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Abstract

We assume that some consistent estimator bβ of an equilibrium relation between non-stationary

series integrated of order d ∈ (0.5, 1.5) is used to compute residuals ût = yt − bβxt (or differences

thereof). We propose to apply the semiparametric log-periodogram regression to the (differenced)

residuals in order to estimate or test the degree of persistence δ of the equilibrium deviation ut.

Provided bβ converges fast enough, we describe simple semiparametric conditions around zero fre-

quency that guarantee consistent estimation of δ. At the same time limiting normality is derived,

which allows to construct approximate confidence intervals to test hypotheses on δ. This requires

that d − δ > 0.5 for superconsistent bβ, so the residuals can be good proxies of true cointegrating

errors. Our assumptions allow for stationary deviations with long memory, 0 ≤ δ < 0.5, as well

as for non-stationary but transitory equilibrium errors, 0.5 < δ < 1. In particular, if xt contains

several series we consider the joint estimation of d and δ. Wald statistics to test for parameter

restrictions of the system have a limiting χ2 distribution. We also analyze the benefits of a pooled

version of the estimate. The empirical applicability of our general cointegration test is investigated

by means of Monte Carlo experiments and illustrated with a study of exchange rate dynamics.
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1 Introduction

A substantial part of economic theory deals with long-run equilibrium relationships generated by market

forces and behavioral rules. Granger (1981) and Engle and Granger (1987) were the first to formalize the

idea of integrated variables sharing an equilibrium relation which turned out to be either stationary or

have a lower degree of integration than the original series. They denoted this property by cointegration,

signifying co-movements among trending variables which could be exploited to test for the existence of

equilibrium relationships within a fully dynamic specification framework.

The presence of, at least, a unit root in economic time series is implied in many economic models

as those based on the rational use of available information or on the existence of very high adjust-

ment costs in some markets. Interesting examples include future contracts, stock prices, yield curves,

exchange rates, money velocity, hysteresis theories of unemployment and, perhaps the most popular,

the implications of the permanent income hypothesis for real consumption under rational expectations.

Thus, most of the cointegration literature has focused on the case where variables contain a single unit

root. Moreover, in most of the occasions, the equilibrium relation turned out to be modeled as a weakly

stationary or short memory I(0) process. Within this I(1)/I(0) set up, Engle and Granger (1987) sug-

gested a two-step estimation procedure for single equation dynamic modeling which has become very

popular in applied research. First, an OLS regression is run among the levels of the series of interest.

Then, Dickey-Fuller type unit root tests are performed on the residual sequence to determine whether it

has a unit root. Under the null hypothesis the residuals are I(1), and under the alternative the residuals

are I(0).

Some economic applications, however, suggest that even if the data are I(1), the residual term rep-

resenting the potential equilibrium error might be fractionally integrated. See, e.g., Robinson (1994a),

Baillie (1996) and Gil-Alaña and Robinson (1997). Loosely speaking, a series ut is said to be fraction-

ally integrated of order δ, in short I(δ), if ∆δut is I(0), where δ is not an integer but a real number.

The degree of integration determines the key dynamic or memory properties of the economic series. A

fractionally integrated process is stationary if δ < 0.5 and nonstationary otherwise (cf. Granger and

Joyeux, 1980; Hosking, 1981). In spite of being nonstationary, if 0.5 ≤ δ < 1 the process is mean-

reverting with transitory memory, i.e., any random shock has only a temporary influence on the series,

in contrast with the case when δ ≥ 1, where the process is both nonstationary and not mean-reverting

with permanent memory, i.e., any random shock having now a permanent effect on the future path of

the series. Consequently, a wide range of dynamic behavior is ruled out a priori if δ is restricted to

integer values and a much broader range of cointegration possibilities is permitted when fractional cases

are considered. More importantly, now the degree of memory of the residual series, δ, is a parameter

suitable, in principle, of estimation and testing by means of any of the existing methods.

In this sense, the most widespread estimation method of the memory parameter δ with observed series

is the so-called log-periodogram estimator (Geweke and Porter-Hudak, 1983; Robinson, 1995a) due to

its semiparametric nature and simplicity. In this paper we provide theoretical grounds on the behavior

of the log-periodogram estimator when applied to the residual equilibrium series. Indeed, the residual-
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based log-periodogram regression for (fractional) cointegration testing has been applied in a series of

papers recently. Cheung and Lai (1993), Masih and Masih (1995) and Soofi (1998) test the purchasing

power parity hypothesis, while Booth and Tse (1995) and Masih and Masih (1998) investigate interest

rate future markets and exchange rate dynamics, respectively. Their approach also relies on a two-

step procedure, where the log-periodogram regression is applied in a second step to regression residuals

obtained in a first step from a cointegrating regression1. Experimentally, they collected evidence that

the t-statistics associated with the estimator δ̂ may not be approximately normally distributed, cf. also

the recent Monte Carlo results by Tse, Anh and Tieng (1999). Their experimental evidence, however,

is limited with two respects. First, they only consider bivariate regressions, second, they assume that

the observed series are integrated of order one. Our analysis overcomes these drawbacks in that we

allow the observed series to be integrated of order d, 0.5 < d < 1.5, and moreover multiple regressions

are also considered. But most important, our asymptotic treatment reveals that the residual-based log-

periodogram regression does result in a limiting normal distribution provided the very first harmonic

frequencies are neglected. This modification, which has been called trimming in the statistical literature,

had not been considered in the experimental studies previously quoted.

In this paper we assume that the series of interest are a (linearly) cointegrated set of I(d) processes,

with the corresponding innovation being an I(δ) process such that d > δ with 0.5 < d < 1.5. In case

of single equation regression, given an estimator β̂ of the corresponding cointegrating coefficient, we

consider the residuals ût = yt − β̂xt and estimate δ from a log-periodogram regression of the residuals,

or of the differenced residuals. With the gap between d and δ being large enough, δ < d − 0.5, we

obtain sufficient conditions for the consistency of the estimators of the memory parameter δ of the

cointegration error. In particular, we require trimming of the very first frequencies of the residual

periodogram. Furthermore, assumptions are strengthened in order to establish limiting normality.

Given a consistent and asymptotically normal estimator it is straightforward to compute at what level

of significance the estimators of δ are (i) positive, (ii) less than 0.5, (iii) larger than 0.5, or (iv) less than

1. Such inference is of immediate economic interest, because the degree of integration δ measures the

persistence of the deviations from long-run equilibrium. Depending on our null hypothesis of interest,

e.g. δ = 0 or δ = 1, we propose alternative procedures based on either original or differenced residuals

that lead to a consistent characterization of the long run relationship among some economic series.

The rest of the paper is organized as follows. The next section sets the scene by introducing the

basic bivariate cointegrated regression model and the relevant theory for the residual log-periodogram

regression. The third section is reserved for the extension to multiple regressions, investigating the

situation where the degree of integration of the regressors and the error are jointly estimated. Residual

Wald statistics testing parameter restrictions remain asymptotically χ2 distributed just as found by

Robinson (1995a) for observed series. Section 4 considers non-Gaussian series and situations ruled out

in previous sections when δ can be arbitrarily close to d. In Section 5 Monte Carlo experiments are
1A multivariate approach in contrast to single equation regressions was employed by Baillie and Bollerslev (1994) and

Dueker and Startz (1998). Two recent papers provide asymptotic theory for determining the cointegration rank in a

fractional context: Robinson and Yajima (2002) suggest a frequency domain approach designed for stationary processes,

while Breitung and Hassler (2002) consider a time domain approach valid in the nonstationary case.
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reported with respect to the empirical relevance of some of the assumptions used. We propose an

empirical research strategy that is illustrated in Section 6 with a study of exchange rate dynamics.

The final section contains a more detailed summary of our main findings. Technical assumptions and

auxiliary results are collected in Appendix A, while proofs are relegated to Appendix B.

2 Residual log-periodogram regression

In this section, we restrict ourselves to the leading case of a simple regression between two non-stationary

series. Let the observable yt ∼ I(d) and xt ∼ I(d), 0.5 < d < 1.5, satisfy

yt = βxt + ut, β 6= 0, t = 1, . . . , T,

with ut ∼ I(δ), 0 ≤ δ < d, and let β̂ be a consistent estimate of β based on T observations of yt

and xt. The interval 0.5 < d < 1.5 covers most empirically relevant cases. Extensions to higher order

integration might be possible but are not considered here. The properties of estimates of β depend on

d and δ, bridging the gap between root-T consistency for stationary regressions and T -superconsistency

for I(1) regressions with I(0) residuals. We will assume the following condition on β̂ distinguishing the

case where the overall memory of regressors and errors, δ + d, is strictly less than 1, and the case where

it is equal or larger than 1.

Assumption 1 Let d ∈ (0.5, 1.5), δ ∈ [0, d),

CASE I: If δ + d ≥ 1 then β̂ − β = Op(T δ−d).

CASE II: If δ + d < 1 then β̂ − β = Op(T 1−2d).

This assumption holds when the β̂ are the OLS estimates for δ ∈ [0, 1.5) − {0.5} (see de Jong

and Davidson, 2000; Robinson and Marinucci, 2001). There are several alternative estimates that try

to improve the asymptotic and finite sample properties of OLS estimates. Robinson and Marinucci

(2001) proposed a narrow band frequency domain LS estimate which satisfies Assumption 1 when a

bandwidth is chosen appropriately but under a somewhat different definition of non-stationary long-

memory processes than the one we use in this paper. This alternative definition implies different initial

conditions for integrated processes than ours, and is also less tractable for our purposes because it

implies that the series are nonstationary for any value of δ 6= 0 (though asymptotically stationary for

δ < 0.5). Moreover, though convergence rates for slope estimates are the same, the asymptotic theory is

different for each definition (see Marinucci and Robinson, 1999). Alternatively, Kim and Phillips (2001)

developed fully modified version of LS under Gaussian assumptions for CASE I.

We say that a covariance stationary time series ut is I(δ) if it has a spectral density fuu(λ), defined

by Cov(ut, ut+j) =
∫ π

−π
fuu(λ) cos(jλ)dλ, satisfying for some positive constant Gu

fuu(λ) ∼ Gu|λ|−2δ, as λ → 0, δ < 0.5.(1)

This reflects a persistent behaviour or long memory at low frequencies when δ > 0, weak dependence

when δ = 0 and negative memory when δ < 0, but leaving unparameterized the rest of the spectrum.
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This definition covers standard fractional parametric models such as stationary ARFIMA (Granger and

Joyeux, 1980; Hosking, 1981),

φ(L)(1− L)δut = θ(L)εt,(2)

where εt is white noise, φ and θ are polynomials in the lag operator L with all their roots outside the

unit circle and (1− L)δ is the fractional difference operator.

For non-stationary data we adopt a parallel definition of the memory parameter δ in terms of

stationary increments. Thus ut is I(δ), 0.5 ≤ δ < 1.5, if ∆ut = (1 − L)ut is zero mean I(δ−1),

encompassing the I(0) and I(1) terminology of the standard cointegration literature. For non-stationary

ut ∼ I(δ) we consider a generalized or pseudo spectral density using the difference operator transfer

function |1− eiλ|2 = (2 sin(λ/2))2 as

fuu(λ) = (2 sin(λ/2))−2f∆u∆u(λ) ∼ Gu|λ|−2δ, as λ → 0, 0.5 ≤ δ < 1.5,

which has a similar behaviour around the origin in terms of the memory parameter δ as the spectral

density (1) of stationary long memory processes. These definitions allow us to directly extend standard

frequency domain assumptions and analysis to non-stationary data.

A variety of estimates of the long memory parameter of stationary series has been proposed. Many

of them are parametric in the sense that a full parametric model is also specified for the short memory

behaviour of the series as in (2). These include estimates based on different approximations to Gaussian

likelihoods in frequency and time domains (e.g. Fox and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992).

On the other hand, semiparametric estimates have the advantage of avoiding short run specification

and have become of wide use in practice, although they are asymptotically inefficient compared to

parametric competitors.

The most popular of semiparametric estimates is probably the log-periodogram regression estimate

proposed by Geweke and Porter-Hudak (1983) because of its intuitive and computational appeal, though

some competitors have been studied under more general conditions (e.g. Robinson, 1995b). As many

semiparametric estimates of long memory parameters, it is based on the properties of the spectral

density for low frequencies, cf. expression (1). Define the (cross) periodogram of two sequences pt and

qt, t = 1, . . . , T , as

Ipq(λ) = wp(λ)w∗q (λ), wp(λ) = (2πT )−1/2
T∑

t=1

pt exp(iλt),

where the star ∗ superscript denotes simultaneous transposition and complex conjugation. The pe-

riodogram Iuu(λ) is the sample equivalent of the spectral density for an observed sequence ut and

constitutes the basic statistic for frequency domain inference. Robinson (1995a) showed that, as for

short memory series, the periodogram of long memory series is asymptotically unbiased and uncorre-

lated when evaluated at the harmonic frequencies λj = 2πj/T for j growing with sample size T (see

e.g. Lemmas 1 and 2 in Appendix A). This is the basis to write the logarithm of (1) as

log Iuu(λj) ≈ log Gu − 2δ log λj + log
Iuu(λj)
fuu(λj)

, j = 1, . . . ,m,
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where m is small compared to T. This is a linear regression model with the log-periodogram as depen-

dent variable, non-stochastic regressor rj = −2 log λj , slope δ and approximately homoscedastic and

independent errors. The log-periodogram regression estimate of δ is the least squares estimate δ̂(u).

The asymptotic properties of δ̂(u) were analyzed rigorously for multiple stationary Gaussian series

(−0.5 < δ < 0.5) by Robinson (1995a) for m growing with T under some smoothness conditions on

fuu(λ) (cf. Theorem 5 in Appendix A). He also considered a pooling of contributions from adjacent

frequencies to achieve efficiency gains (see Section 4) and excluded the very low frequencies, following

the findings of Künsch (1987).

When the equilibrium errors ut are non-stationary but not observable it is sensible to estimate δ

from the increments of the observed residuals ∆ût = ∆ut − (β̂ − β)∆xt which we may expect to have

memory close to δ − 1, so the periodogram of the residual differences is

I∆û∆û(λj) = I∆u∆u(λj)− (β̂ − β) {I∆u∆x(λj) + I∆x∆u(λj)}+ (β̂ − β)2I∆x∆x(λj).(3)

However, when ut are stationary, δ could be estimated directly from the levels of the observed residuals

ût = ut − (β̂ − β)xt through

Iûû(λj) = Iuu(λj)− (β̂ − β) {Iux(λj) + Ixu(λj)}+ (β̂ − β)2Ixx(λj),

avoiding problems of non-invertibility that may arise with differenced stationary data. For inference

on δ using the residuals ût or increments ∆ût the key point is that β̂ − β has to be small enough in

probability to make the contribution of the slope estimation negligible in the residual periodograms.

We show that this is the case using only Assumption 1, where the estimates β̂ can be obtained by any

method and we do not need their asymptotic distribution or moments. On the other hand, as our proofs

rely on Robinson’s (1995a) analysis, Gaussianity of xt and ut is required. We also note that Robinson

(1997) considered semiparametric memory estimation from nonparametric regression residuals using a

local Gaussian likelihood (see Robinson, 1995b), but avoiding such assumption.

Denote by δ̂(∆û) the log-periodogram regression estimate of δ based on the differences of the observed

residuals, ∆ût,

δ̂(∆û) = 1 +




m∑

j=`+1

W 2
j



−1

m∑

j=`+1

Wj log I∆û∆û(λj)(4)

where

Wj = rj − r̄`, rj = −2 log λj , and r̄` = (m− `)−1
m∑

j=`+1

rj .(5)

When ` > 0 in the above definition of δ̂(∆û) we allow for the trimming of the very low frequencies as

in Robinson (1995a). However Hurvich, Deo and Brodsky (1998) have shown that the log-periodogram

regression maintains desirable properties if all frequencies from 1 up to m are used. Nevertheless we

later provide an alternative justification for the policy of removing the first ` frequencies when residuals

are used instead of observational data, for ` growing with T as in the next assumption.

Assumption 2 We choose

m ∼ AT a, ` ∼ BT b, 0 < b < a < 1, 0 < A,B < ∞,
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where p ∼ q means that limT→∞ p/q = 1.

This technical assumption restricts the bandwidth numbers ` and m to a particular choice in terms

of powers of T to simplify the presentation of the results, but more general choices are possible, though

depending on unknown parameters such as d and δ. In practice only small values of ` are usually chosen.

In the following Theorem we summarize the properties of differenced-residual log-periodogram re-

gression. We concentrate on asymptotic normality and log T -consistency, for studentization purposes

of statistics such as β̂ whose convergence rate depends on δ as was pointed out by Robinson (1994b,

1997). Note that only Case I of Assumption 1 is relevant for δ̂(∆û) when δ > 0.5. Additional tech-

nical assumptions on the smoothness of the spectral densities and bandwidth choice are detailed in

Appendix A.

Theorem 1 Under Assumptions 1, 2 and 6, for Gaussian ut and xt, 0.5 < δ < d−0.5 < 1, as T →∞,

log T
(
δ̂(∆û)− δ

)
→p 0.

If additionally Assumption 10 holds then

m1/2
(
δ̂(∆û)− δ

)
→d N

(
0,

π2

24

)
.

For both consistency and asymptotic normality of δ̂(∆û) our proofs require the trimming of an

increasing number of frequencies and that d− δ > 0.5, to obtain uniform convergence of the normalized

residual periodogram for λj , ` ≤ j ≤ m. This problem prevents us from using Hurvich et al. (1998)

results to completely avoid the trimming of low frequencies, though any b > 0 is enough for our results.

The condition d − δ > 0.5, which implies that β̂ is superconsistent (cf. Case I in Assumption 1), can

be relaxed to something close to d > δ for consistency of δ̂(∆û) (cf. Section 4), but it seems necessary

for root-m consistency.This confirms Robinson’s (1995a) Remark 7 that a sufficiently fast convergence

rate of the estimates of the appropriate filter should be necessary for log-periodogram inference based

on residuals.

When δ ≤ 0.5 the previous procedure is likely to fail because ∆ut are non-invertible, so we are led

to work with the original residuals. The study of the asymptotic properties of the log-periodogram

regression estimate of δ based on the original residuals,

δ̂(û) =




m∑

j=`+1

W 2
j



−1

m∑

j=`+1

Wj log Iûû(λj),

is additionally complicated because we have to distinguish the cases d + δ ≥ 1 and d + δ < 1, for

which the estimates of β have different convergence rates. We did not have this problem before because

0.5 < δ < d− 0.5, so we now add Assumption 9 introduced in Appendix A.

Theorem 2 Under Assumptions 1, 2, 6 and 9 for Gaussian ut and xt, 0 ≤ δ < 0.5, δ < d − 0.5 < 1,

then as T →∞,

log T
(
δ̂(û)− δ

)
→p 0.
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If additionally Assumption 10 holds then

m1/2
(
δ̂(û)− δ

)
→d N

(
0,

π2

24

)
.

The range of values of δ in our asymptotic theory for δ̂(û) is more limited than when the ut are

observable, where any −0.5 < δ < 1 can be consistently estimated, see Velasco (1999a). In case of

residual inference, δ̂(û) is consistent only if 0 ≤ δ < 0.5, with d − δ > 0.5, as for differenced residuals,

and with m and ` chosen appropriately. We do not consider δ < 0 because this is not likely to occur for

observed undifferenced data. Tapering, as suggested in Hurvich and Ray (1995), may allow consistent

estimation of situations excluded in Theorems 1 and 2, e.g. δ < 0.5 using δ̂(∆û) and δ ≥ 0.5 using δ̂(û),

as was showed for observed data in Velasco (1999a). We explore the latter possibility in Section 4.

Only when d+ δ < 1, strong enough trimming is essential for our analysis of δ̂(û), cf. Assumption 9.

Only in this case the choices of m and ` are limited by the values of d and δ, due to the slower convergence

rate of β̂ in Case II of Assumption 1, leaving situations where it is not possible to find sequences m and

` to show the root-m asymptotic normality of δ̂(û), for example when 0.5 < d < 6.5/9. However the

most relevant situation of d = 1 and 0 ≤ δ < 0.5 is covered by Theorem 2 with any b > 0.

The Gaussianity assumption can be removed for a pooled version of the log-periodogram regression

for some linear processes (see Section 4 below and Velasco, 2000), but in this and the following section

Gaussianity plays a decisive simplifying role for residual-based inference on δ.

Remark (linear detrending): The deterministic regressor τt = t has similar properties to I(1.5)

stochastic data, so the least squares estimate of its coefficient is T 1.5−δ-consistent (see e.g. Robinson

and Marinucci, 2000). Therefore, it can be shown that Theorems 1 and 2 hold if residuals are obtained

after linear detrending, δ < 1.

For memory estimation some a priori knowledge on δ is necessary in order to use either δ̂(∆û) or

δ̂(û) appropriately, though use of tapered original residuals may help in providing consistent estimates

for any δ < 1. For hypothesis testing this information can be obtained from the maintained null

hypothesis. Thus consistent procedures can be obtained from asymptotic N(0, 1) t-statistics based on

δ̂(û) for testing of H0 : δ = 0 against H1 : δ > 0, or on δ̂(∆û) for testing of H0 : δ = 1 against H1 :

δ < 1.

3 Multiple regression and estimation

We now consider the case of multivariate regressors and joint estimation of the memory parameters of

the regressors and cointegrating errors. Let the observable yt satisfy

yt =
k∑

i=1

βixit + ut,

for xit ∼ I(di), 0.5 < di < 1.5, ut ∼ I(δ), 0 ≤ δ < dmin, and yt ∼ I(dmax), where dmin = mini di and

dmax = maxi di. Let β̂ be a consistent estimate of the vector β = (β1, . . . , βk)′ based on T observations

8



of yt and xt = (x1t, . . . , xkt)′. We make the following assumption on β̂ distinguishing the two cases of

Assumption 1 and allowing for regressors with different memory parameters.

Assumption 3 Let xit ∼ I(di), di ∈ (0.5, 1.5), i = 1, . . . , k, ut ∼ I(δ), 0 ≤ δ < di:

CASE I: If δ + di ≥ 1 then β̂i − βi = Op(T δ−di), i = 1, . . . , k.

CASE II: If δ + di < 1 then β̂i − βi = Op(T 1−dmin−di), i = 1, . . . , k.

It would be possible to consider more general set-ups with Cases I and II mixed. However Robinson

and Marinucci (2001) only consider Cases I and II separately, and showed that the convergence rates of

Assumption 3 hold for OLS estimates, δ 6= 0.5. In any case residual-based log-periodogram regression

asymptotics would depend on the slowest rate of convergence, given by Op(T 1−dmin−di). Then it is quite

straightforward to show that Theorems 1 and 2 continue to hold when we use residuals from multivariate

regressions, where the assumptions on the regressors xit are now to be understood componentwise.

Therefore the proof of the following result is omitted.

Corollary 1 Theorems 1 and 2 hold for multiple regression residuals ût = β̂′xt where the β̂ satisfy

Assumption 3.

The previous remark on linear detrending applies to multivariate regressions when one of the regres-

sors is t and also the results are unaffected if the regressions include an intercept or seasonal dummies,

since these variables have zero variance at the relevant frequencies, so hence on we concentrate only on

stochastic regressors.

Furthermore, the memory parameters of the stationary vector (ut,∆x′t)
′ ∼ I(δ,D1, . . . , Dk), Di =

di−1, −0.5 < δ < 0.5, can be simultaneously investigated as if the ut were observable using Robinson’s

(1995a) multivariate log-periodogram estimate as long as sufficient smoothness conditions are assumed

for the spectral density matrix. For example, the case where a set of the regressors xt is cointegrated is

excluded (cf. Assumption 7 in Appendix A), and some trimming is incorporated in the log-periodogram

regression. This permits hypothesis testing on the differences di − δ and efficiency gains for inference

on δ or d = (δ, d1, . . . , dk)′ using generalized LS estimation under linear restrictions on the memory

parameters, like di = d, i = 1, . . . , k.

To this end we set the system of k + 1 equations, j = ` + 1, . . . , m, where we allow for the trimming

of the first ` = 0, 1, . . . frequencies,

log Iûû(λj) = cu − 2δ log λj + vu,j ,

log I∆i∆i(λj) = ci − 2Di log λj + vij i = 1, . . . , k,

and log I∆i∆i(λj) is the periodogram of ∆xit, ci = log Gi and Di = di− 1. The vector of OLS estimates

D̂(û) = (δ̂, D̂1, . . . , D̂k)′ and ĉ(û) = (ĉu, ĉ1, . . . , ĉk)′,

ĉ(û)D̂(û) = vec
(
V (û)′S(S′S)−1

)
,

9



is the generalization of the log-periodogram estimate of the previous section, where S = (S`+1, . . . , Sm)′ ,

Sj = (1, rj)′, and V (û) = (Vo(û), V1, . . . , Vk), Vo(û) = (log Iûû(λ`+1), . . . , log Iûû(λm))′ and Vi =

(log I∆i∆i(λ`+1), . . . , log I∆i∆i(λm))′, i = 1, . . . , k. We set the estimate d̂(û) = (δ̂, d̂1, . . . , d̂k)′ of d,

with d̂i = D̂i + 1.

To obtain asymptotically normal estimates of d when the ut are non-stationary we use differenced

residuals ∆ût, substituting the first equation in the log-periodogram regression by

log I∆û∆û(λj) = cu − 2(δ−1) log λj + vu,j ,

and obtain the least squares estimates D̂(∆û) = (δ̂−1, D̂1, . . . , D̂k)′,

ĉ(∆û)D̂(∆û) = vec
(
V (∆û)′S(S′S)−1

)
,

setting d̂(∆û) = (δ̂, d̂1, . . . , d̂k)′, δ̂ = δ̂−1+1, d̂i = D̂i+1, and Vo(∆û) = (log I∆û∆û(λ`+1), . . . , log I∆û∆û(λm))′.

The next result gives sufficient conditions described in Appendix A for the asymptotic normality of these

estimates, generalizing the univariate set up of Theorem 1, cf. Assumptions 2 and 6, and excluding the

possibility of the components of xt from being cointegrated themselves.

Theorem 3 Under Assumptions 2, 3, 7, 11, (ut, x
′
t)
′ jointly Gaussian, δ < di − 0.5 < 1, i = 1, . . . , k,

then if 0.5 < δ < 1, as T →∞,

2m1/2
(
d̂(∆û)−d

)
→d N (0,Ω) .

If 0 ≤ δ < 0.5, and additionally Assumption 12 holds then

2m1/2
(
d̂(û)−d

)
→d N (0,Ω) .

The covariance matrix Ω has diagonal elements π2/6 and can be estimated consistently by the sample

regression residuals covariance matrix, Ω̂ = (m − `)−1
∑m

j=`+1 v̂j v̂
′
j . We do not consider Robinson’s

(1995a) pooled version of d̂ in this section, nor the estimation of the constants Gr, but the same results

as for observed data can be shown to hold when using residuals.

We can now follow Robinson (1995a) to test the homogeneous restriction

Ho : Pd = 0,(6)

where P is an n× (k + 1) matrix of rank n < k + 1, as in the case of equal memory among some of the

non-stationary series xit. The test statistics is

d̂′P ′
[
(0, P )

{
(S′S)⊗ Ω̂−1

}
(0, P )′

]−1

P d̂,

where d̂ is either d̂(û) or d̂(∆û) and which has asymptotic χ2
n distribution under (6) and the appropriate

conditions of Theorem 3. A typical example is the estimation under the restriction of regressors of equal

memory, imposed by

P

(k−1)× (k+1)

=




0 1 −1 0 · · ·
...

. . . . . . . . . . . .

0 · · · 0 1 −1


 .
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We can also achieve efficiency gains if we assume that some of the k series xit share a common

d-parameter or any other homogeneous linear restriction

D = Qθ,

where Q is a given (k + 1) × q matrix of rank q < k + 1 and θ is a q-dimensional column vector of

unrelated parameters. The GLS-type vector estimate incorporating such restrictions is

c̃(û)θ̃(û) =
{

Q′
1

(
(S′S)⊗ Ω̂−1

)
Q1

}−1

vec
(
Ω̂−1V (û)′S

)
,

where D̃(û) = Qθ̃(û), d̃(û) = D̃(û) + (0, 1, . . . , 1)′, and

Q1 =


 Ik+1 0

0 Q


 .

If ut is known to be non-stationary we may substitute V (û) by V (∆û), and set d̃(∆û) = D̃(∆û) +

(1, 1, . . . , 1)′, D̃(∆û) = Qθ̃(∆û). Then under the appropriate assumptions of Theorem 3 it can be

shown that

2m1/2
(
d̃−d

)
→d N

(
0, Q

(
Q′Ω−1Q

)−1
Q′

)
,

where d̃ is either d̃(û) or d̃(∆û), and the covariance matrix of the asymptotic distribution can be

estimated consistently by Q
(
Q′Ω̃−1Q

)−1

Q′ using the GLS residuals in Ω̃.

4 Residual log-periodogram for non-Gaussian data

The previous results have three main limitations. First, they rely on Gaussianity, employed for reference

to Robinson (1995a) and to show the negligible effect of residual-based estimates compared to original

data. Second, we always have required d − δ > 0.5 for root-m consistency and asymptotic normality,

but such condition is likely to be too stringent for consistency of semiparametric estimates of δ. And

third, we have to avoid non-stationary residuals (δ ≥ 0.5) when analyzing δ̂(û).

Recently Velasco (2000) has moved in the direction of relaxing Gaussianity for the consistency of

the log-periodogram regression estimate. The two main devices used for this are a fixed pooling of

periodogram ordinates in the regression, as originally proposed by Robinson (1995a), and tapering.

We analyze in this section the consistency of a version of the residual log-periodogram regression for

linear processes with well behaved independent and identically distributed (i.i.d.) innovations. Pooling

also permits to relax the condition d − δ > 0.5, allowing a trade-off between the cointegration degree

d− δ and the pooling employed, while non-stationary residuals (δ ≥ 0.5) can be treated consistently by

tapering. Assuming enough moments for the innovations of the observed data, we could also analyze

the asymptotic distribution of the estimates, see Velasco (2000) and Fay and Soulier (2001) for details.

Tapering downweights the observations at both extremes of the observed stretch of data, using a

smooth function that leaves mainly unchanged the central part of the sample. We use the full cosine

window

ht =
1
2

{
1− cos

(
2πt

T

)}
,

11



so the tapered periodogram is

Ih
uu(λ) = |wh

u(λ)|2, wh
u(λ) =

(
2π

T∑
t=1

h2
t

)−1/2 T∑
t=1

htut exp(iλt),

and define for J = 1, 2, . . ., fixed with T, the pooled tapered periodogram

I(J)
uu (λj) =

J∑
r=1

Ih
uu(λj+r−J ), j = ` + J + 1, ` + 2J + 1, . . . ,m,

suppressing reference to tapering and assuming that (m−`−1)/J is integer. Note that even for ` = 0 we

suppress the first tapered periodogram ordinate Ih
uu(λ1) to avoid zero frequency leakage (see Velasco,

1999a). The pooled log-periodogram estimate of the memory parameter δ considered in Robinson

(1995a) using the mentioned frequencies is

δ̂(J)(u) =




m∑

j=`(J)

W 2
j



−1

m∑

j=`(J)

Wj log I(J)
uu (λj),

where it is shown that letting J > 1, fixed with T , improves the efficiency of δ̂(J)(u). Note that at the

same time, since the tapered periodograms at Fourier frequencies λj are not asymptotically uncorrelated,

there is now serial correlation among the log I
(J)
uu (λj), increasing the asymptotic variance of the tapered

δ̂(J)(u).

We adapt the set-up of Velasco (2000) to investigate the consistency of δ̂(J)(û) for non-Gaussian

data as follows. Instead of Gaussianity we introduce a fourth order stationary linear process condition,

with filter coefficients compatible with (1). Let bxc denote the largest integer equal or less than x.

Assumption 4 Any zt ∈ {∆δ̄ut, ∆x1t, . . . , ∆xkt}, δ̄ = bδ + 0.5c, satisfies

zt =
∞∑

j=0

α
(z)
j ε

(z)
t−j ,

∞∑

j=0

(
α

(z)
j

)2

< ∞,

where the ε
(z)
t are i.i.d. with E [ε(z)

t ] = 0, E [(ε(z)
t )2] = 1 and E [(ε(z)

t )4] < ∞, and in a neighbourhood

(0, ε) of the origin, αz(λ) =
∑∞

j=0 α
(z)
j exp(ijλ) is differentiable with

∣∣∣ d
dλ

αz(λ)
∣∣∣ = O(|λ|−1|αz(λ)|) as

λ → 0.

Assumption 4 was used in Robinson (1995b) with martingale difference innovations; four bounded

moments are enough for all our consistency results. We next introduce a further assumption following

Chen and Hannan (1980):

Assumption 5 ε
(z)
t has characteristic function ψ(θ) = E[exp(iθε(z)

t )] satisfying

sup
|θ|≥θ0

|ψ(θ)| = δ(θ0) < 1, ∀θ0 > 0, and

∫ ∞

−∞
|ψ(θ)|pdθ < ∞, for some integer p > 1.

12



The first part of Assumption 5 is a Cramér condition, satisfied by distributions with a non-zero

absolute continuous component, while the second part implies that εt has a probability density function.

We need this condition to use an asymptotic approximation for the probability density of a finite length

vector of discrete Fourier transforms of the innovations εt (see Velasco, 2000). It holds for Gaussian

series, as the first part of Assumption 4, but also for all usual continuous distributions.

In the next theorem we consider residual-based estimates of δ using choices of bandwidths `, m

which are powers of T as in previous sections. Furthermore the pooling parameter has to satisfy

certain conditions in order to control bias, see Assumptions 13 and 14 in Appendix A. We only analyze

consistency in multiple regressions.

Theorem 4 Under Assumptions 1, 2, 4, 5 for ut and xjt, 8 and 13, then as T →∞, 0.5 < δ < d < 1.5,

log T
(
δ̂(J)(∆û)− δ

)
→p 0.

If additionally Assumption 14 holds when d + δ < 1, 0 ≤ δ < d < 1.5, then

log T
(
δ̂(J)(û)− δ

)
→p 0.

When using original residuals we are now able to deal with values 0.5 ≤ δ < d < 1.5 because the

tapered periodogram of the non-stationary data xt remains asymptotically unbiased for fxx(λ) when

d ≥ 1, unlike for untapered data. The consistency of δ̂(J)(∆û) when 0 ≤ δ ≤ 0.5 could be analyzed

following the methods of Theorems 8 and 9 of Velasco (1999a).

We find, as with Gaussian data, that the conditions on the bandwidths m and ` imposed by The-

orem 4 are more restrictive in Case II, d + δ < 1. These imply no further restrictions on the values

of d and δ because sufficiently large values of J guarantee that feasible choices of m and ` exist to

construct consistent estimates of δ, even for arbitrarily small values of d − δ > 0, as can be deduced

from Assumptions 13 and 14.

5 Monte Carlo evidence

In this section we investigate the residual-based log-periodogram regression according to Theorems 1

and 2 and Corollary 1 experimentally. Let x′t = (x1t, . . . , xkt) consist of ARFIMA(0, di, 0) series,

(1− L)dixit = εit, i = 1, 2, . . . , k.

The true regression model is

yt =
k∑

i=1

xit + ut, t = 1, 2, . . . , T,

with (1 − L)δut = ε0t, where εit are i.i.d.(0, σ2) processes independent of each other, i = 0, 1, . . . , k.

Stationary fractionally integrated series are simulated without approximation using the algorithm by

Hosking (1984), and non-stationary series are obtained by integration. The εit are N (0, 1), or drawn
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from a t distribution with 3 degrees of freedom or from a χ2 distribution with 5 degrees of freedom. In

the latter two cases the variates have been standardized. This t distribution has only finite second but

not higher moments, while the χ2 is skewed to the right.

The regression model is estimated by OLS,

yt = α̂ + β̂′xt + ût, t = 1, 2, . . . , T.

Next, the periodogram is computed from the differenced or original residuals. The corresponding log-

periodogram regressions are

log(Iûû(λj)) = ĉ + δ̂(û)Rj + v̂j , j = ` + 1, ` + 2, . . . , m, λj = 2πj/T,

log(I∆û∆û(λj)) = ĉ + δ̂−1(∆û)Rj + v̂j , j = ` + 1, ` + 2, . . . ,m, λj = 2πj/(T − 1),

with Rj = − log(4 sin2(λj/2)) ≈ −2 log(λj) = rj . Three different standard errors can be considered.

The usual empirical standard error is given by
√√√√√ 1

m− `

m∑

j=`+1

v̂2
j




m∑

j=`+1

(Rj − R̄`)2



−1

, R̄` =
1

m− `

m∑

j=`+1

Rj .

A theoretical modification of the empirical standard errors has been motivated already by Geweke and

Porter-Hudak (1983):

s.e. =

√√√√√π2

6




m∑

j=`+1

(Rj − R̄`)2



−1

, R̄` =
1

m− `

m∑

j=`+1

Rj .(7)

Finally, the asymptotic standard error due to Robinson (1995a) is π/
√

24m. Throughout all experiments

we found that the theoretical modification given in (7) outperforms the empirical and the asymptotic

standard errors in terms of coverage probabilities. Therefore, only the outcome of t-statistics relying

on (7) is reported. The test statistics considered hence are

tδ =
δ̂(û)− δ

s.e.
, τδ =

δ̂−1(∆û) + 1− δ

s.e.
.

In our experiments the t-statistics are compared with standard normal percentiles. Two-sided tests

at the 1%, 5% and 10% level are applied. We only report results for m = T 0.5, although a more elaborate

choice of optimal m has recently been suggested by Hurvich and Deo (1999) and other deterministic

choices such as m = T 0.4, T 0.7 have been tried. These produced similar results, as expected, since given

fractionally integrated noise models the choice of m should not matter to our main interest, the size of

the test (as long as m is big enough) though power increases with m (and does not vary with T ). The

trimming parameter ` is varied very slowly.

Simulations not reported here, in agreement with previous analysis, indicate that the normal ap-

proximation is valid for true errors irrespective of any trimming (` ≥ 0), use of nonstationary levels

(δ > 0.5), or leptokurtic t or skewed χ2 distributions. Our Monte Carlo design tries to address the valid-

ity of these points for residuals and we start investigating how the experimental level of residual-based
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cointegration tests depends on some of the assumptions that we found sufficient to establish limiting

normality.

Tables 1 and 2 report percentages of rejection from 2000 replications when testing for the true value

of δ using (differences of) residuals from bivariate regressions with Gaussian variables. We observe:

a) Without trimming, ` = 0, the normal approximation is not valid, at least with the original

residuals without differencing.

b) Trimming only the first frequency, ` = 1, provides a satisfactory normal approximation for

T = 250 and T = 1000 (and also T = 500 not reported here).

c) Even if the gap between δ and d is not as big as it should be according to the theory, i.e.

δ < d− 0.5 does not hold, the normal distribution in Tables 1 and 2 still yields a useful approximation

in case of trimming the first frequency.

d) Even without cointegration, e.g. δ = d = 1 in Tables 1 and 2, the normal approximation seems

to provide a reasonable guideline as long as trimming is applied.

Table 3 considers the power of residual-based tests from bivariate regressions and can be summarized

as follows:

e) As the trimming parameter grows, power decreases.

f) The difference in power between the log-periodogram regression of differences or levels of residuals

when testing for δ0 = 1 is negligible.

g) From the levels of residuals one may test for δ0 = 0, while tests for this hypothesis from differences

(not reported here) suffer from gross size distortion.

Tables 4 and 5 are constructed from residuals from bivariate regressions where regressors and errors

rely on either t or χ2 distributions (similar results not reported here arise for t distributed regressors

and χ2 distributed residuals and the other way round). We observe:

h) The statements a) through d) continue to hold in case of the considered leptokurtic and skewed

distributions.

Next, we investigated the log-periodogram regression (of differences) of residuals from trivariate

regressions, k = 2, where all variables are constructed from Gaussian variates. Again, without trimming

the normal approximation is clearly not useful. Furthermore, the following findings arise from Tables 6

and 7.

i) If d1 = d2 = 1.4, trimming of only the first harmonic frequency, ` = 1, results in a fairly

reliable normal approximation. This is also true for the log-periodogram regression of residuals without

differencing even if δ > 0.5. Moreover, it seems to hold in case of a cointegration gap smaller than 0.5,

e.g. for δ = 1.

j) If d1 = 1.4 and d2 = 0.6, the cases I and II are mixed when δ = 0.2, which violates Assumption 3.

Nevertheless, the normal approximation provides a valid guideline in case of trimming the first frequency
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(original residuals). Surprisingly, this also seems to hold for T = 250 even if δ > d2 = 0.6, where

Assumption 3 is again violated. For T = 1000 observations slightly different results emerge: in case

that δ > d2 = 0.6 trimming only one harmonic frequency is not sufficient for a normal approximation,

so trimming may need to grow with sample size.

We have also investigated in Tables 8 and 9 the effects of pooling a small number J of periodogram

ordinates. In this case the asymptotic variance of the log-periodogram estimate is reduced and we replace

in the expression for the standard errors π2/6 by the general expression ψ′(J)/J for J = 1, 2, . . ., where

ψ is the digamma function (cf. Robinson, 1995a). Further to the previous findings, we can state that

for Gaussian and other distributions (not reported here),

k) The larger J , the larger the power with ` = 1 when testing δ0 = 1 with differenced residuals or

δ0 = 0 with original ones, keeping good size properties.

l) Use of original residuals with J > 1 when testing δ0 = 1 requires ` = 2 to maintain size, resulting

in a noticeable power loss compared to testing based on errors (Table 8).

This Monte Carlo evidence can be summarized as follows as a rule of thumb for empirical work

with bivariate and multiple regressions: If the log-periodogram regression is applied to the level of OLS

residuals with trimming of the first harmonic frequency only, then the normal approximation of the t

statistic tδ with theoretical standard errors s.e. should yield reliable inference when we test for any δ

between 0 and 1. This is valid even for not Gaussian data and even if δ < di − 0.5 does not hold for all

i, except of the extreme case where di < δ for some i. The same seems to hold true for the t statistic

τδ from differences for any δ between 0.5 and 1. If sample size is large enough, pooling increases power

with ` = 1.

Finally, we want to propose an empirical research strategy as an overall summary of our results. In

most economic applications there are two null hypotheses (with corresponding alternatives) of major

interest:

H
(1)
0 : δ = 1 vs. δ < 1, H

(0)
0 : δ = 0 vs. δ > 0.

We suggest to test H
(1)
0 from the differences of residuals, while clearly H

(0)
0 should be tested from levels.

If, first, both hypotheses are rejected, there is fractional cointegration, i.e. we have long memory but

transitory equilibrium deviations. The degree of persistence δ should then be estimated from the levels

of the residuals; approximate confidence intervals allow to test whether the estimate is significantly

different from 0.5, the borderline of non-stationarity. If, second, H
(0)
0 is not rejected while H

(1)
0 is, we

have the strong cointegration result that the errors may be considered as I(0). If, third, H
(0)
0 is rejected

while H
(1)
0 must be accepted, the error should be considered as I(1), i.e. persistent, and there is no

long-run equilibrium. If, finally, none of these hypotheses can be rejected, more data should be used to

increase power.
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6 Exchange rate dynamics

In a cointegration study with integer orders of integration, Baillie and Bollerslev (1989) argued that

seven different nominal spot exchange rates, namely, Germany, the United Kingdom, Japan, Canada,

France, Italy and Switzerland, all relative to the US Dollar and observed daily from 1980 to 1985,

do contain unit roots in their univariate time series representations, giving also evidence in support

of the existence of a single cointegrating vector between this set of nominal exchange rates. Such a

cointegration relation has been questioned and found to be fragile by Sephton and Larsen (1991) and

Diebold, Gardeazabal and Yilmaz (1994) even though both used the same data set. Diebold et al. note

that the lack of cointegration is reinforced when using data covering the post-1973 floating exchange

rate regime. Subsequently, Baillie and Bollerslev (1994) collected more reliable evidence in a fractional

set-up, generalizing the error correction formulation to allow for possible fractional cointegration. They

find evidence that a linear combination of the same spot exchange rates contains long-range dependence.

In particular, they estimate an error correction term with memory 0.89 in a fractional white noise model,

with an (asymptotic) standard error of 0.02.

In this section we confirm their results for the same seven currencies. We use monthly data taken from

Citibase and run from 1974.1 until 1997.12, which leaves us with T = 288 observations. Following Baillie

and Bollerslev (1994), the logarithms of the data are analyzed. The use of monthly observations may

help to control changing conditional variances and should not affect the analysis of long-run properties

compared to higher frequency data.

On application of the well-known ADF test to our data set, we obtain p−values greater than 0.05.

Moreover, in some cases we cannot reject the presence of a unit root at any conventional significance

level. For example, in the Canadian case, the value obtained of the ADF test is -0.63, whereas the

10% critical value is -2.87. To further confirm this claim, in Table 10 we present the ACF and PACF

of the levels and first differences of the Canada exchange rate series. It can be observed that the

autocorrelations exhibit the typical very slow decline associated with a nonstationary process, and that

the autocorrelations of the change, i.e., the autocorrelations of the approximate rate of return, are all

them small.

Nonetheless, an alternative potential explanation for the high persistence of the exchange rate is the

possibility that the memory parameters of these series may be fractional, since it is well known that

standard integer-order unit root tests have low power against fractional alternatives (cf., e.g., Hassler

and Wolter, 1994; Dolado and Marmol, 1997).

In order to confirm this possibility, we start with determining the memory of the individual series

by applying the log-periodogram regression without trimming, ` = 0, to the differences of the original

data. The regression range was chosen as m = 18, 20, 22. This choice provided fairly stable estimates

and avoids the first seasonal frequency, which given our monthly data is λT/12 = λ24. However these

bandwidths are far from mean-square optimal choices, T 4/5 ≈ 93, which would lead to serious bias in

semiparametric estimates and distortions in our statistical inference.

With the standard errors s.e. from (7), the estimates presented in Table 11 for Germany, UK,
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Table 10: Correlogram of CAN

First First

Levels differences Levels differences

lag ACF PACF

1 0.988 0.204 0.988 0.204

2 0.975 -0.019 -0.041 -0.063

3 0.963 0.015 0.024 0.034

4 0.951 0.056 -0.023 0.046

5 0.937 -0.047 -0.074 -0.071

6 0.923 0.024 0.019 0.056

7 0.910 0.010 -0.027 -0.015

8 0.895 0.193 -0.017 0.207

9 0.879 0.107 -0.081 0.028

10 0.863 0.229 -0.025 0.233

Correlogram and partial correlogram for the Canada exchange rate. The asymptotic standard error is 0.117 under the

null of no correlation.

Switzerland and Japan are not significantly different from 1, while France, Italy and Canada have sig-

nificantly larger values. Consequently, if we test according to Robinson (1995a) that all seven estimates

are equal, the p-value of the Wald statistics are always less than 0.001. Note that this multivariate

inference is only valid under no cointegration (cf. Assumption 7). The null hypothesis that France,

Italy and Canada have the same memory parameter, however, is clearly not rejected (p-value > 0.964),

while the hypothesis of a common d of Germany, UK, Switzerland and Japan is not rejected at the

5% level for small m. We conclude that there are two groups of data: Germany, UK, Switzerland and

Japan may be considered as I(1), while the order of integration of France, Italy and Canada is roughly

1.4.

Table 11: Individual memory, 1974.1 - 1997.12

GER UK SWI JAP FRA ITA CAN

m = 18 bd(∆u) 1.17 1.02 0.86 1.24 1.41 1.34 1.40

τd=1 0.88 0.10 -0.72 1.23 2.11 1.75 2.06

m = 20 bd(∆u) 1.15 1.10 0.84 1.23 1.33 1.34 1.44

τd=1 0.81 0.53 -0.88 1.29 1.84 1.86 2.42

m = 22 bd(∆u) 1.18 1.15 0.84 1.16 1.31 1.32 1.35

τd=1 1.07 0.88 -0.93 0.94 1.80 1.90 2.05

Log-periodogram regression of differences of logarithms with ` = 0. The t statistics built on the standard errors s.e. =

0.194, 0.181, 0.170 for m = 18, 20, 22, respectively.

We hence start with separate cointegrating regressions and apply the log-periodogram regression to

differenced residuals. First, France is regressed on Italy and Canada, see the upper panel in Table 12.
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With trimming the first frequency, ` = 1, and varying m we clearly cannot reject that the residuals are

integrated of order one. Hence, we have three I(1.4) series that cointegrate to I(1) residuals. In the

lower panel of Table 12 it is reported that the null hypothesis that the I(1) series from Germany, UK,

Switzerland and Japan do not cointegrate (δ = 1), cannot be rejected.

Table 12: Residual analysis for separate regressions

m 17 18 19 20 21 22

s.e. 0.262 0.250 0.240 0.230 0.221 0.213

FRA on ITA, CANbδ(∆û) 1.37 1.23 1.18 1.14 1.05 0.99

τδ=1 1.41 0.92 0.75 0.61 0.23 -0.05

GER on UK, SWI, JAPbδ(∆û) 0.79 0.74 0.88 0.89 0.84 0.92

τδ=1 -0.80 -1.04 -0.50 -0.48 -0.72 -0.38

Log-periodogram regression of differenced residuals with ` = 1. The t statistics built on the standard error s.e. from (7).

Finally, we regress the German data on UK, Switzerland, Japan and the I(1) residual RES from

the regression of France on Italy and Canada. The results with trimming one frequency are presented

in Table 13. From differences we first test the null of no cointegration, δ = 1. For all m from 17 to 22

it is rejected at least at the 10% level, and most of the times the p-values are close or below the 5%

level. At the same time, the log-periodogram regression of the original residuals clearly rejects the null

hypothesis δ = 0. We conclude that it is fractional cointegration that links the considered exchange

rates. The memory parameter δ of the equilibrium deviations is estimated as approximately 0.65 from

levels as well as from differences. It is never significantly different from 0.5, i.e. we cannot not reject

that the error term is non-stationary, although we have found that it is not persistent (δ < 1).

Table 13: Final residual analysis

GER on UK, SWI, JAP and RES(FRA on ITA, CAN)

m 17 18 19 20 21 22

From differences, H0 : δ = 1bδ(∆û) 0.46 0.49 0.62 0.67 0.65 0.66

τδ=1 -2.06 -2.04 -1.58 -1.44 -1.58 -1.60

p-val. 0.020 0.021 0.057 0.075 0.057 0.055

From levels, H0 : δ = 0bδ(û) 0.63 0.61 0.67 0.69 0.66 0.68

tδ=0 2.41 2.44 2.79 3.00 2.99 3.19

p-val. 0.008 0.007 0.003 0.001 0.001 0.001

Log-periodogram regression of differenced and original residuals with ` = 1. The t statistics built on the standard error

s.e. from Table 12.
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We also did the analysis from Table 13 without trimming, ` = 0. The resulting t statistics not

reported here are very similar to those from Table 13, because the standard errors are smaller without

trimming and the estimates are closer to the null. From levels one roughly estimates δ̂(û) = 0.5, while

the log-periodogram regression from differences yields approximately δ̂(∆û) = 0.7. The findings with

trimming from Table 13 where δ̂(û) ≈ δ̂(∆û) seem to be more reliable.

7 Concluding remarks

In this paper we followed the route opened by Robinson (1995a, Remark 7) for sound statistical in-

ference on memory properties of fractional models. He suggested that given a sufficiently fast rate

of convergence of the regression estimator the residual-based log-periodogram regression should result

in asymptotic normality just as with observed series (confer the application in Robinson and Marin-

ucci, 2001). Indeed, we found that given the gap between the orders of integration of regressors and

error is big enough, the log-periodogram regression of residuals gives rise to limiting normality. This

result essentially relies on trimming the very first few frequencies of the periodogram, a policy that

was not employed by the empirical and experimental papers reviewed in the Introduction. We hence

obtained simple conditions for consistent estimation of the degree of persistence in the deviations from

the long-run equilibrium which are more general than most parametric models used in common prac-

tice. Given asymptotically normal estimators this allows for statistical inference of immediate economic

interest. We are now able to discriminate on sound asymptotic grounds between short-memory errors,

stationary long-memory innovations, non-stationary but transitory equilibrium deviations, and finally

non-stationary and persistent errors.

Our results also cover the integer cointegration case of I(1) regressors with I(0) errors. But con-

trasting the residual-based work by Phillips and Ouliaris (1990), Shin (1994) or more recently Xiao

(1999) the asymptotic theory we suggest is standard and moreover does not depend on the number of

regressors. What is more, a system approach of joint estimation of the orders of integration of regres-

sors and disturbance term is possible, and a pooled version was shown to be robust to departures from

Gaussianity and from strongly cointegrated systems with d − δ > 0.5. We evaluated the asymptotic

results by means of Monte Carlo experiments where it turned out that trimming only one frequency

should be enough for practical purposes with usual sample sizes.

To illustrate these points we applied the log-periodogram regression to a set of seven nominal ex-

change rates, collecting evidence that exchange rates are linked by a fractional cointegration relation. In

this respect, with our semiparametric set-up we conclude that there could be two clusters of currencies.

On the one hand, Germany, UK, Switzerland and Japan, that may be considered as I(1) processes.

On the other hand, France, Italy and Canada, with an order of integration about 1.4. We fail to

find evidence of cointegration among the first group of exchange rates, whereas we can not reject that

the residuals from a regression of France on Italy and Canada are I(1). However, we find polynomial

cointegration when regressing the German data on UK, Switzerland, Japan and the residuals from the

regression of France on Italy and Canada, so that they do not drift apart in the long run. The mem-
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ory parameter of the equilibrium deviations of this extended regression is about 0.65, i.e., the error

correction term is non-stationary but not persistent.

8 Appendix A: Assumptions and auxiliary results

For our asymptotic theory we will need to impose the following regularity assumption (cf. Assumptions

1 and 2 of Robinson, 1995a) which applies either to the spectral density (of stationary processes) or to

the pseudo spectral density (of non-stationary processes), imposing the rate in (1).

Assumption 6 The (pseudo) spectral density fzz(λ) of zt, z ∈ {x, u} (dx = d, du = δ) satisfies,

0 < γ ≤ 2, 0 < Gz < ∞,

fzz(λ) = Gzλ
−2dz (1 + O(|λ|γ)) as λ → 0,

and is differentiable in a neighbourhood (0, ε) of the origin with
∣∣∣∣

d

dλ
fzz(λ)

∣∣∣∣ = O(|λ|−1−2dz ) as λ → 0.

This assumption holds for standard ARFIMA series with γ = 2 and for any fractional model with

f(λ) = (2 sin(λ/2))−2dzf∗(λ), if in an interval of the origin either the I(0) short memory spectral

density f∗(λ) is Lipschitz(γ), 0 < γ ≤ 1, or its derivative is Lipschitz(γ − 1), 1 < γ ≤ 2. The following

assumption is a multivariate generalization of this set-up for zt containing possibly both stationary and

non-stationary elements (cf. Robinson, 1995a).

Assumption 7 The (pseudo) spectral density matrix f(λ) = (fij(λ)) of zt = (∆δ̄ut, ∆x′t)
′ satisfies,

0 < γ ≤ 2, 0 < Gi < ∞, i, j = 0, 1, . . . , k,

fii(λ) = Giλ
−2Di(1 + O(|λ|γ)) as λ → 0,

where δ̄ = bδ + 0.5c and Do = δ − δ̄, and is differentiable in a neighbourhood (0, ε) of the origin with
∣∣∣∣

d

dλ
fij(λ)

∣∣∣∣ = O(|λ|−1−Di−Dj ) as λ → 0.

Set the coherence matrix R(λ) of (∆δ̄ut, ∆x′t)
′, with typical element Rij(λ) = fij(λ)/(fii(λ)fjj(λ))1/2,

the coherence between zit and zjt. Then R(0) is not singular and for some α ∈ (0, 2],

|Rij(λ)−Rij(0)| = O(|λ|α) as λ → 0.

For tapered periodograms we impose the following assumption strengthening Assumption 6, and

which holds, for e.g. ARFIMA models with γ = 2, and relaxes conditions such as fzz(λ)|λ|2d =

Gz + Eγ |λ|γ + o(|λ|γ), as λ → 0, 0 < Eγ < ∞ used in Velasco (2000).

Assumption 8 Let ut possess a (pseudo) spectral density fuu(λ) satisfying Assumption 6 such that for

|ω| ≤ λ/2 and some 1 < γ ≤ 2

fuu(λ− ω) = fuu(λ)− ωf ′uu(λ) + O(|λ|−2δ−γ |ω|γ), as λ → 0.
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The following are restrictions on the bandwidths defined in Assumption 2.

Assumption 9 max{0, (1− d− δ)/(d− δ − 0.5)} < b < a < 1, d− δ > 0.5.

Assumption 10 0 < b < a < 2γ/(1 + 2γ).

Note that depending on the values of d, δ and γ, these two assumptions may not hold simultaneously.

Thus, for example, if γ = 2, like for ARFIMA processes, we need 9d+ δ > 7, because of (1−d− δ)/(d−
δ−0.5) < 4/5, which holds for any δ ≥ 0 if d > 7

9 . However, we always require d > 0.75 for Assumption 9

to hold, because of (1− d− δ)/(d− δ − 0.5) < 1.

Assumption 11 0 < b < a < 2min{α, γ}/(1 + 2 min{α, γ}).

Assumption 12 max{0, (1− di − δ)/(di − δ − 0.5)} < b < a < 1, min di − δ > 0.5.

Assumption 13 0 < b < a < 2Jb(d− δ), γJ/(J + 2) > 1, J ≥ 3.

Assumption 14 When d + δ < 1, 0 < b < a < 2J{b(d− δ)− (1− d− δ)}.

The following theorem is the main result on log-periodogram regressions with observed data.

Theorem 5 Under Assumption 6, for Gaussian ut ∼ I(δ), −0.5 < δ < 0.5, ` = 0 and

m−1(log T )2 + T−2γm1+2γ → 0 as T →∞,(8)

then

m1/2
(
δ̂(u)− δ

)
→d N

(
0,

π2

24

)
.

Proof of Theorem 5. Follows from Robinson (1995a), using Hurvich’s et al. (1998) techniques to

show that trimming of very low frequencies is not necessary for the asymptotic normality of δ̂. Though

Hurvich et al. (1998) only consider fractional processes with I(0) innovations which possess a spectral

density f∗(λ) with three bounded derivatives around λ = 0, their results are easily generalized to our

set-up with 0 < γ ≤ 2 in Assumption 6. Note that they also used the asymptotically equivalent regressor

− log(4 sin2(λj/2)) proposed by Geweke and Porter-Hudak (1983) which arises naturally for fractional

processes. ¤

The condition T−2γm1+2γ → 0 as T → ∞ in (8) reflects the fact that when the semiparametric

model Guλ−2δ is not very appropriate for high frequencies, i.e. γ is small in Assumption 6, m must

not grow very fast to avoid higher frequency biases in the local regression. The log T -consistency holds

under weaker conditions on bandwidth numbers, as is shown by estimating the mean square error of

δ̂(u) as in Hurvich et al. (1998).
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Theorem 6 Under Assumption 6, for Gaussian ut, −0.5 < δ < 0.5, ` = 0 and

(
m−1 + (T−1m)2γ

)
(log T )2 + T−1m log m → 0 as T →∞,(9)

then log T (δ̂(u)− δ) →p 0.

In many cases we may wish to exclude the first ` > 0 frequencies in the regression and both

asymptotic normality and log T -consistency hold as shown originally by Robinson (1995a):

Corollary 2 Theorems 5 and 6 hold if m−1`(log T )2 → 0 as T →∞.

Now follows the general result for multivariate log-periodogram regressions.

Theorem 7 Under Assumption 7 for Gaussian {ut,∆xt}, −0.5 < δ, d− 1 < 0.5, and

m−1(log T )2 + T−2 min{α,γ}m1+2 min{α,γ} → 0 asT →∞,(10)

we obtain that

2m1/2
(
d̂(u)−d

)
→d N (0,Ω) .

This holds if trimming is introduced as long as `m−1(log T )2 → 0 as T → ∞. The covariance ma-

trix Ω can be estimated consistently by the sample regression residuals covariance matrix, Ω̂ = (m −
`)−1

∑m
j=`+1 êj ê

′
j .

Proof of Theorem 7. This follows from Robinson (1995a), extending to a multivariate set-up the

results by Hurvich et al. (1998) to avoid trimming, ` = 0. ¤

The following theorem is the basic result for non-Gaussian log-periodogram regressions.

Theorem 8 Under Assumptions 4, 5, 6, 8, −0.5 ≤ δ < 1.5, γJ/(J + 2) > 1, J ≥ 3, and

`−1 + m−1`(log T )2 + T−1m → 0 as T →∞,(11)

then δ̂(J)(u) →p δ.

Proof of Theorem 8. This follows directly using the methods of Velasco (2000) for 0 < δ < 0.5.

The extension to −0.5 < δ < 0 and 0.5 ≤ δ < 1.5 being immediate (cf. Velasco, 2000, Lemma 3, and

Velasco, 1999a, Theorems 4 and 5). ¤

We collect in two lemmas several results repeatedly used in our proofs further down.

Lemma 1 Under Assumption 6, 0.5 < δ < d < 1.5, `−1+ mT−1 → 0 as T → ∞, z ∈ {x, u}
(dx = d, du = δ), j = ` + 1, . . . , m,

E[I∆z∆z(λj)] = f∆z∆z(λj)(1 + O(j−1 log(j + 1))) = O(λ2−2dz
j ),(12)
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and if zt is Gaussian,

max
`+1≤j≤m

E [(I∆z∆z(λj)/f∆z∆z(λj))
a] < ∞, a > −1,(13)

max
`+1≤j≤m

I∆z∆z(λj)/f∆z∆z(λj) = Op(log T ).(14)

Proof of Lemma 1. (12) follows from Robinson (1995a), Theorem 2. For a > 0, (13) follows from

Gaussianity and (12). For −1 < a < 0, (13) follows from Gaussianity and the proof of Lemma 5 of

Hurvich et al. (1998) -they used a = −1/4. Finally (14) can be proved using Gaussianity, (13) and

adapting the proofs of Theorems 4.5.1. and 5.3.2. of Brillinger (1975). ¤

Lemma 2 Under Assumption 6, 0 ≤ δ < d < 1.5, `−1 + m−1T → 0 as T → ∞, z ∈ {x, u} (dx =

d, du = δ) j = ` + 1, . . . , m, some K < ∞,

E[Izz(λj)/fzz(λj)]





= 1 + O
(
j−1 log j + j2(dz−1) log(j + 1)

)
, dz < 1;

≤ Kj2(dz−1), 1 ≤ dz < 1.5,

and if zt is Gaussian,

max
`+1≤j≤m

E [(Izz(λj)/fzz(λj))
a] < ∞, a > −1, dz < 1;(15)

max
`+1≤j≤m

Izz(λj)/fzz(λj) = Op(log T ), dz < 1;

max
`+1≤j≤m

Izz(λj)j2(1−dz)/fzz(λj) = Op(log T ), 1 ≤ dz < 1.5.

Proof of Lemma 2. It can be proved along the same lines as Lemma 1, using now Velasco (1999a)

and Hurvich and Ray (1995, Theorem 1) for non-stationary series to bound E[Izz(λj)/fzz(λj)]. The

remaining results follow from Gaussianity. ¤

9 Appendix B: Proofs

Proof of Theorem 1. All sums run for j = ` + 1, . . . , m if not indicated otherwise. First we obtain

from (4) that

δ̂(∆û)− δ̂(∆u) =


∑

j

W 2
j



−1

m∑

j=`+1

Wj log
I∆u∆u(λj)
I∆û∆û(λj)

,(16)

where Wj is defined in (5). Note that (8), (9) and the condition on the trimming hold under the

conditions of the theorem with the definition of m and `, so it only remains to show that the effects of

the residual approximation are negligible to deduce the asymptotic properties of δ̂(∆û) from those of

δ̂(∆u). We can write from equation (3) that

log
I∆û∆û(λj)
I∆u∆u(λj)

= log
{

1− (β̂ − β)
w∆x(λj)
w∆u(λj)

}
+ log

{
1− (β̂ − β)

w∆x(−λj)
w∆u(−λj)

}
,(17)

so

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
w∆x(λj)
w∆u(λj)

∣∣∣∣ ≤
∣∣∣β̂ − β

∣∣∣ max
`+1≤j≤m

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣ max
`+1≤j≤m

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ .

24



Since d + δ ≥ 1 (CASE I), from Lemma 1 above,

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣ = Op

(
T δ−d

√
log T

)
,(18)

and for any c > 0 fixed and 0 < ε < 1, using Bonferroni’s and Markov’s inequalities and (13) in Lemma 1

with a = (ε/2)− 1 > −1 and z = x, and Assumption 6,

P

{
T δ−d log2 T max

`+1≤j≤m

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ > c

}
≤

m∑

j=`+1

P

{
T δ−d log2 T

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ > c

}

= O




m∑

j=`+1

E

[
T δ−d log2 T

√
f∆x∆x(λj)
I∆u∆u(λj)

]2−ε



= O


log4 T

m∑

j=`+1

j−(d−δ)(2−ε)




= O
(
`1−(d−δ)(2−ε) log4 T

)
= o(1),

using Assumption 2, since d− δ > a > 1
2 for some a and choosing ε = 2− (1/a) > 0 so

max
`+1≤j≤m

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ = op

(
T d−δ log−2 T

)
.(19)

Therefore from (18) and (19)

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
w∆x(λj)
w∆u(λj)

∣∣∣∣ = op(log−1 T ).(20)

Then, using (17) and | log(1 + x)| ≤ 2|x| for |x| ≤ 1
2 , and the indicator function I,

∣∣∣∣∣∣

m∑

j=`+1

Wj log
I∆û∆û(λj)
I∆u∆u(λj)

∣∣∣∣∣∣
≤

m∑

j=`+1

|Wj |
∣∣∣∣log

I∆û∆û(λj)
I∆u∆u(λj)

∣∣∣∣ I
[∣∣∣∣(β̂ − β)

w∆x(λj)
w∆u(λj)

∣∣∣∣ ≤
1
2

]

+
m∑

j=`+1

|Wj |
∣∣∣∣log

I∆û∆û(λj)
I∆u∆u(λj)

∣∣∣∣ I
[∣∣∣∣(β̂ − β)

w∆x(λj)
w∆u(λj)

∣∣∣∣ >
1
2

]

≤ 4
∣∣∣β̂ − β

∣∣∣ max
`+1≤j≤m

|Wj |
m∑

j=`+1

∣∣∣∣
w∆x(λj)
w∆u(λj)

∣∣∣∣

+ max
`+1≤j≤m

∣∣∣∣log
I∆û∆û(λj)
I∆u∆u(λj)

∣∣∣∣ max
`+1≤j≤m

|Wj |
m∑

j=`+1

I
[∣∣∣∣(β̂ − β)

w∆x(λj)
w∆u(λj)

∣∣∣∣ >
1
2

]

Now, d− δ > 0.5,

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m
|Wj |

m∑

j=`+1

∣∣∣∣
w∆x(λj)
w∆u(λj)

∣∣∣∣ = Op


log T

m∑

j=`+1

jδ−d


 = op(m1/2),

because |β̂ − β| = Op(T δ−d), (CASE I), max`+1≤j≤m |Wj | = O(log T ) (noting the definition (5) of Wt),

Assumption 2, so using (12) of Lemma 1 and applying Hölder’s inequality with 1 < p < 2, 1/q+1/p = 1),

E

∣∣∣∣
w∆x(λj)
w∆u(λj)

∣∣∣∣ ≤ Cλδ−d
j

(
E

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣

q)1/q (
E

∣∣∣∣∣

√
f∆u∆u(λj)
w∆u(λj)

∣∣∣∣∣

p)1/p

= O
(
λδ−d

j

)
.(21)
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On the other hand, we obtain that

max
`+1≤j≤m

∣∣∣∣log
I∆û∆û(λj)
I∆u∆u(λj)

∣∣∣∣ = op(log−1 T ),

using (17) and because (20) implies that for any c > 0,

P

{
log T max

j

∣∣∣∣log
(

1− (β̂ − β)
w∆x(λj)
w∆u(λj)

)∣∣∣∣ > c

}
≤ P

{
log T max

j

∣∣∣∣(β̂ − β)
w∆x(λj)
w∆u(λj)

∣∣∣∣ > c/2
}

= o(1),

since | log(1 + x)| > c/ log T implies |x| > c/(2 log T ) for all c > 0 and T large enough. Finally,

m∑

j=`+1

I
[∣∣∣∣(β̂ − β)

w∆x(λj)
w∆u(λj)

∣∣∣∣ >
1
2

]
≤ 2|β̂ − β|

m∑

j=`+1

∣∣∣∣
w∆x(λj)
w∆u(λj)

∣∣∣∣ = Op




m∑

j=`+1

jδ−d


 = op

(
m1/2 log−1 T

)
,

using (21), Assumption 2 and d − δ > 0.5. The theorem follows from (16), 4
∑m

j=`+1 W 2
j ∼ m and

because under Assumption 10, (8) holds and therefore Theorem 5 gives the result since the residual

contribution is op(m−1/2). ¤

Proof of Theorem 2. First we write

δ̂(û)− δ̂(u) =


∑

j

W 2
j



−1

∑

j

Wj log
Iûû(λj)
Iuu(λj)

.(22)

Next, from Robinson (1995a), and adapting the argument of Hurvich et al. (1998), since (9) holds,

(δ̂(u)− δ) log T →p 0. Also (8) holds when a < 2γ/(1 + 2γ), m1/2(δ̂(u)− δ) →d N(0, π2

24 ). Then it only

remains to be shown that the right hand side of (22) is negligible.

CASE I. When d + δ ≥ 1 and d < 1, we can proceed exactly as in Theorem 1, using Lemma 14 instead

of Lemma 1, so

∑

j

W 2
j



−1

m∑

j=`+1

Wj log
Iûû(λj)
Iuu(λj)

= Op


m−1 log T

m∑

j=`+1

jδ−d


 = op(m−1/2),

because d− δ > 0.5.

When d ≥ 1, E[Ixx(λj)/fxx(λj)] is no longer bounded as T →∞ and we have to proceed differently.

Let us show that

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
wx(λj)
wu(λj)

∣∣∣∣ ≤
∣∣∣β̂ − β

∣∣∣ max
`+1≤j≤m

∣∣∣∣∣
wx(λj)√
fxx(λj)

j1−d

∣∣∣∣∣ max
`+1≤j≤m

∣∣∣∣∣

√
fxx(λj)

wu(λj)
jd−1

∣∣∣∣∣ = op(log−1 T ).

Using Lemma 2, d ≥ 1,

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m

∣∣∣∣∣
wx(λj)√
fxx(λj)

j1−d

∣∣∣∣∣ = Op

(
T δ−d

√
log T

)
,

and for any c > 0 fixed and 0 < ε < 1, using Bonferroni’s and Markov’s inequalities and Lemma 2, as

in the proof of Theorem 1,

P

{
T δ−d log2 T max

`+1≤j≤m

∣∣∣∣∣

√
fxx(λj)

wu(λj)
jd−1

∣∣∣∣∣ > c

}
≤

m∑

j=`+1

P

{
T δ−djd−1 log2 T

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ > c

}
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= O




m∑

j=`+1

E

[
T δ−djd−1 log2 T

√
fxx(λj)
Iuu(λj)

]2−ε



= O


log4 T

m∑

j=`+1

j−(1−δ)(2−ε)




= O
(
`1−(1−δ)(2−ε) log4 T

)
= o(1),

using Assumption 2 since δ < 0.5 implies that for some a, 1−δ > a > 0.5 and choosing ε = 2−(1/a) > 0,

so, d ≥ 1,

max
`+1≤j≤m

∣∣∣∣∣

√
fxx(λj)

wu(λj)
jd−1

∣∣∣∣∣ = op

(
T d−δ log−2 T

)
.

Now, δ < 0.5,

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m
|Wj |

m∑

j=`+1

∣∣∣∣
wx(λj)
wu(λj)

∣∣∣∣ = Op


log T

m∑

j=`+1

jδ−1


 = op(m1/2),

because |β̂ − β| = Op(T δ−d), max`+1≤j≤m |Wj | = O(log T ), and because using Lemma 2, (1 < p < 2,

q−1 + p−1 = 1), we obtain now for d ≥ 1

E

∣∣∣∣
wx(λj)
wu(λj)

∣∣∣∣ ≤ Cλδ−d
j jd−1

(
E

∣∣∣∣∣
wx(λj)√
fxx(λj)

j1−d

∣∣∣∣∣

q)1/q (
E

∣∣∣∣∣

√
fuu(λj)

wu(λj)

∣∣∣∣∣

p)1/p

= O
(
λδ−d

j jd−1
)
.

On the other hand, max`+1≤j≤m |log Iûû(λj)/Iuu(λj)| = op(log−1 T ) as in Theorem 1, so it only remains

to bound

m∑

j=`+1

I
[∣∣∣∣(β̂ − β)

wx(λj)
wu(λj)

∣∣∣∣ >
1
2

]
≤ 2|β̂ − β|

m∑

j=`+1

∣∣∣∣
wx(λj)
wu(λj)

∣∣∣∣ = Op




m∑

j=`+1

jδ−1


 = op

(
m1/2 log−1 T

)
,

using the definition of m and δ < 0.5.

CASE II. If d + δ < 1 then d < 1, and we obtain first that,

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
wx(λj)
wu(λj)

∣∣∣∣ = op

(
log−1 T

)
,

because |β̂ − β| = Op(T 1−2d) and for any c > 0, using Lemma 2,

P

{
T 1−2d log2 T max

`+1≤j≤m

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ > c

}
= O




m∑

j=`+1

E

[
T 1−2d log2 T

√
fxx(λj)
Iuu(λj)

]2−ε



= O


log4 T

m∑

j=`+1

[
T 1−d−δj−(d−δ)

]2−ε




= O
(
T (1−d−δ)(2−ε)`1−(d−δ)(2−ε) log4 T

)
= o(1),

if d− δ > 1
2 and b > 2(1− d− δ)/(2(d− δ)− 1) for ε > 0 small enough.

Thus, as in the proof of Theorem 1,

∑

j

W 2
j



−1 ∣∣∣∣∣∣

m∑

j=`+1

Wj log
Iûû(λj)
Iuu(λj)

∣∣∣∣∣∣
= Op

(
T 1−d−δ

[
m−1 log m + mδ−d

]
log T

)
,(23)

27



because

∑

j

W 2
j



−1 ∣∣∣β̂ − β

∣∣∣ max
`+1≤j≤m

|Wj |
m∑

j=`+1

∣∣∣∣
wx(λj)
wu(λj)

∣∣∣∣ = Op


m−1T 1−d−δ log T

m∑

j=`+1

jδ−d




= Op

(
T 1−d−δ

[
m−1 log m + mδ−d

]
log T

)
,

using |β̂−β| = Op(T 1−2d) and E
∣∣∣wx(λj)
wu(λj)

∣∣∣ = O
(
λδ−d

j

)
, and because max`+1≤j≤m |log Iûû(λj)− log Iuu(λj)| =

op(log−1 T ), max`+1≤j≤m |Wj | = O(log T ) and

∑

j

I
[∣∣∣∣(β̂ − β)

wx(λj)
wu(λj)

∣∣∣∣ >
1
2

]
≤ 2

∑

j

∣∣∣∣(β̂ − β)
wx(λj)
wu(λj)

∣∣∣∣ = Op

(
T 1−d−δ

[
log m + mδ−d+1

])
.

Then (23) is op(log−1 T ), and also op(m−1/2) on choosing max{(1−d−δ)/(d−δ−0.5), 2(1−d−δ)} < a,

but this condition is not additionally restrictive because d + δ < 1 (so d − δ − 0.5 < 0.5) implies that

2(1− d− δ) < (1− d− δ)/(d− δ − 0.5) < b < a < 1. Then the theorem follows. ¤

Proof of Theorem 3. We only need to consider the effect of residual estimation in a univariate

regression, since the multivariate case implies no additional difficulty because only one equation in the

log-periodogram system is affected by the residual approximation. Working with e.g. the increments of

the residuals we have to show that

m−1
∑

j

Wj log
I∆û∆û(λj)
I∆u∆u(λj)

= op(m−1/2),(24)

as in the univariate case, and additionally that

m−1
∑

j

log
I∆û∆û(λj)
I∆u∆u(λj)

= op(m−1/2 log T ),(25)

m−1
∑

j

(
log

I∆û∆û(λj)
I∆u∆u(λj)

)2

= op(log−2 T ),(26)

from (5.6), (5.8) and (5.13) in Robinson (1995a) for consistent covariance matrix estimation. Now to

show (24) we can write now that

log
I∆û∆û(λj)
I∆u∆u(λj)

= log

{
1−

k∑

i=1

(β̂i − βi)w∆xi(λj)
w∆u(λj)

}
+ log

{
1−

k∑

i=1

(β̂i − βi)w∆xi(−λj)
w∆u(−λj)

}
.

Next,

max
`+1≤j≤m

∣∣∣∣∣
k∑

i=1

(β̂i − βi)w∆xi(λj)
w∆u(λj)

∣∣∣∣∣ ≤
k∑

i=1

∣∣∣β̂i − βi

∣∣∣ max
j

∣∣∣∣∣
w∆xi(λj)√
f∆xi∆xi(λj)

∣∣∣∣∣ max
j

∣∣∣∣∣

√
f∆xi∆xi(λj)
w∆u(λj)

∣∣∣∣∣ = op(log−1 T ),

(27)

since k is finite, bounding the above expression for each i = 1, . . . , k as in the univariate case. Then

(25) follows in a similar but simpler way, while (26) is implied directly by (27). ¤

Proof of Theorem 4. For simplicity, we suppress in the notation for Iuu(λj), etc. reference to J or

tapering and only consider the case of a univariate regressor xt. We consider successively the cases of

differenced and original residuals.
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Proof for differenced residuals. We obtain that δ̂−1
(J)

(∆û) − δ̂−1
(J)

(∆u) = op(log−1 T ) if we show

that

max
`+1≤j≤m

|Wj | log
I∆û∆û(λj)
I∆u∆u(λj)

= op(log−1 T ),

which in turn follows if

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
w∆x(λj)
w∆u(λj)

∣∣∣∣ ≤
∣∣∣β̂ − β

∣∣∣ max
`+1≤j≤m

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣ max
`+1≤j≤m

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ = op

(
log−2 T

)
.

(28)

We first show that

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣ = Op

(
T δ−d

√
log T

)
.(29)

We have
∣∣∣β̂ − β

∣∣∣ = Op(T δ−d) while, writing Iε
∆x∆x(λj) for the periodogram of the i.i.d. innovations

ε
(∆x)
t of zt = ∆xt in Assumption 4, and H∆x∆x(λj) = I∆x∆x(λj)f−1

∆x∆x(λj)− 2πIε
∆x∆x(λj),

(
max

`+1≤j≤m

∣∣∣∣∣
w∆x(λj)√
f∆x∆x(λj)

∣∣∣∣∣

)2

≤ max
`+1≤j≤m

2πIε
∆x∆x(λj) + max

`+1≤j≤m
|H∆x∆x(λj)|

≤ max
`+1≤j≤m

2πIε
∆x∆x(λj) +




m∑

j=`+1

|H∆x∆x(λj)|2



1/2

.

Now, max`+1≤j≤m 2πIε
∆x∆x(λj) = Op(log T ), see An, Chen and Hannan (1983), while from Velasco

(2000), 1 < γ ≤ 2,

E

m∑

j=`+1

∣∣∣∣
I∆x∆x(λj)
f∆x∆x(λj)

− 2πIε
∆x∆x(λj)

∣∣∣∣
2

= O




m∑

j=`+1

j−γ


 = O(`1−γ),

so (29) follows. Then (28) follows if we show that

max
`+1≤j≤m

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ = Op

(
T d−δ log−3 T

)
.

For any sequence MT → 0 as T → ∞, and with C > 0, 0 < τ < 1 fixed, 0.5 < δ < d < 1.5,

H∆u∆u(λj) = I∆u∆u(λj)f−1
∆u∆u(λj)− 2πIε

∆u∆u(λj), now using the innovations of ∆ut, we have that

P

{
MT

f∆u∆u(λj)
I∆u∆u(λj)

> C

}
= P

{
2πIε

∆u∆u(λj)
(

1 +
H∆u∆u(λj)

2πIε
∆u∆u(λj)

)
< C−1MT

}

≤ P
{

2πIε
∆u∆u(λj) <

(
C−1MT

)τ
}

+ P

{(
1 +

H∆u∆u(λj)
2πIε

∆u∆u(λj)

)
<

(
C−1MT

)1−τ
}

≤ P
{

2πIε
∆u∆u(λj) <

(
C−1MT

)τ
}

+ P

{∣∣∣∣
H∆u∆u(λj)

2πIε
∆u∆u(λj)

∣∣∣∣ >
1
2

}

= O
(
MJ−v

T + j−a−1
)
,(30)

for any v > 0, on choosing τ < 1 large enough, and some a such that 0 < a < (γJ/(J + 2) − 1)/2,

following equations (A.8) and (A.13) in Velasco (2000).
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Set MT = `2(δ−d) log3 T = o(1) as T →∞ by Assumption 13.Then we can write for any C > 0 and

some v, C ′ > 0, using (30),

P

{
T δ−d log2 T max

j

∣∣∣∣∣

√
f∆x∆x(λj)
w∆u(λj)

∣∣∣∣∣ > C

}
≤ P

{
MT max

j

f∆u∆u(λj)
I∆u∆u(λj)

> C ′
}

≤
∑

j

P

{
MT

f∆u∆u(λj)
I∆u∆u(λj)

> C ′
}

= O


∑

j

[
MJ−v

T + j−a−1
]



= O
(
m`2(δ−d)(J−v) log3J +`−a

)
= o(1)

choosing v > 0 small enough and using Assumption 13.

Proof for original residuals. We want to show that δ̂(J)(û)− δ̂(J)(u) = op(log−1 T ).

CASE I. When d + δ ≥ 1 and d < 1.5, we can proceed exactly as for ∆û, but now we obtain that

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m

∣∣∣∣∣
wx(λj)√
fxx(λj)

∣∣∣∣∣ = Op

(
T δ−d

√
log T

)
,

because from Velasco (1999b) (see also Lemmas 1 and 3 of Lobato and Velasco, 2000) and for tapered

data, 0.5 < d < 1.5, 1 < γ ≤ 2,

E

m∑

j=`+1

∣∣∣∣
Ixx(λj)
fxx(λj)

− 2πIε
∆x∆x(λj)

∣∣∣∣
2

= O




m∑

j=`+1

j−γ


 = O(`1−γ).

Then we can write as before, for any C, v > 0, MT = `2(δ−d) log3 T = o(1) as T → ∞, and using

now the innovations of ut if δ < 0.5, or those of ∆ut if δ ≥ 0.5,

P

{
T δ−d log3 T max

j

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ > C

}
= O


∑

j

max
j

[
MJ−v

T + j−a−1
]

 + o(1)

= O
(
m`2(δ−d)(J−v) log3J T + `−a

)
+ o(1) = o(1),

with Assumption 13, so finally

max
j

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ = op

(
T d−δ

)
.

CASE II. If d + δ < 1 then d < 1, δ < 0.5, and we proceed as before to show that

max
`+1≤j≤m

∣∣∣∣(β̂ − β)
wx(λj)
wu(λj)

∣∣∣∣ = op

(
log−2 T

)
.

Using Assumption 1 we first obtain that

∣∣∣β̂ − β
∣∣∣ max

`+1≤j≤m

∣∣∣∣∣
wx(λj)√
fxx(λj)

∣∣∣∣∣ = Op

(
T 1−2d log1/2 T

)
.

Then we show that

max
`+1≤j≤m

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ = op

(
T 2d−1 log−3 T

)
,
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because with the same notation, MT = T 2(1−d−δ)`2(δ−d) log3 T = o(1) by Assumption 14,

P

{
T 1−2d log2 T max

j

∣∣∣∣∣

√
fxx(λj)

wu(λj)

∣∣∣∣∣ > C

}
≤ P

{
MT max

j

fuu(λj)
Iuu(λj)

> C ′
}

= O
(
mMJ−v

T + `−a
)

+ o(1),

which is O
(
m{T 2(1−d−δ)`2(δ−d) log6 T}J−v

)
+ o(1) = o(1), using Assumptions 13 and 14. ¤
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Table 1: Experimental level in case of differenced residuals (τδ), k = 1

d α δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7 δ = 0.6 `

T = 250, m = 16

1% 1.10 1.15 1.45 1.65 2.10

1.4 5% 4.70 5.55 5.10 6.00 6.20 0

10% 9.75 11.20 10.20 9.85 11.20

1% 1.45 1.30 1.15 1.10 1.45

1.4 5% 5.65 4.90 5.25 4.95 5.05 1

10% 10.50 10.50 10.05 9.85 9.10

1% 1.90 1.75 1.60 1.55 1.85

1.0 5% 6.50 6.25 5.40 5.60 5.20 0

10% 12.15 12.00 10.70 11.15 10.85

1% 1.60 2.05 1.30 1.40 1.35

1.0 5% 5.15 5.60 5.00 5.10 5.65 1

10% 10.00 9.35 8.60 9.25 10.15

T = 1000, m = 32

1% 1.80 1.55 1.25 0.85 1.45

1.4 5% 6.20 5.75 6.10 5.45 5.30 0

10% 10.60 10.80 10.90 10.75 10.35

1% 1.10 1.30 1.20 1.30 0.90

1.4 5% 4.80 4.90 4.90 4.30 4.70 1

10% 10.30 9.30 9.85 8.15 10.45

1% 1.50 1.25 1.60 1.85 1.35

1.0 5% 5.95 5.50 5.70 6.60 6.55 0

10% 10.75 10.55 10.45 11.45 11.75

1% 1.20 1.25 1.60 1.10 1.35

1.0 5% 5.00 4.80 5.05 4.00 5.60 1

10% 9.75 9.50 9.85 9.40 10.00

The variables are integrated of order d while the errors are I(δ). All series are constructed from innovations that follow a

N (0, 1) distribution. Tests for the true value of δ built upon differenced residuals from bivariate regressions. Percentage of

rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of τδ. The trimming

number is `.
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Table 2: Experimental level in case of original residuals (tδ), k = 1

d α δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2 `

T = 250, m = 16

1% 2.85 2.25 2.40 2.25 2.45

1.4 5% 8.30 8.10 8.00 7.00 7.25 0

10% 15.15 13.70 14.10 11.95 12.10

1% 1.80 1.45 1.55 1.40 1.50

1.4 5% 5.85 5.55 5.25 5.40 4.90 1

10% 9.80 10.05 9.15 9.25 9.25

1% 3.15 3.00 2.65 2.20 2.50

1.0 5% 8.65 8.35 8.15 7.20 6.85 0

10% 14.40 14.15 13.75 12.15 12.25

1% 1.55 1.25 1.35 1.20 1.35

1.0 5% 4.85 5.90 5.70 5.05 5.60 1

10% 9.15 9.30 10.15 9.25 9.30

T = 1000, m = 32

1% 2.55 2.60 2.60 2.70 2.65

1.4 5% 7.80 7.80 7.05 8.30 7.30 0

10% 12.70 13.90 11.60 14.20 12.60

1% 1.20 1.40 1.05 1.35 1.45

1.4 5% 4.65 5.55 4.80 5.35 5.50 1

10% 9.45 10.75 9.40 9.90 10.40

1% 2.60 2.00 2.25 2.20 2.00

1.0 5% 7.00 7.45 7.40 6.95 6.20 0

10% 12.25 12.30 12.25 11.80 10.70

1% 1.35 1.55 1.25 1.45 1.40

1.0 5% 4.35 6.05 5.65 5.55 5.35 1

10% 9.05 11.60 10.65 9.65 10.20

The variables are integrated of order d while the errors are I(δ). All series are constructed from innovations that follow a

N (0, 1) distribution. Tests for the true value of δ built upon original residuals from bivariate regressions. Percentage of

rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of tδ. The trimming

number is `.
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Table 3: 5% power in case of residuals, k = 1

differenced residuals (τδ=δ0)

T δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

250 5.65 6.40 9.50 18.05 26.95 1

(m = 16) 5.35 6.30 8.35 12.80 19.50 2

1000 5.15 8.25 19.70 44.35 67.40 1

(m = 32) 5.55 7.60 15.95 32.25 56.05 2

original residuals (tδ=δ0)

T δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

250 5.85 6.35 10.35 17.90 29.35 1

(m = 16) 5.85 5.90 8.30 13.55 20.20 2

1000 4.85 8.30 19.05 43.85 71.05 1

(m = 32) 4.30 7.45 15.40 32.10 57.45 2

original residuals (tδ=δ0)

T δ0 = 0.0 δ1 = 0.1 δ1 = 0.2 δ1 = 0.3 δ1 = 0.4 `

250 5.75 6.25 8.85 18.25 28.45 1

(m = 16) 5.00 6.00 9.00 14.45 21.15 2

1000 5.75 8.25 23.90 48.05 71.60 1

(m = 32) 4.35 8.15 17.95 35.05 57.85 2

The regressor is integrated of order 1.4 while the errors are I(δ0) under the respective null hypotheses and I(δ1) under

the alternatives. All series are constructed from innovations that follow a N (0, 1) distribution. Tests for δ0 built upon

differenced or original residuals from bivariate regressions. Percentage of rejections of two-sided tests at the 5% level

based on a standard normal approximation of τδ or tδ, respectively. The trimming number is `.
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Table 4: Experimental level in case of differenced residuals (τδ), k = 1, T = 250

d α δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7 δ = 0.6 `

t3

1% 2.40 2.00 1.35 2.10 1.70

1.4 5% 6.60 6.25 5.35 7.35 7.30 0

10% 11.30 11.15 10.20 12.35 12.65

1% 0.85 1.15 1.40 0.95 0.85

1.4 5% 5.55 5.10 5.30 5.00 4.10 1

10% 10.65 9.75 10.45 9.55 9.00

1% 2.75 2.30 1.85 2.10 1.65

1.0 5% 6.75 7.05 6.15 5.80 5.55 0

10% 11.85 11.35 11.35 10.30 10.70

1% 1.30 1.25 1.15 1.44 1.40

1.0 5% 5.05 5.30 5.05 4.55 4.35 1

10% 10.10 9.25 9.45 9.10 9.95

χ2(5)

1% 1.85 1.55 2.40 1.95 1.75

1.4 5% 7.25 5.95 6.05 6.25 5.95 0

10% 12.20 11.50 11.10 10.60 11.55

1% 1.00 0.90 1.40 1.30 1.65

1.4 5% 4.25 5.20 5.70 5.25 5.65 1

10% 10.05 10.20 10.80 9.80 11.05

1% 2.50 2.50 1.95 2.80 1.90

1.0 5% 8.00 6.50 6.55 7.40 6.65 0

10% 14.05 12.35 11.55 12.85 11.45

1% 1.95 1.25 1.35 1.55 1.15

1.0 5% 5.00 5.90 5.10 5.30 4.65 1

10% 10.40 10.55 10.00 9.85 10.20

The variables are integrated of order d while the errors are I(δ). All series are constructed from innovations that follow

either t3 or χ2(5) distributions. Tests for the true value of δ built upon differenced residuals from bivariate regressions.

Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of τδ.

The trimming number is ` and m = 16.
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Table 5: Experimental level in case of original residuals (tδ), k = 1, T = 250

d α δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2 `

t3

1% 3.35 3.65 3.30 3.25 2.75

1.4 5% 9.50 9.05 9.55 8.50 8.30 0

10% 15.30 14.80 16.20 14.15 14.50

1% 1.45 1.20 1.20 1.70 1.65

1.4 5% 5.25 5.10 4.85 4.80 6.25 1

10% 10.20 9.75 9.50 9.00 10.30

1% 3.00 2.60 2.25 2.35 2.20

1.0 5% 8.35 7.25 7.90 7.10 7.20 0

10% 14.10 12.35 14.00 12.80 12.55

1% 1.55 0.90 1.60 1.35 1.60

1.0 5% 5.80 4.70 4.75 5.35 5.90 1

10% 10.05 10.25 10.15 9.90 10.85

χ2(5)

1% 3.45 3.40 2.75 3.30 2.95

1.4 5% 10.20 8.25 9.35 10.70 7.45 0

10% 15.30 13.95 15.25 17.15 13.10

1% 1.25 1.50 1.10 1.15 1.65

1.4 5% 4.80 5.05 5.05 5.05 5.80 1

10% 9.15 9.25 10.85 10.45 9.60

1% 3.55 3.40 2.95 2.65 1.75

1.0 5% 9.10 8.65 7.85 7.40 6.50 0

10% 14.40 13.70 12.85 12.90 11.15

1% 1.30 1.20 1.40 1.10 1.35

1.0 5% 4.90 4.75 4.70 4.90 4.90 1

10% 9.05 9.95 9.10 9.20 8.85

The variables are integrated of order d while the errors are I(δ). All series are constructed from innovations that follow

either t3 or χ2(5) distributions. Tests for the true value of δ built upon the levels of residuals from bivariate regressions.

Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of tδ.

The trimming number is ` and m = 16.
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Table 6: Experimental level in case of differenced residuals (τδ), k = 2

d1 d2 α δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7 δ = 0.6 `

T = 250, m = 16

1% 3.30 3.20 3.45 2.65 1.70

1.4 1.4 5% 8.90 8.00 8.65 8.70 6.40 0

10% 14.70 13.75 14.10 14.65 11.95

1% 1.15 1.45 1.50 1.55 0.95

1.4 1.4 5% 5.65 5.25 4.50 6.35 4.60 1

10% 10.60 9.85 9.75 10.75 9.45

1% 2.25 1.85 1.70 1.90 1.80

1.4 0.6 5% 7.40 5.95 6.00 6.90 5.45 0

10% 12.65 12.00 11.20 11.15 11.55

1% 1.40 1.40 1.65 1.55 1.55

1.4 0.6 5% 5.10 5.20 6.15 5.55 5.10 1

10% 9.25 9.80 11.35 10.75 10.20

T = 1000, m = 32

1% 2.60 2.40 2.35 2.40 2.60

1.4 1.4 5% 7.40 7.60 7.20 6.85 7.35 0

10% 12.40 13.65 12.10 12.00 12.70

1% 0.90 1.00 1.15 0.95 1.35

1.4 1.4 5% 4.45 5.40 4.60 4.65 6.20 1

10% 10.35 10.45 10.20 10.15 11.00

1% 3.00 2.35 1.90 1.50 2.10

1.4 0.6 5% 9.50 7.30 7.25 6.00 6.45 0

10% 14.60 12.20 12.30 11.00 11.80

1% 3.00 1.85 1.35 1.30 1.35

1.4 0.6 5% 8.65 7.20 5.70 5.20 5.20 1

10% 15.25 12.85 10.65 9.80 9.05

The regressors are integrated of order d1 and d2 while the errors are I(δ). All series are constructed from innovations

that follow a N (0, 1) distribution. Tests for the true value of δ built upon differenced residuals from trivariate regressions.

Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of τδ.

The trimming number is `.
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Table 7: Experimental level in case of original residuals (tδ), k = 2

d1 d2 α δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2 `

T = 250, m = 16

1% 9.35 7.65 5.85 6.50 5.75

1.4 1.4 5% 18.80 17.40 16.00 14.90 14.15 0

10% 26.80 25.50 23.25 21.60 20.30

1% 1.10 1.70 1.60 1.60 1.50

1.4 1.4 5% 5.75 5.30 5.05 5.80 5.65 1

10% 9.85 10.15 9.70 10.15 9.90

1% 4.90 4.35 3.75 5.10 2.65

1.4 0.6 5% 12.70 10.70 10.40 11.85 8.40 0

10% 19.10 17.35 17.45 16.85 13.85

1% 1.60 1.55 2.05 1.90 1.20

1.4 0.6 5% 5.90 6.10 6.25 6.40 4.80 1

10% 10.50 11.10 10.80 10.80 9.60

T = 1000, m = 32

1% 7.45 5.50 5.80 5.30 5.65

1.4 1.4 5% 14.05 13.50 13.55 13.45 13.10 0

10% 21.95 20.75 20.55 20.85 18.90

1% 1.35 1.65 1.95 1.95 0.90

1.4 1.4 5% 4.85 5.70 6.80 6.45 4.15 1

10% 9.70 11.75 11.55 11.45 9.35

1% 5.05 3.65 3.80 3.50 3.05

1.4 0.6 5% 13.60 10.10 10.25 8.55 7.55 0

10% 20.50 16.15 15.05 14.20 13.35

1% 2.85 1.35 1.05 1.60 1.60

1.4 0.6 5% 8.70 5.20 4.25 6.30 5.50 1

10% 15.10 8.90 8.80 10.65 11.20

The regressors are integrated of order d1 and d2 while the errors are I(δ). All series are constructed from innovations

that follow a N (0, 1) distribution. Tests for the true value of δ built upon original residuals from trivariate regressions.

Percentage of rejections of two-sided tests at the 1%, 5% and 10% level based on a standard normal approximation of tδ.

The trimming number is `.
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Table 8: 5% power in case of errors with pooling, k = 1

differenced errors (τδ=δ0)

Pooling δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

5.10 8.50 17.35 32.15 50.00 0

J = 2 5.05 6.45 11.10 18.55 29.35 1

5.25 6.25 9.10 14.90 23.20 2

5.20 7.60 16.50 29.25 45.40 0

J = 3 5.45 7.25 12.55 21.70 35.55 1

4.70 6.05 8.55 12.10 17.75 2

original errors (tδ=δ0)

Pooling δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

10.85 7.05 6.85 12.40 24.00 0

J = 2 6.35 5.60 6.95 11.35 20.35 1

4.30 5.15 6.95 10.35 16.55 2

31.45 19.25 9.85 7.75 12.00 0

J = 3 11.80 8.30 7.10 8.95 15.35 1

6.00 5.70 5.50 8.05 10.85 2

original errors (tδ=δ0)

Pooling δ0 = 0.0 δ1 = 0.1 δ1 = 0.2 δ1 = 0.3 δ1 = 0.4 `

5.10 7.30 18.20 37.50 59.65 0

J = 2 5.05 7.20 12.00 22.00 35.25 1

5.25 6.00 9.45 16.00 26.50 2

5.20 6.95 17.75 35.95 59.45 0

J = 3 5.45 6.75 13.30 25.15 39.75 1

4.70 6.00 8.75 13.50 21.70 2

Errors are I(δ0) under the respective null hypothesis and I(δ1) under the alternatives. All series are constructed from

innovations that follow a N (0, 1) distribution. Percentage of rejections of two-sided tests at the 5% level based on a

standard normal approximation of τδ or tδ, respectively. Sample size is T = 250. The bandwidth is m = 16. The

trimming number is `. The pooling number is J .
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Table 9: 5% power in case of residuals with pooling, k = 1

differenced residuals (τδ=δ0)

Pooling δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

5.20 8.50 16.90 32.05 50.35 0

J = 2 5.55 6.20 10.15 17.75 29.15 1

5.20 6.15 9.10 13.85 23.10 2

5.20 7.25 15.80 29.10 45.20 0

J = 3 5.55 7.05 12.00 21.40 35.10 1

5.50 6.05 8.20 12.30 18.05 2

original residuals (tδ=δ0)

Pooling δ0 = 1.0 δ1 = 0.9 δ1 = 0.8 δ1 = 0.7 δ1 = 0.6 `

9.65 8.55 13.95 25.80 42.05 0

J = 2 6.70 5.80 7.75 12.50 21.55 1

5.60 5.50 6.45 10.80 17.35 2

21.30 11.80 8.25 13.15 23.10 0

J = 3 13.15 7.55 6.65 9.80 16.65 1

7.05 5.65 5.60 7.45 10.50 2

original residuals (tδ=δ0)

Pooling δ0 = 0.0 δ1 = 0.1 δ1 = 0.2 δ1 = 0.3 δ1 = 0.4 `

6.90 6.25 12.20 25.10 45.35 0

J = 2 5.10 6.55 11.40 19.80 31.10 1

5.15 5.40 9.20 15.10 25.00 2

6.80 6.50 12.25 24.90 44.40 0

J = 3 5.65 6.20 11.85 22.25 37.30 1

4.75 5.70 8.05 13.00 21.60 2

The regressors are integrated of order 1.4 while the errors are I(δ0) under the respective null hypothesis and I(δ1) under

the alternatives. All series are constructed from innovations that follow a N (0, 1) distribution. Tests for δ0 built upon

original residuals from bivariate regressions. Percentage of rejections of two-sided tests at the 5% level based on a standard

normal approximation of τδ or tδ, respectively. Sample size is T = 250. The bandwidth is m = 16. The trimming number

is `. The pooling number is J .
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