pt−1 + 3pt−2 − pt−3(44)The hartist demand an therefore be desribed by the following equation:
1

3

...
p − 4

3
p̈+ ṗ

=

(

1

3
pt+1 − pt + pt−1 −

1

3
pt−2

)

+

(

−4

3
pt+1 +

8

3
pt −

4

3
pt−1

)

+ (pt+1 − pt)

=
2

3
pt −

1

3
pt−1 −

1

3
pt−2 −

1

3
pt−3(45)21



Using this result the transfer funtion is alulated:
ṗ = µ

[

β(
1

3

...
p − 4

3
p̈ + ṗ) + α(f − p)

]

d tp(s)

(

−µβ

3
s3 +

4

3
µβs2 + (1− µβ) s+ µα

)

= f(s) · µα

⇒ F (s) =
1

− β
α3
s3 + 4β

3α
s2 + (1−µβ

µα
)s+ 1

(46)
This system is always unstable. This system is a so-alled PT3 system, whihan be desribed as serial onnetion of three PT1 systems. Mathematially,this an be done by multiplying PT1 funtions:

F (s) =

(

K

sT + 1

)3

=
K3

s3T 3 + 3s2T 2 + 3sT + 1
(47)Sine the stability ondition for the PT1 system requires T > 0 all oe�ientsof the denominator of the PT3 funtion have to be positive as well. Inthis ase the oe�ient of s3 is always negative, thus rendering the systemunstable.
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