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News Rea
tion in Finan
ial Markets within aBehavioral Finan
e Model with HeterogeneousAgentsThomas Fis
her∗TU Darmstadt�s
her�vwl.tu-darmstadt.deDarmstadt, September 2011Abstra
tThis paper presents a Heterogeneous Agent Model of a �nan
ialmarket with 
hartist and fundamentalist traders that exhibit boundedrationality and short-term thinking to explain the e�e
t of under andoverrea
tion to news. The existen
e of the Market Maker's �nitepri
e adjustment speed leads to the fa
t that pri
es do not adjustinstantaneously to new information. Chartists use moving averagerules to make their investment de
isions. Chartist 
an transform anunderrea
tion-only s
enario into a market with overrea
tion. The useof long moving average rules might even make the market unstable.Furthermore, noise in �nan
ial markets 
an lead to long time de
ou-pling from fundamental value. Higher market e�
ien
y (low deviationsfrom fundamental value), on the other hand, is a
hieved if high ratio-nality and long-term thinking for the agents is assumed.JEL 
lassi�
ation: G14 - D84 - C62 - C15Keywords: Heterogeneous Agent Model - sto
k market - under andoverrea
tion to news - moving average rules - �nan
ial stability
∗I am grateful to Jesper Riedler and Ingo Barens for numerous helpful 
omments. PhilipSavage 
ontributed stylisti
 advi
e. Of 
ourse, all remaining errors are mine.



1 Introdu
tionThis paper shows that the phenomenon of under and overrea
tion to news
an be explained by a Heterogeneous Agent Model (HAM) of a �nan
ialmarket. This e�e
t is only 
onsidered s
antly in the literature on HAMs.1First, an analyti
al dis
ussion of a simpli�ed linearized version of the modelwithout noise is presented. Instead of using Bifur
ation Theory, the ana-lyti
al framework of 
lassi
al 
ontrol theory is applied. We show that theemergen
e of overrea
tion and instability depends on the 
hartists' strategy.Underrea
tion o

urs due to �nite pri
e adjustment speed and risk aversionby fundamental traders. It 
an be dampened by 
hartist behavior. In the
ase of a 
ombined under and overrea
tion s
enario high aggressiveness of
hartists and high pri
e adjustment speed 
an lead to instability. Se
ondly,a simulation-based approa
h of the 
omplex model shows that a low degreeof rationality of agents as well as short-term thinking in
rease the e�e
t ofboth under and overrea
tion and therefore de
rease market e�
ien
y. Sim-ulation also 
on�rms that market noise leads to long-term de
oupling fromfundamental value.HAMs dating ba
k to Day and Huang (1990) have re
ently be
ome verypopular for dis
ussing the behavior of sto
k markets. These models rely ontwo basi
 assumption: agents (i) exhibit bounded rationality and (ii) formheterogeneous beliefs. The HAMs in �nan
e normally distinguish betweenfundamentalists, te
hni
al, and noise traders. The models have been appliedto di�erent markets su
h as 
ommodities (Reitz and Westerho�, 2007), for-eign ex
hange (De Grauwe and Grimaldi, 2006), options (Frijns et al., 2010),and sto
ks (Westerho�, 2008). The models are able to repli
ate several styl-ized fa
ts found in a
tual �nan
ial markets su
h as ex
ess volatility, randomwalk behavior (indi
ated by insigni�
ant auto
orrelations in returns), volatil-ity 
lustering (as indi
ated by signi�
ant slowly de
reasing auto
orrelationsin absolute returns), skewness as well as ex
ess kurtosis of return distribu-tion (Lux, 2009). In a mathemati
al sense, these models are representedby non-linear di�eren
e equations. Current resear
h expands these modelsto in
orporate realisti
 trading strategies (e.g.Westerho� (2006)), whilst themathemati
al analysis, mostly relying on the tools of Bifur
ation Theory, isbrought to a more sophisti
ated level (e.g. Hommes and Wagener (2009)).This analysis helps to understand whi
h parameters or model features drivethe stylized fa
ts (e.g. He and Li (2007)) and 
orrespond to the stability ofthe market (e.g. Chiarella et al. (2009)). Major fa
tors seem to be the rules1Boswijk et al. (2007) present a HAM of the S&P500 explaining the DotCom-bubbleby the overrea
tion to good fundamental news.1



used by 
hartist traders (Chiarella et al., 2006) and the noise in �nan
ialmarkets (Chiarella et al., 2011).In this paper we use the HAM framework to examine the e�e
t of un-der and/or overrea
tion. This e�e
t is in
onsistent with the E�
ient MarketHypothesis assuming instant pri
e rea
tion to news fundamentals. Neverthe-less, several empiri
al studies seem to 
on�rm these e�e
ts in real markets.Underrea
tion des
ribes the idea that pri
es only sluggishly rea
t to new in-formation and is therefore also often referred to as the Momentum E�e
t.This e�e
t implies that past pri
e movements have predi
tive power for fu-ture pri
es, sin
e they are followed by returns of the same sign. Overrea
tionon the other side states that markets overrea
t to good or bad news, butreturns adjust to a mean in the long run. Therefore, this e�e
t is also knownas Mean Reversion. These e�e
ts seem to be 
ontradi
tory. Note that un-derrea
tion is mostly measured in the short run, whilst overrea
tion is foundin longer horizons of roughly three to �ve years (Bee
hey et al., 2000).Several models explain the e�e
ts of under and overrea
tion based on�ndings of Behavioral Finan
e. Daniel et al. (1998) attribute these e�e
tsto over
on�den
e and biased self-attribution. Individuals overestimate thepre
ision of private signals (over
on�den
e). By 
ontrast, rea
tion to publi
events is asymmetri
al: events that 
on�rm the validity of private informa-tion are attributed to high fore
ast ability, while publi
 information thatdis
on�rms private information is blamed on noise or sabotage (biased self-attribution). Daniel et al. (1998) provide simulations that show short-runMomentum followed by long-run reversals. This is also measured by short-run positive and long-run negative auto
orrelations in returns. Note that themodel predi
ts initial overrea
tion followed by even more overrea
tion. An-other approa
h for explaining both e�e
ts in a uni�ed theoreti
al frameworkis presented by Barberis et al. (1998). They assume the two psy
hologi
ale�e
ts of representativeness and 
onservatism. The former refers to the ef-fe
t that market parti
ipants tend to see patterns based on few observations,while the latter refers to the slow updating of beliefs. The 
ombination ofthese two e�e
ts is able to repli
ate the e�e
t of short-term Momentum andlong-run Mean Reversion. While these models rely on the idea of a singlerepresentative agent, the approa
h of Hong and Stein (1999) introdu
es theintera
tion of di�erent trader types as a key to understand both e�e
ts. Dueto slow di�usion of private information among so-
alled Information Traders,there is underrea
tion and momentum in the pri
es, whi
h evokes the a
tionof Momentum Traders with positive feedba
k behavior 
reating the e�e
t ofoverrea
tion. The authors present a hump-shaped pri
e rea
tion fun
tionand are also able to measure the short-run positive and long-run negativeauto
orrelations. Under and overrea
tion are both stronger when low infor-2



mation di�usion is 
onsidered. Both Hong and Stein (1999) and Barberiset al. (1998) present a model with initial underrea
tion followed by subse-quent overrea
tion.In the remainder of this paper, we follow the rationale of Hong and Stein(1999) that 
ombined under and overrea
tion 
an be explained by the inter-a
tion of heterogeneous agents with bounded rationality. Therefore, a very
ommon representation of a HAM is presented in se
tion 2. Based on a lin-earized version of the model, the 
onditions for under and overrea
tion areexamined analyti
ally in se
tion 3. In line with Chiarella et al. (2006) it isassumed that te
hni
al traders use moving average rules. The window lengthof this rule proves to be 
ru
ial for systemi
 stability. Longer moving averagerules might even lead to instability. Furthermore, we dis
uss the intera
tionof the parameters of 
hartist and fundamentalists aggressiveness as well aspri
e rea
tion speed of the Market Maker. One key �nding is that due to thefa
t that markets have a �nite pri
e adjustment speed and are therefore not
leared at any time as assumed by Walrasian au
utioneer, trend-following
hartist traders emerge and eventually lead to overrea
tion or even insta-bility. In se
tion 4 the 
omplex model is dis
ussed on a simulation basedapproa
h. The model is able to repli
ate several e�e
ts found in empiri-
al studies of under and overrea
tion. Both analyti
al and simulation-basedapproa
hes 
on�rm that noise trading in 
ombination with Momentum trad-ing is a 
ru
ial fa
tor that drives real markets and a�e
ts market stability.Se
tion 5 
on
ludes and gives dire
tions for further resear
h.2 Basi
 modelThis se
tion presents the basi
 model. The model presented is 
losely relatedto well-known HAMs of �nan
ial markets as presented in re
ent surveys byHommes and Wagener (2009) and Chiarella et al. (2009). We assume mean-varian
e portfolio optimization in a world with two assets: a risky asset withexpe
ted return Ei(rt+1) and a risk-free asset with safe return of rf 2. Thedemand for risky asset is derived with mean-varian
e portfolio optimization(Hommes and Wagener, 2009):
Di

t =
Ei(rt+1)− rf

RA · σ2
r

(1)2The e�e
t of dividends is negle
ted sin
e we assume day-trading behavior. Sin
edividends are normally only paid out on
e a year only, they do not matter for all but onetrading period a year. 3



The demand of a 
ertain group of agents i therefore 
ru
ially depends on thegroup's individual expe
tation of future returns.3 Demand for risky assetsin
reases with high expe
ted ex
ess returns (relative to risk-free rate). In-versely, demand is low in the 
ase of high risk aversion RA and high volatilityof returns σ2
r .The market-
learing in 
lassi
 e
onomi
 models is modeled as a Walrasianau
tioneer. The key idea is that after determining the ex
ess market demand,the au
tioneer keeps announ
ing pri
es and intera
ts with the market feed-ba
k until the ex
ess demand equals zero. This yields the 
lassi
 demandequals supply equation:

n
∑

i=1

W i
tD

i
t = Nt (2)In this 
ase, 0 < Wt < 1 represents the market weight of a spe
i�
 group ofagents. The aggregate demand should equal the supply Nt. Sin
e agents 
ango short in sto
ks in the 
ase that they expe
t pri
es to fall, they 
an alsosupply sto
ks (Di

t < 0). Thus, no external supply Nt is ne
essary. This 
aseshall be referred to as Zero Net Supply.As presented in Chiarella et al. (2009), this modeling approa
h, eventhough widely used in e
onomi
 analysis, only plays a part in one real market(the market for silver in London). Therefore, it is 
onvenient to model aso-
alled Market Maker me
hanism for market-
learing (e.g., Chiarella et al.(2006), Westerho� (2008)). Even though this approa
h is still very simpli�ed,it 
omes 
loser to pri
e determination in a
tual markets. The key idea hereis that an institution named Market Maker takes an o�setting long or shortposition to assure that ex
ess demand in period t equals zero. In the nextperiod, the Market Maker announ
es a new log-pri
e pt+1 to redu
e ex
essdemand4:
pt+1 = pt + µ(

n
∑

i=1

W i
tD

i
t −Nt) (3)In this 
ase, µ > 0 represents the pri
e rea
tion speed of the Market Maker.If we assume in�nite rea
tion speed, this approa
h redu
es to a Walrasianau
tioneer:

lim
µ→∞

(

pt − pt+1

µ
+

n
∑

i=1

W i
tD

i
t −Nt

)

=
n
∑

i=1

W i
tD

i
t −Nt = 0 (4)3To improve the pro
essing of the demand in the 
omputational model I apply a slightlydi�erent formation for the demand, whi
h is presented in the appendix in se
tion A.4The model uses log-pri
es pt instead of real pri
es Pt. This is brie�y dis
ussed inappendix A. 4



This result will be of interest when the dynami
 properties of the systemare analyzed in the following se
tion. Furthermore, the parameter µ 
an beinterpreted as the liquidity of the market. In time of illiquid markets µ ishigh and pri
es rea
t severely to ex
ess demand.In the basi
 model, the weights of the di�erent agents vary in time. Thisrepresents the empiri
al fa
t pointed out by Menkho� and Taylor (2007) thattraders do not sti
k to a 
ertain rule, but instead use a 
ombination of bothte
hni
al and fundamental analysis. The weights of the groups are derivedusing a Multinominal Logit Model as presented in Manski and M
Fadden(1981):
W i

t =
eγA

i
t

∑n
i=1 e

γAi
t

(5)Due to the 
onstru
tion of the equation, the individual weights sum up toone. The parameter γ presents a degree of rationality in 
hoosing a strategy.In 
ase γ equals zero, the weights of the groups are 
onstant and amount to
1/n. The other extreme 
ase with γ 
onverging to in�nity represents the 
asein whi
h all individuals 
hoose the optimal fore
ast. De Grauwe and Grimaldi(2006) therefore interpret this parameter as a model of the behavioral e�e
tof Status Quos Bias as presented in Kahneman et al. (1991). This e�e
timplies that individuals �nd it di�
ult to 
hange a de
ision rule they usedin the past. In a more general way, this parameter 
an also be 
onsideredas a value for bounded rationality in the sense of Simon (1955). Due to thelimited resour
es of time and money, individuals use suboptimal rules.The weight of a strategy W i

t in the market is evaluated by its attra
tive-ness Ai
t in a period t. This parameter is modeled in the following way5:

Ai
t = Di

t−1 · (rt − rf) + ηAi
t−1 ≈ Di

t−1 · (ln(1 + rt)− ln(1 + rf)) + ηAi
t−1

= Di
t−1 · (pt − pt−1 − ln(1 + rf)) + ηAi

t−1(6)It 
onsiders the pro�ts a strategy yielded between period (t− 1) and t. Notethat a pro�t is made in the 
ase where risky assets are bought when returnsare higher than risk-free returns, or risky assets are sold when their returnis lower than the return of the risk-free asset. The parameter 0 < η < 1represents the memory of the agent. If it is set to zero, myopi
 tradersthat only value the very last su

ess of the strategy are 
onsidered. In the
ase η = 1, instead of pro�ts the a

umulated wealth of a group is takeninto a

ount. This modeling approa
h enables us to investigate the e�e
t5This equation builds on results presented in appendix A.5



of short-term fo
using in �nan
ial markets. The parameters γ and η aretherefore the key to measuring the degree of irrationality in markets.The model investigates four di�erent strategies: (i) fundamentalism, (ii)
hartism using moving average rules, (iii) noise trading, and (iv) a passiveinvestment strategy. Fundamental traders know the true fundamental log-value of an asset ft and expe
t the pri
es to 
onverge to it. Their expe
tations
an therefore be modeled in the following way:
EF (pt+1)− pt = α(ft − pt) (7)The parameter 0 < α < 1 measures the speed at whi
h fundamentalisttraders expe
t pri
es of sto
k to 
onverge to their true underlying value.This strategy 
an be interpreted as the the Hedge Fund strategy of so-
alledAlpha Seeking trying to buy undervalued and to sell overvalued se
urities inthe market (se
urities whose α, representing the deviation from the Se
urityMarket Line, are positive, respe
tively negative). Their a
tion 
ontributes tohigher market e�
ien
y.Chartists on the other hand do not 
onsider fundamental pri
es, butderive order signals from past pri
es. There are several studies indi
atingwidespread use of te
hni
al analysis (even) among professional traders inparti
ular in foreign ex
hange markets. Chartism is espe
ially important forshort-term fore
ast horizons.6 Hong and Stein (1999) show that 
hartism
an be useful in exploiting the general underrea
tion of markets. Chartism isoften also referred to as Te
hni
al Trading, sin
e it derives its trading signalsfrom 
lear rules that 
an be automated. For this reason it is also very easyto implement these rules in a HAM. One of the easiest rules to implement isthe moving average rule:

EC(pt+1)− pt = β

[

1

Ns

Ns−1
∑

i=0

pt−i −
1

Nl

Nl−1
∑

i=0

pt−i

] (8)This strategy 
ompares a long to a short-moving average (Ns < Nl). Theuse of the moving averages 
an be explained by market noise: it �lters �u
-tuations around a long-run trend (Menkho� and Taylor, 2007).7 Normally,an interse
tion of the two moving averages is required to generate a tradingsignal. If we negle
t this 
ondition, this rule 
an generate a trading signal inea
h trading period implying that traders are always in the market (Bro
ket al., 1992). Another important feature of this rule is that it shows Momen-tum behavior by generating buying signals in 
ase of in
reasing pri
es and6For a survey the reader is referred to Menkho� and Taylor (2007).7In a 
ontrol theory sense, a moving average a
ts as a low-pass �lter, whi
h �lters awayhigh-frequen
y noise. 6



selling signals in 
ase of de
reasing pri
es (Menkho� and Taylor, 2007)8. Theparameter 0 < β < 1 measures the aggressiveness with whi
h the 
hartisttraders take positions in the market.A 
ru
ial fa
tor in market trading is noise trading. A

ording to Bla
k(1986), noise traders trade on noise as if it were information. Noise is modeledas an i.i.d. pro
ess with mean zero and varian
e σ2
i . This is 
onsistent withthe 
onsideration of Shleifer (2000) that noise should, on mean, 
an
el itselfout. Noise trading 
an also be explained by the need for liquidity (here theneed to raise 
apital for other reasons (Bou
haud et al., 2009)). In line withWesterho� (2008), noise is 
onsidered in three parts of the model. First,there is a demand of pure noise traders at whi
h is in
luded in the MarketMaker equation:

pt+1 = pt + µ(
n
∑

i=1

W i
tD

i
t −Nt) + at (9)On the other side, both fundamentalist and 
hartist traders have features ofnoise traders. Therefore their expe
tations formation is also superimposedby noisy pro
esses bt and ct:

EF (pt+1)− pt = α(ft − pt) + bt (10)
EC(pt+1)− pt = β

[

1

Ns

Ns−1
∑

i=0

pt−i −
1

Nl

Nl−1
∑

i=0

pt−i

]

+ ct (11)Sin
e 
hartists exhibit more irrational behavior, it is assumed that σc > σb.The last remaining group are passive traders. Sin
e they only invest inthe risk-free asset, the attra
tiveness of their strategy is always zero, implyingthat they do not earn ex
ess return relative to the risk-free rate. Note that iffundamentalists or 
hartists fail to predi
t future pri
e movements 
orre
tly,their attra
tiveness 
an be
ome negative. A

ordingly, the weight of thepassive agents in
reases. Apart from that, high risk-free rates, high riskaversions and high volatility of sto
ks 
ontribute to the attra
tiveness of thepassive strategy modeling a �ight to quality. Sin
e passive traders do nottake orders in the market, they do not have an impa
t on the pri
es.8The opposite is the 
ase for a Mean Reversion strategy, whi
h is heavily used byHedge Funds. If a short moving average is below a long moving average, a buying signal isper
eived. The long-moving average in the Mean Reversion strategy therefore 
an thereforebe 
onsidered a proxy for the fundamental value derived upon histori
 data.
7



3 Analyti
al approa
h in a linearized version ofthe modelThe analyti
al approa
h applies the te
hniques of 
ontrol theory in the fre-quen
y domain. These rules have been developed for linear di�erential equa-tions. The use of linear di�erential equations for the modeling of sto
k marketbehavior dates ba
k to Beja and Goldman (1980) and is still widely used inmodels su
h as Chiarella et al. (2011). Sin
e the model 
onsists of non-lineardi�eren
e equations, several simpli�
ations have to be made. First, we as-sume that pri
es are des
ribed by a 
ontinuous time fun
tion p(t) instead ofa dis
rete fun
tion pt with the following property:
pt+1 − pt ≈

dp(t)

dt
= ṗ (12)Furthermore, the simpli�ed model assumes risk-neutral investors and a risk-free rate of zero, whi
h leads to the fa
t that demand equals the expe
ted
hange of log-pri
es of ea
h group9:

Di
t = Ei(pt+1)− pt (13)If we now 
onsider the 
ase of γ = 0 for the weighting equation (equation 5),we model totally irrational individuals who sti
k to a rule, even though it isnot pro�table. Taking into a

ount equation 5 this results in the fa
t that allthree rules have the same market share. If we negle
t the s
aling behavior ofthe weighting fa
tor, the following 
ontinuous time Market Maker equation
an be derived:

ṗ = µ(
1

3
·DC +

1

3
DF ) ≈ µ(DC +DF ) (14)This result is identi
al to the one of Chiarella et al. (2011). The same re-sult 
an be derived if totally rational (γ 
onverging to in�nity) but myopi
investors (η = 0) are 
onsidered10. Thereby the analyti
al results in this
hapter apply for total irrational as well as extremely myopi
 investors. Thenoise terms in the models are set to their expe
ted value of zero (De Grauweand Grimaldi, 2006).9This formation of demand is based on the results presented in appendix A. Higher riskaversion 
an be 
onsidered if low values for the aggressiveness of a strategy as measuredin the parameters α and β are assumed. Sin
e the daily risk-free rate is 
lose to zero it isusually negle
ted (e.g. Fama (1998)).10The derivation of the law of motion of pri
es assuming η = 0 and γ → ∞ is presentedin appendix B. 8



First, we want to examine the fundamentalist-only 
ase (β = 0). Thisresults in the following law of motion for log-pri
es p:
ṗ = µ(α(f − p)) (15)If we transfer this equation into the frequen
y domain, the following responsefun
tion F (s) to a step-sho
k in fundamental value 
an be derived:

F (s) =
p(s)

f(s)
=

1

1 + s
µα

(16)By assuming a step fun
tion, we examine the e�e
t of pri
es in the 
ase wherethe log-fundamental value f suddenly 
hanges from zero to one. The resultresembles the 
lassi
 PT1-behavior of 
ontrol theory (Unbehauen, 2008):
F (s) =

K

1 + Ts
(17)The system 
onverges to a �nal value of K with a speed of T (see �gure 1).Sin
e in this 
ase K = 1, the model 
onverges to its fundamental value. In
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K=2

TFigure 1: Response of a PT1 system to a step fun
tionthis 
ase an underrea
tion-only s
enario is produ
ed. The e�e
t of underre-a
tion is stronger for high values of T :
T =

1

µα
⇒ s = − 1

T
= − 1

µα
< 0 (18)The e�e
t of underrea
tion is therefore stronger in 
ase the 
ase of low pri
eadjustment speed µ (i.e. high market liquidity) as well as the low aggres-siveness of fundamental agents α (i.e. high risk aversion of fundamentalists).The system is always stable sin
e the eigenvalue is always negative. If we fur-thermore take into a

ount a Walrasian au
tioneer as a spe
ial 
ase of Market9



Maker with in�nite 
onversion speed, there is no underrea
tion (T = 0). Thesame result 
an be derived for the 
ase of risk-neutral fundamental trader(α 
onverging to in�nity). This is 
onsistent with the idea of the EMH thatpri
es adjust instantaneously to news (Menkho� and Taylor, 2007).Now, the e�e
t of di�erent te
hni
al rules on the behavior of pri
es isinvestigated. We start by assuming the very simple 
ase of Ns = 1 and
Nl = 2. This yields the following demand for 
hartists:

DC = β(pt −
1

2
(pt − pt−1)) =

β

2
(pt − pt−1) (19)This modeling for the demand of 
hartists is frequently used in HAMs (e.g.Westerho� (2008)). The main idea is that 
hartists expe
t the most re
enttrend to 
ontinue at a speed of β

2
. Considering di�erential instead of di�eren
eequation 
hartist demand 
an be presented as follows11:

DC =
β

2
(pt − pt−1) =

β

2
(ṗ− p̈) (20)If we insert this into the Market Maker equation and transfer it into the fre-quen
y domain, the following response fun
tion F (s) to a step in fundamentalvalue 
an be derived12:

F (s) =
p(s)

f(s)
=

1
β
2α
s2 + 2−µβ

2µα
s+ 1

(21)This behavior represents the so-
alled PT2 fun
tion of 
ontrol theory (Unbe-hauen, 2008):
F (s) =

K
1
ω2

0

s2 + 2D
ω0

s + 1
(22)The eigenvalues of the system are de�ned by the following equation:

s1/2 = ω0(−D ±
√
D2 − 1) (23)In this 
ase, the variables D and ω0 are given as follows:

ω0 =

√

2α

β
(24)11A derivation of this result is presented in appendix C.12A short introdu
tion to the analysis of linear di�erential equation in the frequen
ydomain is given in the appendix C. This se
tion also presents the derivation and thedis
ussion of the transfer fun
tions for the di�erent presented 
ases.10



D =
2− µβ

2
√
2µ

√
αβ

(25)Depending on the value ofD three 
ases 
an be distinguished (see �gure 2). Inthe �rst 
ase D > 1, the system 
onverges in a slow pro
ess of underrea
tionto its fundamental value like the PT1 transfer fun
tion. The 
ondition forunderrea
tion-only therefore is as follows:
2 > µ

√

β(
√

β + 2
√
2
√
α) (26)Low values of pri
e adjustment speed µ as well as low aggressiveness of agents

α and β therefore lead to the underrea
tion-only s
enario. Keeping in mindthat low aggressiveness 
an also be interpreted as high risk aversion by agentsthis leads to the result that underrea
tion is promoted in a s
enario withhigh risk aversion. Furthermore, low values of µ 
an be interpreted as highliquidity. This implies that overrea
tion tends to o

ur more frequently inilliquid markets. Note that in the presen
e of 
hartists high aggressivenessby both 
hartist and fundamental traders lead to overrea
tion.Overrea
tion on the other side o

urs in se
ond 
ase of 0 < D < 1. Aspresented in Hommes (2011), the e�e
t of overrea
tion 
an only be produ
edin the 
ase where 
hartist traders with autoregressive behavior of at leastse
ond order (AR(2) behavior) are assumed. The simulation shows the well-known hump-shaped pri
e pattern as presented in Daniel et al. (1998) andHong and Stein (1999) of underrea
tion in the �rst instan
e followed bysubsequent overrea
tion (see �gure 2). In the long-run, the system 
onverges
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Figure 2: Response of a PT2 system to a step fun
tion with exemplary valuesfor D 11



to its underlying fundamental value.This does not hold in the third 
ase (D < 0). For µβ > 2 we have anunstable system. High pri
e adjustment speed and the high aggressivenessof 
hartist traders therefore lead to instability.The parameter ω0 represents the frequen
y of pri
e behavior. In the 
aseof underrea
tion-only, high values of ω0 therefore indi
ate fast 
onversion tofundamental value, whilst in the 
ase of 
ombined under and overrea
tionthey lead to faster swings between under and overrea
tion. High value forfundamentalist aggressiveness α relative to the aggressiveness of 
hartists
β therefore at �rst sight might therefore lead to less underrea
tion. On theother side, as presented in equation 26, higher values of α lead to overrea
tion.In other words, high aggressiveness of fundamentalists in order to redu
eunderrea
tion leads to the e�e
t of overrea
tion of market pri
es to news.If we now assume Ls = 1 and Ll = 3, the following 
hartist demand 
anbe derived:

Dc = β

[

pt −
1

3

2
∑

i=0

pt−i

]

= β

[

2

3
pt −

1

3
pt−1 −

1

3
pt−2

] (27)The pri
e rea
tion fun
tion is des
ribed by the following equation:13
F (s) =

1

− β
α3
s3 + 4β

3α
s2 + (1−µβ

µα
)s+ 1

(28)This system is always unstable. Therefore the theoreti
al results of Chiarellaet al. (2009) whi
h show that longer moving average rules destabilize themarket are 
on�rmed.4 Simulation of the 
omplex modelAs dis
ussed in se
tion 3, the analyti
al approa
h required some simpli�
a-tions. Therefore, the simulation results of the 
omplex model are 
omparedwith the linearized model. In the pro
ess, we also want to investigate theparameter of auto
orrelation intensely dis
ussed in empiri
al studies of underand overrea
tion.Applying a sho
k of ln(2) ≈ 0.69 in log-fundamental value ft is identi
alto a doubling of real fundamental value Ft. Figure 3 shows simulation re-sults for the 
ase with Ls = 1 and Ll = 2 in a zero-noise-framework. Theparameters are set to µ = 1 and α = β = 0.6 implying overrea
tion for13The determination of this equation is presented in appendix C.12
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Figure 3: (left:) Pri
e rea
tion to a step sho
k in news in both linearized and
omplex model; (right:) Weight of agents in 
omplex modelthe linearized model. Furthermore, the values of η = 0.985 for memory and
γ = 20 for rationality are assumed.14 Note that the hump-shaped pattern isonly produ
ed in the linearized 
ase. This 
an be explained by the fa
t thatthe linearized version assumes 
onstant weights of agents (WC = WF = 1).As presented in �gure 3, the sho
k in news fundamentals is a

ompaniedby a higher weight of fundamentalist traders. Sin
e the weight of MomentumTraders is less important than in the linearized model there is no overrea
tion.Even though there is no overrea
tion in the 
omplex 
ase, it also exhibits thenegative auto
orrelation for higher time lags (see �gure 4). For that reason,long-run negative auto
orrelations do not have to signify overrea
tion.

14The risk aversion is assumed as RA = 10 and the risk-free rate as rf = 0.01% (equalsan annual rate of approximately rf = 2.5%).13



0 10 20 30 40 50 60
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation linearized model ∆ p
t

0 10 20 30 40 50 60
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation linearized model |∆ p
t
|

0 10 20 30 40 50 60
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation complex model ∆ p
t

0 10 20 30 40 50 60
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Autocorrelation complex model |∆ p
t
|

Figure 4: Auto
orrelation of raw and absolute returns in both linearized and
omplex model after a step sho
k in news fundamentals
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Figure 5: Pri
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tion to a step sho
k in news fundamentals in the 
omplexmodel with Ll = 3 and variation of rationality γ and memory η14



The Ll = 3 is always unstable in the linearized version, whilst the 
omplex
ase produ
es underrea
tion. In �gure 5 the parameters for rationality γ andmemory η are varied for this 
ase. High values of rationality γ and memory
η lead to lower underrea
tion and therefore to higher market e�
ien
y.
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Figure 6: Pri
e rea
tion to a step sho
k in news fundamentals in the 
omplexmodel with Ll = 4, µ = 1.4, and variation of rationality γ and memory ηWhen simulating the 
ase with Ll = 4 in the 
omplex model and furtheralso assuming µ = 1.4, the 
lassi
 hump-shaped pattern of overrea
tion isprodu
ed. As shown in �gure 6, a higher degree of rationality γ leads tolower overrea
tion. Short-term thinking (low values for η) on the other sideampli�es the e�e
t of overrea
tion. Simulation 
on�rmed that the e�e
t ofmemory is more important than the e�e
t of rationality. Sin
e high mem-ories and high rationality lead to both lower under and overrea
tion they
ontribute to higher market e�
ien
y.Simulation assumed zero noise. Now, di�erent forms of noise are appliedfor the Ll = 3 
ase. As shown in �gure 7, pure noise trading noise σa andfundamentalist noise σb only lead to noise-indu
ed swings around the truefundamental value. Chartist noise σc on the other hand leads to a permanenttrend away from the fundamental value.
15
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Figure 7: Rea
tion to a step sho
k in news fundamentals in the 
omplexmodel with Ll = 3 and variation of noise: solid line fundamental value;dotted line σa = 0.01, σb = 0.02, σc = 0; dashed line σa = 0.01, σb = 0.02,
σc = 0.05
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Figure 9: Auto
orrelation of raw and absolute returns in the 
omplex modelafter a sho
k in news fundamentals in the 
ase of noiseThis 
an be explained by the fa
t that high noise makes the 
hartist'spro
ess attra
tive. As shown in �gure 8, for the 
ase with all three forms ofnoise, after the fundamental sho
k in period 20 whi
h makes fundamentalismattra
tive, 
hartist traders take over the market and destabilize it. Noise alsoleads to the fa
t that the auto
orrelations of the returns be
ome insigni�
antand lose their patterns (see �gure 9). Therefore, it is di�
ult to derive resultsfrom empiri
al studies of auto
orrelation.5 Con
lusionIn this paper the phenomenon of under and overrea
tion to news in �nan
ialmarkets is dis
ussed within the framework of a Heterogeneous Agent Model.This model relies on the idea that market pri
es are the result of the intera
-tion of fundamental and te
hni
al traders both subje
t to bounded rational-ity as well as short-term thinking. Furthermore, there is noise in the tradingpro
ess. An analyti
al approa
h of the linearized model 
on�rmed that theexisten
e of �nite pri
e adjustment speed and risk-aversion of fundamentaltraders leads to underrea
tion. A fundamental-only s
enario with in�nitepri
e adjustment speed (Walrasian au
tioneer) on the other hand 
an repli-
ate the instantaneous adjustment to news fundamentals as predi
ted by theE�
ient Market Hypothesis. Chartist behavior transform an underrea
tion-only s
enario into a s
enario with under and overrea
tion. Consistent withChiarella et al. (2006), the use of longer moving average rules also leads tosystemi
 instability. 17



Based on a simulation this paper also shows that the analyti
al approa
hoverestimates the e�e
t of �nan
ial fragility by assuming 
onstant agentweights. In the simulation, news leads to a higher weight of fundamentalagents that transforms the system ba
k to its fundamental value. The sim-ulation is able to reprodu
e the short-run positive and long-run negativeauto
orrelations in returns shown in empiri
al studies. Apart from that, thesimulation 
on�rms that high degrees of rationality and long-term thinkingde
rease the e�e
t of underrea
tion. In a s
enario with overrea
tion, highrationality 
an de
rease the e�e
t of overrea
tion. Short-term thinking withlow values for memory on the other hand, worsens the e�e
t of overrea
tion.The simulation also 
onsiders the e�e
t of noise. First of all, noise in�nan
ial markets makes it di�
ult to derive results from empiri
al studies ofauto
orrelation. Moreover, in 
ombination with 
hartist trading noise leadsto further de
oupling from fundamental value.Further resear
h therefore should analyze the e�e
t of noise in more de-tail. This paper only presents a very simpli�ed analyti
al approa
h. Deeperinsights might be gained in the 
ase where the model is analyzed in the so-
alled z-domain developed for di�eren
e equations (e.g. Juang (1994)). Fur-thermore, more realisti
 moving-average rules, as presented in Bro
k et al.(1992), should be examined in a simulation-based approa
h. Further resear
hshould also dis
uss the e�e
t of these rules on statisti
al properties 
ommonlyinvestigated in HAMs.
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A Demand in the 
omputational modelThe 
omputational model pro
esses log-pri
es pt instead of real pri
es Pt.This has the advantage that in 
ontrast to real pri
es, whi
h 
annot fallbelow zero, log-pri
es are not bounded. Re
all the following mathemati
al
onne
tion for log-pri
es:
E(pt+1)−pt = ln(E(Pt+1))− ln(Pt) = ln

(

E(Pt+1)

Pt

)

= ln(1+E(rt+1)) (29)Re
all the �rst-order Taylor approximation for the ln fun
tion:
ln(1 + x) = x+O(x2) (30)If we now use these results, the demand of group i 
an be displayed in thefollowing way:

Di
t =

Ei(pt+1)− pt − ln(1 + rf)

RA · σ2
r + 1

=
ln(1 + Ei(rt+1))− ln(1 + rf )

RA · σ2
r + 1

≈ Ei(rt+1)− rf
RA · σ2

r + 1

(31)Note that the value of one is added up in the denominator. This happens fortwo reasons: (i) As the varian
e at the beginning of 
omputing time is zero,simulation would otherwise run into problems of zero division. (ii) In thismodeling approa
h RA a
ts as a s
aling fa
tor. By setting this parameter tozero we 
an a

ount for risk-neutral individuals.B A di�erent linearization approa
h for the modelThe linearization approa
h presented in the text is independent of the mem-ory of agents η. A similar result 
an be derived if we assume optimal weight-ing (γ 
onverging to in�nity) but short-term thinking due to zero memory(η = 0). We simplify the weighting equation by using the �rst-order Taylorapproa
h for the exponential fun
tion:
ex = 1 + x+ 0(x2) (32)The weighting in this 
ase only depends on the attra
tiveness:

Wi =
1 + γAi

∑3
i=1(1 + γAi)

= lim
γ→∞

(

1
γ
+ Ai

3
γ
+
∑3

i=1Ai

)

=
Ai

∑3
i=1Ai

(33)19



By also assuming a zero risk-free rate, the attra
tiveness 
an be determinedby the following di�erential equation:
Ai

t = (pt − pt−1)D
i
t + 0 · Ai

t−1 ⇒ Ai = (ṗ− p̈)Di (34)This results in the following market equation, whi
h 
an be simpli�ed byassuming small values for demand so that it represents the one presented inequation 14.
ṗ = µ

[

AC

AC + AF

·DC +
AF

AC + AF

·DF

]

= µ

[

(ṗ− p̈) ·DC ·DC + (ṗ− p̈) ·DF ·DF

(ṗ− p̈)(DC +DF )

]

= µ

[

D2
C +D2

F

DC +DF

]

= µ

[

DC +DF − 2DC ·DF

DC +DF

]

≈ µ(DC +DF )

(35)
Therefore, this Market Maker equation 
an be derived if bounded rationalitydue to suboptimal rules or myopi
 thinking is 
onsidered.C Derivation of the di�erent transfer fun
tionsThe transformation from the time domain t to the frequen
y domain s isgiven by the solution of the Fourier integral (Unbehauen (2008)):

y(s) =

∫

∞

0

y(t)e−stdt (36)It 
an be des
ribed by the following symbolism:
y(t) d ty(s) (37)One of the most important transformations is the one for derivatives (Unbe-hauen (2008)):

dny(t)

dtn
d tsny(s)−

n
∑

i=1

sn−i

(

d(i−1)f(t)

dti−1

)

t=0+

(38)The transfer fun
tion F (s) des
ribes the behavior of a dynami
 system y tothe input u and is de�ned in the following way (Unbehauen (2008, p. 60)):
F (s) =

y(s)

u(s)
=

b0 + b1s+ · · ·+ bms
m

a0 + a1s+ · · ·+ ansn
=

N(s)

D(s)
(39)20



By setting the denominator to zero (D(s)
!
= 0) we 
an derive the so-
alledpoles or eigenvalues of the system s1, s2, · · · , sn, whi
h des
ribe the homoge-neous solution of the system in the time domain (Unbehauen (2008)):

yhom(t) =
n
∑

i=1

Cie
si·t (40)The stability 
ondition is that the real part of the eigenvalue is negative(Re {si} < 0) (Unbehauen (2008, p. 140)).The 
hartist demand for the 
ase Ls = 1 and Ll = 2 
an be derived if we
onsider the following assumption for the se
ond order derivative:

p̈ ≈ ṗ(t)− ṗ(t− 1) ≈ (pt+1 − pt)− (pt − pt−1) = pt+1 − 2pt + pt−1 (41)This results in the following 
hartist demand DC :
DC =

β

2
(pt − pt−1) =

β

2
((pt+1 − pt)− (pt+1 − 2pt + pt−1)) =

β

2
(ṗ− p̈) (42)Using these results the following transfer fun
tion 
an be derived:

ṗ = µ

[

β

2
(ṗ− p̈) + α(f − p)

]

d tp(s)

(

µβ

2
s2 + (1− µβ

2
)s+ µα

)

= f(s) · µα

⇒ F (s) =
µα

µβ
2
s2 + (1− µβ

2
)s+ µα

=
1

β
2α
s2 + (2−µβ)

2µα
s+ 1

(43)
Now, the 
ase of Ls = 1 and Ll = 3 is presented. The transformationof the di�eren
e equation into a di�erential equation requires the following
onne
tion: ...

p t ≈ p̈(t)− p̈(t− 1)

≈ (pt − 2pt−1 + pt−2)− (pt−1 − 2pt−2 + pt−3) = pt − 3pt−1 + 3pt−2 − pt−3(44)The 
hartist demand 
an therefore be des
ribed by the following equation:
1

3

...
p − 4

3
p̈+ ṗ

=

(

1

3
pt+1 − pt + pt−1 −

1

3
pt−2

)

+

(

−4

3
pt+1 +

8

3
pt −

4

3
pt−1

)

+ (pt+1 − pt)

=
2

3
pt −

1

3
pt−1 −

1

3
pt−2 −

1

3
pt−3(45)21



Using this result the transfer fun
tion is 
al
ulated:
ṗ = µ

[

β(
1

3

...
p − 4

3
p̈ + ṗ) + α(f − p)

]

d tp(s)

(

−µβ

3
s3 +

4

3
µβs2 + (1− µβ) s+ µα

)

= f(s) · µα

⇒ F (s) =
1

− β
α3
s3 + 4β

3α
s2 + (1−µβ

µα
)s+ 1

(46)
This system is always unstable. This system is a so-
alled PT3 system, whi
h
an be des
ribed as serial 
onne
tion of three PT1 systems. Mathemati
ally,this 
an be done by multiplying PT1 fun
tions:

F (s) =

(

K

sT + 1

)3

=
K3

s3T 3 + 3s2T 2 + 3sT + 1
(47)Sin
e the stability 
ondition for the PT1 system requires T > 0 all 
oe�
ientsof the denominator of the PT3 fun
tion have to be positive as well. Inthis 
ase the 
oe�
ient of s3 is always negative, thus rendering the systemunstable.
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