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Introduction 

Currently available dynamic panel estimators, which allow for both dynamic 

heterogeneity1 and cross-sectional dependence, are either not feasible (Phillips and Sul, 

2003) or biased (Pesaran, 2006) in short2

 An important maintained assumption in applied panel data studies is the 

independence of individual units in the cross section.  As first noted by Stephan (1934), 

this is unlikely to hold in economic applications. This issue, commonly referred to as 

‘cross-sectional dependence’, has been the subject of a rapidly-growing academic 

literature in recent years. There are now several standard ways to address this problem

 panels. This paper develops a Bayesian approach 

to estimating such models. Monte Carlo simulations suggest that our estimator is 

substantially less biased than the currently available alternatives for short panels. Our 

approach is illustrated by estimating a multivariate version, a panel VAR, on growth of 

labour productivity and hours worked for five sectors, which aggregate to the whole 

private sector, for Canada, Germany, France, Italy, the UK and the US (the G6) from 

1992Q1 to 2011Q3. We then identify, using long-run restrictions, five distinct permanent 

labour productivity shocks. Based on these structural VAR estimates, we investigate 

whether recent output movements, defined as the sum of movements in labour 

productivity and hours worked, have been driven by permanent productivity or 

temporary demand shocks, an issue of substantial interest in economic policy circles.  

3

                                                 
1 Those dynamic panel estimators that allow for cross sectional dependence and are specifically designed for inference in short 
panels, such as the quasi maximum likelihood approach in Bai (2009) or the GMM approach in Sarafidis (2009), do not allow for 
dynamic heterogeneity.  

: 

In the case of strongly exogenous regressors and T (the number of time-series 

observations) greater than C (the number of cross-section observations) the Seemingly 

Unrelated Regression (SUR) approach, first introduced by Zellner (1962), can address this 

issue. When C>T, this estimator becomes infeasible, but Robertson and Symons (2007) 

show that the introduction of a factor-structure on the residuals and estimation by 

maximum likelihood techniques is a feasible solution in that case. An alternative 

approach, proposed by Coakley, Fuertes and Smith (2002), uses principal components to 

2 Throughout this paper, ‘short’ refers to the time-series dimension of the panel.  
3 See Sarafidis and Wansbeek (2012) for an extensive survey of the literature. 
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proxy for the unobserved common factors in the residual. But their estimator is consistent 

only when the explanatory variables are uncorrelated with the factors in the residuals. 

Pesaran (2006) proposes the common correlated effects (CCE) estimator, which relaxes 

this assumption and can be implemented by including the cross-sectional means of the 

dependent and independent variables into the regression.  

 Where the regression equation includes dynamic terms, additional complications, 

related to the degree of heterogeneity in the lagged dependent variable coefficients, may 

arise. One option is to pool the data, assuming identical autoregressive dynamics across all 

units.4

 Our main contribution to this literature is the introduction of a dynamic panel 

estimator that allows for both dynamic heterogeneity and cross-sectional dependence for 

short panels. We follow the Bayesian approach proposed in Hsiao, Pesaran and 

 But in the presence of cross-sectional heterogeneity in the lagged dependent 

variable coefficients, Pesaran and Smith (1995) show that pooling will result in 

asymptotically inconsistent estimates. They propose the mean group estimator, which 

involves the estimation of the regression equation country-by-country, as a solution to 

this problem. The practical implementation of this approach therefore requires a T that is 

sufficiently large to ensure unbiased coefficients in each cross section. Indeed, in the case 

of small T, Hsiao, Pesaran and Tahmiscioglu (1999) recommend a Bayesian approach to 

address dynamic heterogeneity bias for single-equation dynamic panel models. But none 

of these estimators addresses the issue of cross-sectional dependence. To address both 

dynamic heterogeneity and cross-sectional dependence, Phillips and Sul (2003) propose 

an FGLS-SUR estimator. When C>T, their estimator is infeasible and here Pesaran (2006) 

recommends the common correlated effects mean group (CCEMG) estimator. As in the 

case of the regular mean group estimator, small sample bias means that this approach is 

unlikely to work when T is small. Most recently, Bai (2009) and Sarafidis (2009) propose 

dynamic panel estimators that allow for cross-sectional dependence and are specifically 

designed for short panels, but do not allow for dynamic heterogeneity. 

                                                 
4See Goodhart and Hoffman (2008), Lzzetzki, Mendoza and Vegh (2010) or Towbin and Weber (2010) for an application of this 
approach in the panel VAR context. 
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Tahmiscioglu (1999) and Jarocinski (2010) and introduce unobservable factors in the error 

terms of this model to allow for cross-sectional dependence. This follows the idea of Bai 

(2009) who also treats the unobserved factor as an estimable parameter in short panels. 

Our estimator is likely to prove useful for applied research, as recent years have seen a 

proliferation of applied work with panel VARs. In such circumstances T is typically small 

compared to the number of coefficients, with both dynamic heterogeneity and cross-

sectional dependence likely. In macroeconomics, panel VARs have been used to examine 

fiscal multipliers (Llzzetzki, Mendoza and Vegh, 2011; Corsetti, Meier and Mueller, 

2012),  the transmission of monetary policy (Goodhart and Hoffman, 2008; Jarocinski, 

2010, Calza et al, 2011)  and external shocks (Broda, 2004; Canova, 2005; Radatz, 2010) to 

macroeconomic aggregates across countries. In microeconomics, researchers have used 

this approach to examine the dynamics of earnings and hours worked among workers, 

(Vidangos, 2009) and financial development and firm behaviour (Love and Zicchino, 

2006). Theoretical contributions include Holtz-Eakin, Newey and Rosen (1988) who 

develop a GMM estimator for stationary panel VARs with short panels. Similarly, Hsiao, 

Pesaran and Binder (2005) propose GMM and quasi maximum likelihood estimators for 

short panels which can be applied when the panel VAR is non-stationary or includes 

cointegrating relationships. But none of these studies allows for both dynamic 

heterogeneity and cross-sectional dependence. As future applications of the proposed 

estimator are therefore likely to involve the estimation of panel VARs, our discussion is 

focused on the VAR version, treating the single equation model as a special case.  

 We employ Monte Carlo simulations to investigate the bias of our proposed 

estimator, relative to the alternatives, in short panels. As an application of our technique, 

we estimate a VAR version of our model on sectoral labour productivity and hours 

growth data for the G-6 and identify sector-specific permanent productivity shocks using 

long-run restrictions. With the help of historical decompositions we then study whether 

output growth at sector level is driven predominantly by temporary demand or 

permanent labour productivity shocks in the aftermath of the global financial crisis. 
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 Our Monte Carlo experiments suggest that our proposed estimator has 

substantially smaller bias and lower root mean squared error than the CCEMG or CCEP 

estimators proposed in Pesaran (2006), particularly when T=5, even when the cross 

section is relatively small (C=20). More importantly, our application suggests that taking 

cross-sectional dependence into account is important when examining the determinants 

of output growth weakness in the G6. For instance, failure to take cross-sectional 

dependence into account would lead a researcher to conclude that temporary demand 

shocks have been the most important drivers of recent weak UK output growth. Once 

cross-sectional dependence is accounted for, on the other hand, our model shows that 

permanent productivity shocks are just as important. Given this stark difference in results 

and policy implications, future applied work should therefore not ignore these issues and 

there might be some merit in a re-examination of past panel VAR research.    

The remainder of the paper is set up in the following way: Section II describes our 

empirical model and the Gibbs sampling approach used to estimate it. Section III 

undertakes the Monte Carlo study, comparing alternative dynamic panel estimators to 

ours. Section IV presents the empirical application. Section V offers concluding remarks. 

2.  Model 

In this paper we propose a new approach to estimating dynamic panel data models 

with heterogeneous coefficients and cross-sectional dependence in short panels. The most 

likely application of this type of estimator is panel VAR work, since that is typically the 

case when the number of coefficients is large with respect to the number of time-series 

observations, meaning that the effective number of time-series observations is small. To 

ease implementation among applied researchers, we therefore choose to describe, and 

derive the Gibbs sampler for, our model as a VAR.  

In practical terms, we follow the approach proposed in Hsiao, Pesaran and 

Tahmiscioglu (1999) and Jarocinski (2010) and use the hierarchical linear model with 

exchangeable prior in the formulation of Gelman et al (2003).5

                                                 
5 See Lindley and Smith (1972) for the first discussion of exchangeable prior in linear regression models. 

 In the panel VAR context, 

the idea underlying this model is that all cross-sectional units share a common mean. This 
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is similar to the Litterman (1986) prior assumption popular in economic forecasting, but 

rather than shrinking towards a random walk, we are shrinking towards a common mean, 

with the degree of shrinkage determined by the data. Other work that uses the 

exchangeable prior in panel VAR applications includes Canova (2005) and Cicarelli and 

Rebucci (2004), but they do not infer the degree of shrinkage from the data. 

 

2.1  Model assumptions 

 

The panel VAR6

 

 model we propose is the following: 

                        𝒀𝒄 = 𝑿𝒄𝑩𝒄 + 𝑬𝒄                                                         (1) 

                         𝑬𝒄 = 𝑭𝑫𝒄 + 𝑼𝒄                                                (2) 

 

where 𝒀𝒄 is a matrix with N endogenous variables in the columns and time-series 

observations in the rows, in country c, with the total number of countries C. 𝑿𝒄 contains 

the lags of the variables in 𝒀𝒄  and 𝑩𝒄 is the array of associated coefficients. We assume 

that the corresponding matrix of VAR residuals 𝑬𝒄 is made up of M unobservable factors, 

which are common across countries and are contained in the matrix 𝑭. The matrix 𝑫𝒄 is 

the matrix of factor loadings, allowing each factor to affect each equation differently. 𝑼𝒄 

is the matrix of the actual reduced form country-specific VAR innovations. This is 

assumed to be normally distributed with variance-covariance matrix 𝜮𝒄.  When T is 

small, estimates of 𝑩𝒄  are likely to be imprecise and it may be more efficient to pool 

estimates across countries. In particular, we assume that the following prior for 𝑩𝒄: 

                                                 𝒑(𝑩𝒄 ∣∣ 𝑩� ,𝜦𝒄 ) = 𝑵(𝑩� ,𝜦𝒄)                                       (3) 

where 𝑩� is the pooled mean across countries with the variance 𝜦𝒄 determining the 

tightness of this prior. We follow Jarocinski (2010) and parameterize 𝜦𝒄 = 𝝀𝑳𝒄. 𝝀  is 

treated as a hyper parameter and is estimated from the data, based on an inverse gamma 

                                                 
6 The description of most the components of our proposed model closely follows the presentation of Jarocinski (2010). For brevity 
we just cover the bare necessities and focus most of our attention on our innovation, the factor structure in the residuals. See his 
work for more details on the remaining parts of the model. 
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distribution, while 𝑳𝒄, as explained in detail below, is calibrated pre-estimation. The 

greater 𝝀  the larger the degree to which the country-specific coefficients are allowed to 

differ from the common mean. If  𝝀 → ∞ , this approach will lead to country-by-country 

estimates, while  𝝀 = 𝟎 implies pooling across all countries. The parameterisation of 𝜦𝒄  

in this manner has the econometrically convenient property that it is necessary only to 

estimate one hyper-parameter to determine the degree of heterogeneity in the 

coefficients. But there is of course one drawback: the coefficients in 𝑩𝒄 may have 

different magnitudes. In specifying a single parameter that determines the degree of 

heterogeneity, there is therefore the risk that some coefficients are allowed to differ from 

the common mean by a small fraction of their own size, while others can differ by orders 

of magnitude. Following Jarocinski (2010) and an analogous procedure for the Litterman 

(1986) prior, 𝑳𝒄  is a matrix of scaling factors used to address this problem. In particular, 

𝑳𝒄(𝒌,𝒏) = 𝝈𝒄𝒏𝟐

𝝈𝒄𝒌
𝟐 , where c is the country, n  the equation and k the number of the variable 

regardless of lag.  𝝈𝒄𝒏𝟐   is the estimated variance of the residuals of a univariate auto-

regression of the endogenous variable in equation n, of the same order as the VAR, and is 

obtained pre-estimation. 𝝈𝒄𝒌𝟐  is the corresponding variance for variable k  and obtained in 

an identical manner. To the extent that unexpected movements in variables will reflect 

the difference in the size of VAR coefficients, scaling by this ratio of variances allows us 

to address this issue.  

 Jarocinski (2010) shows that based on these assumptions, the joint posterior of the 

model can be written as: 

 

�|𝜮𝒄|
𝑇𝑐
2

𝑐

exp�−
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�(
𝑐
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where 𝑿�𝒄 ≡ 𝑰𝑵⨂𝑿𝒄 , 𝑭� ≡ 𝑰𝑵⨂𝑭, 𝒚𝒄 ≡ 𝒗𝒆𝒄(𝒀𝒄), 𝜷𝒄 ≡ 𝒗𝒆𝒄(𝑩𝒄), 𝜷� ≡ 𝒗𝒆𝒄(𝑩�)  and 

𝒅𝒄 ≡ 𝒗𝒆𝒄(𝑫𝒄).  Based on this posterior, it is easy to derive the conditional distributions 

for the Gibbs sampler of this model.  

 

 Before describing the Gibbs sampler, it is useful to lay out the assumptions 

regarding the factor model as well. The matrix 𝑭 contains M factors. The idea of 

estimating factors to address cross-sectional dependence in short panels follows the 

approach in Bai (2009). We assume that these factors are independent with distribution 

𝑵(𝟎, 𝑰𝑴)  at each point in time and that the VAR residuals 𝑼𝒄 are uncorrelated across 

countries, as the unobserved factors will absorb this cross-country correlation. Finally, it 

is assumed that 𝑬[𝑼𝒄
′𝑭] = 𝟎, the VAR residuals and the factors are orthogonal.  

As with any factor model, there are issues of indeterminacy that need to be 

addressed ahead of estimation.  First, there is a question of scale. One can multiply the 

matrix of factor loadings, 𝑫𝒄, by a constant d for all i, which gives 𝑫𝒄� = 𝑑𝑫𝒄. We can also 

divide the factor by d, which yields 𝑭� = 𝑭
𝑑
. The scale of the model 𝑭�𝑫𝒄�   is thus 

observationally equivalent to the scale of the model 𝑭𝑫𝒄. In order to address this problem 

the scale of each factor is set to unity. Even then a choice remains as to the sign of 𝑭. To 

identify the sign of the factors we restrict all of the factor loadings in one particular 

country to be positive. Finally, to identify multiple factors, additional assumptions may 

need to be made on the matrix of coefficients 𝑫𝒄.  

 

2.2 The Gibbs Sampler 

 

Under the assumptions laid out in the previous section, it is then easy to show that 

the model can be estimated by Gibbs sampling through iteratively drawing from the 

following distributions. The country-specific VAR coefficients 𝜷𝒄 are drawn from: 

  

𝒑�𝜷𝒄 ∣∣ 𝜷�,𝑭,𝒀𝒄,𝜦𝒄 � = 𝑵((𝑮𝒄)−1(𝜮𝑐−1⨂𝑿𝒄′ )𝑣𝑒𝑐(𝒀𝒄 − 𝑭𝑫𝒄) + 𝝀−𝟏𝑳𝒄−𝟏𝜷�, (𝑮𝒄
−1))           (4) 
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where 𝑮𝒄 = 𝜮𝑐−1⨂𝑿𝒄′𝑿𝒄 + 𝝀−𝟏𝑳𝒄−𝟏. 𝜷� is drawn from: 

 

 𝒑�𝜷� ∣∣ 𝜷𝒄,𝜦𝒄 � = 𝑵((𝝀−𝟏 ∑ 𝑳𝒄−𝟏𝒄 )−1𝝀−𝟏 ∑ 𝑳𝒄−𝟏𝒄 𝜷𝒄, (𝝀−𝟏 ∑ 𝑳𝒄−𝟏𝒄 )−1)     (5) 

 

 

𝝀  is treated as a hyper parameter and drawn from the following inverse gamma 2 

distribution:  

 

 𝒑� 𝝀 ∣∣ 𝜷�,𝜷𝒄,𝑳𝒄−𝟏 � = 𝑰𝑮𝟐(𝒔 + ∑ (𝜷𝒄 − 𝜷�)′𝑳𝒄−𝟏(𝜷𝒄 − 𝜷�)𝒄 ,𝑪𝑵𝑲 + 𝒗)    (6)                        

 

 A completely non-informative prior with s and v set to 0 results in an improper posterior 

in this case. We therefore set both of the quantities to very small positive numbers, which 

is equivalent to assuming a weakly informative prior. But it is important to point out that 

𝝀 is estimated from the total number of coefficients that this prior is applied to, namely 

the product of country (C), equations (N) and total number of coefficients in each 

equation (K). Given this large number of effective units, any weakly informative prior 

will be dominated by the data. Finally, the country-specific variance matrix of the 

residuals, 𝜮𝒄, is drawn from an inverse-Wishart distribution:  

 

  𝒑�𝜮𝒄 ∣∣ 𝒅𝒄 ,𝜷𝒄 ,𝑭� � = 𝑰𝑾(𝑼𝒄
′𝑼𝒄,𝑻𝒄)                                                  (7) 

 

where 𝑼𝒄 = 𝒚𝒄 − 𝑿�𝒄𝜷𝒄 − 𝑭�𝒅𝒄 and 𝑻𝒄 is the number of observations for each country. 

As in Lopes and West (2004), each individual factor, 𝒇𝒊, can be drawn from: 

 

𝒑(𝒇𝒊 ∣∣ 𝒀𝒄,𝑩𝒄,𝑲𝒊,𝜮𝑰 ) = 𝑵(�𝟏 + 𝑲𝒊
′ 𝜮𝒊−𝟏𝑲𝒊�

−𝟏
𝑲𝒊
′ 𝜮𝒊−𝟏(𝒀𝒄𝒊 − 𝑿𝒄𝒊𝑩𝒄

𝒊 ), ( 𝟏 + 𝑲𝒊
′ 𝜮𝒊−𝟏𝑲𝒊)−𝟏)  (8) 

 

where 𝑲𝒊 is an 𝑪𝒙𝟏 vector the associated factor loadings, made up from the elements in 

𝒅𝒄.   𝜮𝒊 is an 𝑪𝒙𝑪 diagonal matrix of variances associated with equation n in country c 

that the factor loads on. The coefficients associated with the factors are drawn from: 
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 𝒑(𝒅𝒄 ∣∣ 𝑭,𝒀𝒄,𝑩𝒄,𝜮𝑰 ) = 𝑵((𝑭 ′𝑭)−𝟏𝑭′(𝒀𝒄 − 𝑿𝒄𝑩𝒄), (𝑭 ′𝑭)−𝟏)          (9)                                     

 
 
3.  A Monte Carlo Study 

 In this section we undertake a Monte Carlo study to compare the small sample 

properties of our proposed estimator with those suggested by previous work. We focus on 

a special case of the model described in section 2, where N, the number of equations is 

one. Previous studies that propose estimators which allow for both cross-sectional 

dependence and dynamic heterogeneity include Phillips and Sul (2003) and Pesaran 

(2006). The estimator in Phillips and Sul (2003) is applicable only when T >C and hence 

infeasible in our situation. The only other alternative estimator that accounts for both 

dynamic heterogeneity and cross-sectional dependence is the common correlated effects 

mean group (CCEMG)  estimator proposed by Pesaran (2006), though he notes that his 

proposed estimator works better when T > 30. He also proposes the common correlated 

effects pooled (CCEP) estimator, though that does not allow for dynamic heterogeneity. 

We compare the performance of these two to our proposed estimator.  As in Phillips and 

Sul (2003), we assume the following data generating process:   

𝒚𝒊,𝒕 = 𝜸𝒊𝒚𝒊,𝒕−𝟏 + 𝒖𝒊,𝒕 

𝒖𝒊,𝒕 = 𝜽𝒊𝒇𝒕 + 𝜺𝒊,𝒕 

In our simulation, we consider the following cases: 

Case I (Homogeneity and Low Cross sectional dependence). In this simulation, 𝜸𝒊=𝜸 =
.𝟔 ∀ 𝒊 and  𝜽𝒊~𝑵(.𝟐, .𝟏).   

Case II (Homogeneity and High Cross sectional dependence). In this simulation, 𝜸𝒊=𝜸 =
.𝟔 ∀ 𝒊 and  𝜽𝒊~𝑵(𝟏,√.𝟐).   

Case III (Heterogeneity and Low Cross sectional dependence). In this simulation, 
𝜸𝒊~𝑵(.𝟔, .√.𝟐).  ∀ 𝒊 and  𝜽𝒊~𝑵(.𝟐,√.𝟏).   

Case IV (Heterogeneity and High Cross sectional dependence). In this simulation, 
𝜸𝒊~𝑵(.𝟔, .√.𝟐).  ∀ 𝒊 and  𝜽𝒊~𝑵(𝟏,√.𝟏).   
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Table 1: Estimates of  𝛾 

CCEP CCEMG Bayes CCEP CCEMG Bayes 

 Case I Case II 

T=5,C=20 .45 .33 .58 .45 .34 .57 

T=10,C=20 .53 .45 .59 .54 .45 .56 

T=20,C=20 .57 .51 .57 .56 .51 .55 

T=5,C=50 .47 .36 .64 .46 .36 .65 

T=10,C=50 .54 .44 .57 .53 .44 .54 

T=20,C=50 .57 .52 .59 .57 .52 .56 

 Case III Case IV 

T=5,C=20 .40 .25 .54 .42 .24 .56 

T=10,C=20 .49 .32 .48 .51 .34 .55 

T=20,C=20 .56 .40 .46 .57 .39 .54 

T=5,C=50 .45 .26 .57 .43 .25 .63 

T=10,C=50 .53 .33 .48 .52 .33 .55 

T=20,C=50 .59 .39 .47 .59 .39 .54 

The numbers reported in the table above are the average of the estimate of  𝜸 with each method across all 250 replications. 

 

In all experiments, 𝜺𝒊,𝒕~𝑵𝑰𝑫(𝟎,𝟏),  𝒇𝒕~𝑵𝑰𝑫(𝟎,𝟏).  We repeat these experiments for T=5, 

10, 20, C=20 and 50 to compare the small sample performance of these estimators. The 

number of replications for the Gibbs sampler is chosen to be 10000, with 5000 as burn in, 

retaining every tenth draw for inference.7

                                                 
7 The number of replications was chosen for computational reasons. It might at times take longer for the Gibbs sampling chain to 
converge, which is why our Bayesian estimates should be treated as lower bounds, in the sense that it may be possible to obtain 
estimates closer to the true values with more iterations.  

 The total number of replications for our 
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experiment is 250. The resulting estimates of 𝜸 are shown in Table 1.  Cleary, estimates of  

𝛾 that are close to .6, the true value of the data generating process, suggest small bias. 

When T=5, the Bayes estimate is always closest to the true value, typically with a bias of 

less than 10%. For T > 10, the other estimators become relatively less biased and in some 

cases are better than the Bayes estimator. Nevertheless, our estimator produces the least 

biased coefficients in most circumstances. 

                      

 

Table 2: RMSE of  𝛾 

CCEP CCEMG Bayes CCEP CCEMG Bayes 

 Case I Case II 

T=5,C=20 .25 .34 .16 .24 .34 .17 

T=10,C=20 .11 .18 .074 .10 .18 .087 

T=20,C=20 .059 .098 .058 .062 .10 .065 

T=5,C=50 .218 .30 .076 .22 .29 .086 

T=10,C=50 .093 .17 .056 .09 .18 .074 

T=20,C=50 .047 .09 .03 .04 .089 .05 

 Case III Case IV 

T=5,C=20 .32 .40 .18 .30 .42 .20 

T=10,C=20 .18 .29 .18 .17 .28 .16 

T=20,C=20 .13 .22 .16 .126 .22 .125 

T=5,C=50 .26 .37 .13 .27 .38 .13 

T=10,C=50 .14 .28 .14 .15 .28 .105 

T=20,C=50 .097 .223 .15 .0873 .218 .092 

The numbers reported in the table above are the average of the estimate of  𝜸 with each method across all 250 replications. 

Table 2 presents the root mean squared error of 𝛾 across the 250 iterations. When T is 

small, our proposed estimator typically has a much smaller root mean square error than 
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the alternatives. This again suggests that our approach is preferable to the other 

estimators in small T applications. 

 Out of the three estimators investigated in this section, the CCEMG estimator 

appears to show the largest bias, in particular when the number of time-series is small. 

This stems from the fact that implementation involves the estimation of individual 

regressions for each cross section. Such estimates are likely to be subject to severe small 

sample bias when the panel is short. But the bias does become much smaller when T=20. 

This clearly illustrates the principle that the effective length of the panel is determined by 

the number of time-series observations relative to the number of coefficients, rather than 

the absolute number of time-series observations. The CCEMG is therefore likely to suffer 

from the same problem in panel VAR models, where the number of relative time-series 

observations is small. Our estimator therefore seems to be clearly the preferred 

alternative to estimating such models. 

 

4.  Examining the determinants of recent G6 output growth outturns 

The recovery in output growth, across the G6, following the ‘Great Recession’ 

seems to have been weaker than recoveries from past recessions. One side of the debate 

argues that this is the result of a shock to the supply capacity of the economy, while 

others maintain that weak demand is the culprit underlying weak output growth. 

Whether weak output growth is driven by the former or later has important implications 

for monetary policy. If low output growth is mostly driven by demand (supply), 

additional monetary stimulus to increase output, is likely to generate little (substantial) 

inflationary pressure. With all the caveats typically associated with such exercises, we 

therefore estimate the model proposed in section 2 on growth in labour productivity and 

hours worked for five sectors, which together make up the private sector macroeconomic 

aggregates, for the G6. Following Gali (1999), we then identify sector level permanent 

productivity shocks based on the assumption that in the long run, shocks to hours worked 
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cannot affect labour productivity. Since the sum of labour productivity and hours growth 

is output growth, we can then decompose output growth into the contributions of 

permanent labour productivity and demand shocks since the start of global financial crisis 

in 2008Q3.  

This section starts with a description of the data. We then proceed to the 

description of our model and the identification schemes we use. The last subsection 

discusses our results based on a model with and without cross-sectional dependence.  

 

4.1 Data 

Descriptive statistics summarising the final series are shown in table 2 below. 

These are presented for the period from 1992Q2 to 2007Q2, so as to offer a picture of the 

six economies before the start of the recent economic crisis. In all countries, output grew 

the fastest in the information and communication sector, consistent with the presence of 

an ‘information revolution’ in these countries during this period. There is clearly a lot of 

heterogeneity in sectoral labour productivity and output growth rates between sectors 

and countries. This suggests that taking this into account could be important when 

attempting to disentangle the various sources underlying business cycle fluctuations. For 

more information on the data see Gilhooly, Weale and Wieladek (2012). 
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Table 2: Data Summary, Annualised Growth Rates 1992Q2 to 2007Q

  

2 

Output   Hours   Productivity  

  Mean 
Standard 
Deviation   Mean 

Standard 
Deviation   Mean 

Standard 
Deviation 

                  
  B-E : Industry 

Canada 2.0 5.0   -0.1 5.4   2.1 5.2 
France 1.9 3.1   -1.9 1.7   3.7 2.7 
Germany 1.0 6.5   -2.4 5.3   3.5 7.1 
Italy 1.2 4.7   -0.5 3.5   1.7 5.1 
United Kingdom 0.6 3.3   -3.1 4.1   3.8 4.3 

United States 2.9 5.4   -1.3 3.7   4.2 4.6 
                  
  F : Construction 

Canada 1.9 7.3   1.9 9.4   0.1 8.6 
France 0.4 4.2   -0.2 3.4   0.6 2.9 
Germany -1.2 11.8   -1.2 10.8   0.1 9.7 
Italy 0.9 6.4   1.8 7.6   -0.9 8.5 
United Kingdom 1.1 6.0   -0.7 6.9   1.8 7.1 

United States 0.6 5.6   2.0 6.1   -1.4 6.0 
                  
  G-I : Services 

Canada 3.2 4.5   1.3 3.1   1.9 4.5 
France 2.4 2.7   0.3 1.6   2.1 2.7 
Germany 1.6 5.1   -0.3 2.5   1.9 5.8 
Italy 1.6 3.7   0.2 4.4   1.5 5.9 
United Kingdom 2.4 3.5   0.3 3.1   2.2 4.1 

United States 4.2 3.7   0.7 2.4   3.5 3.8 
                  
  J : Information and communication 

Canada 5.4 3.9   1.9 7.6   3.6 8.1 
France 4.7 3.9   1.4 2.5   3.3 3.9 
Germany 4.5 10.6   1.1 3.8   3.5 11.4 
Italy 5.3 9.1   2.4 4.6   2.9 9.6 
United Kingdom 8.4 10.4   -1.1 7.1   9.5 10.5 

United States 5.8 5.9   0.7 5.6   5.1 8.2 
                  
  K : Financial, insurance and Real Estate activities 

Canada 3.2 2.0   1.3 4.9   1.9 4.9 
France 1.9 2.1   -0.1 1.9   2.0 3.2 
Germany 2.2 4.2   -0.6 2.2   2.3 4.5 
Italy 1.2 3.6   0.6 2.4   0.7 4.15 
United Kingdom 4.5 4.0   1.4 2.6   3.1 5.3 
United States 3.5 3.0   1.6 2.6   1.9 3.5 
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4.2 Estimation and model specification 

Substituting (2) into (1), the reduced-form VAR model we estimate is: 

       𝒀𝒄,𝒕 = ∑ 𝑨𝒄,𝒍
𝑳
𝒍=𝟏 𝒀𝒄,𝒕−𝒍 +  𝑫𝒄 𝑭𝒕 + 𝒖𝒕                      𝒖𝒕~𝑵(𝟎,𝜮𝒄)                      (10) 

where 𝒀𝒄,𝒕 = [∆𝒍𝒑𝟏,𝒄,𝒕 …∆𝒍𝒑𝒔,𝒄,𝒕 …∆𝒍𝒑𝟓,𝒄,𝒕 ∆𝒉𝒐𝒖𝒓𝒔𝟏,𝒄,𝒕 …∆𝒉𝒐𝒖𝒓𝒔𝒔,𝒄,𝒕 …∆𝒉𝒐𝒖𝒓𝒔𝟓,𝒄,𝒕]8
P is a 

10x1 vector of labour productivity and hours growth in each of the five sectors s. 𝒖𝒕 is a 

normally distributed vector of reduced-form shocks with covariance matrix 𝜮𝒄. 𝑭𝒕 is a 

vector of unobserved factors to proxy for cross-sectional dependence. The number of 

equations N is ten, with the number of countries, C , six with seventy-six as the number 

of time-series observations. The chosen lag length is two.  With this number of lags the 

number of coefficients in each equation will be twenty, which means that the effective T 

(relative to the number of coefficients) is small. Every version of equation (10) presented 

in this paper is estimated by replicating the Gibbs sampler in section 2.2 200,000 times, 

discarding the first 100,000 as burn-in, and retaining every fiftieth draw to reduce 

autocorrelation among the draws.  

 What remains to be specified is the number of factors and their interaction with 

each VAR equation. As the explicit purpose of the factors is to account for cross-sectional 

dependence, we first test for the presence of this phenomenon in each equation. Previous 

work suggested several tests. With C > T, Breusch and Pagan (1980) proposed an LM-test, 

based on the pair-wise correlations of the residual of the model. Pesaran (2004) shows 

that the LM-test is inconsistent for large C and proposes the CD-test statistic instead, 

which he shows has good power and size properties in a variety of situations, such as in 

the presence of dynamic heterogeneity and multiple structural breaks. If pair-wise 

correlations are both positive and negative and can offset each other, the CD test statistic 

will lack power. This could arise in a situation when the mean factor loadings are  zero. 

In this case, Pesaran, Ullah and Yamagata (2008) propose the bias-adjusted LM test 

instead. Their Monte Carlo simulations suggest that this test has generally good power 

                                                 
8 Note that all of series were time-demeaned pre-estimation and hence our model does not feature country-specific constant terms. 
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properties, but they weaken slightly in the case of weakly exogenous regressors and 

dynamic heterogeneity. For this reason, we use both tests together to determine the 

appropriate number of factors and which equations they should enter, taking into account 

their relative strengths and weaknesses.  

Table 3 (4) presents the results for the CD (bias-adjusted LM) test. Both tests are 

carried out on the residuals9

                                                 
9 Residuals have been constructed based on the estimated median coefficients of the model. 

 of the estimated models referred to in the tables. 

Asymptotically both test statistics have a N(0,1) distribution. An absolute value of greater 

than 1.96 (1.6) thus implies the rejection of the null hypothesis of cross-sectional 

independence at the 5% (10%) level. The CD test statistic for the model without any 

factors in row two of table 3 allows us to reject the null hypothesis of cross-sectional 

independence in equations 1, 3 and 6. The bias adjusted LM test on the other hand only 

weakly confirms cross-sectional independence in equations 1 and 6, but not in equation 3. 

We therefore proceed and re-estimate our model with factors in equations 1 and 6. The 

CD (bias-adjusted LM) test statistic for this model is presented in row three of table 3 (4).   

Now both tests also reject cross-sectional independence in equations 3, 7, 8 and 9. It may 

be surprising that additional factors are needed now. This stems from the fact that in our 

model, only one shrinkage parameter determines the degree of heterogeneity for the 

whole system of equations. The inclusion of factors in equation 1 and 6 will therefore not 

only affect the degree of shrinkage (pooling towards the common mean) in equations 1 

and 6, but in all equations. In our case the estimated degree of heterogeneity increases, 

which may give more scope for finding cross-sectional dependence in the remaining 

equations. For equation 10, the LM test suggests the presence of cross-sectional 

dependence, while the CD test does not. A close inspection of the pair-wise correlations 

in equation 10 suggests that some large correlations are equal in magnitude, but different 

in sign, which is exactly the case when the CD statistic looses power, meaning that results 

from this test need to be interpreted with care. We therefore re-estimate the model with 

factors in equations 1,3,6,7,8,9 and 10. Even then both tests still reject the null hypothesis 

for equation 6. To address this remaining cross-sectional dependence, we include an 
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additional crisis factor in equation 6, which takes the value of zero pre 2008Q2 and loads 

on the UK and Italy, restricting the UK loading on the first factor to 0.10  The last row of 

table 4 shows that in this case, all cross-sectional dependence appears to be removed. The 

final specification that we use in the structural VAR analysis below therefore includes 

one factor each in equations 1, 3,7,8,9 and 10 and two factors in equation 6. 

Model / Equation 

Table 3 – CD test statistic for different models 

1 2  3 4 5 6 7 8 9 10 

No Factors 3.20 .52 2.84 .22 .15 2.78 1.36 1.10 1.71 -.29 

Factors in EQ 1 and EQ6 -1.32 .84 4.91 .39 .99 -4.36 4.21 4.74 5.60 .69 

Factors in EQ1, EQ3, EQ6, 

EQ7, EQ8, EQ9,EQ10 

-1.21 .79 -1.20 .34 .97 -4.15 -1.12 -2.51 -1.75 .63 

Factors in EQ1, EQ3, EQ6, 

EQ7, EQ8, EQ9,EQ10 and 

additional factor in EQ6 

-1.2 .9 -1.20 .6 1.0 -1.1 -.9 

 

-1.95 -1.63 .67 

 

 

 

 

 

 

 

                                                 
10 These choices were made based on the highest individual pair-wise correlations and the associated model residuals across 
countries in equation 6. Furthermore, this correlation seemed particular strong from 2008Q2 onwards.  
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Model / Equation 

Table 4 – Biased adjusted LM test statistic for different models 

1 2  3 4 5 6 7 8 9 10 

No Factors 1.61 -.12 .75 .49 .10 1.6 -.04 1.26 .05 1.24 

Factors in EQ 1 and EQ6 .76 -.25 2.1 .66 .56 3.1 2.06 4.68 2.74 1.71 

Factors in EQ1, EQ3, EQ6, 

EQ7, EQ8, EQ9,EQ10 

.67 -.27 .02 .67 .56 2.8 .257 .845 -.114 .0054 

Factors in EQ1, EQ3, EQ6, 

EQ7, EQ8, EQ9,EQ10 and 

additional factor in EQ6 

.92 -.28 .10 1.0 .7 1.5 .194 .39 .21 .19 

 

4.3.  Identification 

There is now a long economic literature on identifying macroeconomic shocks 

using long-run restrictions, highlighting both the advantages and caveats of this 

approach. Blanchard and Quah (1989) first introduced this method for systems of 

equations, while Watson and Shapiro (1988) proposed a single equation approach to 

identify shocks via long-run restrictions in VAR systems. Most recent work examines the 

United States and follows Gali (1999) in identifying permanent technology shocks using a 

VAR specification which typically consists of growth in both labour productivity and 

hours worked. It has been pointed out that long-run restrictions may provide only weak 

identification information (Faust and Leeper, 1997) and that existing samples may be too 

short to implement such restrictions (Erceg et al, 2005). Similarly, different types of 

technology shocks may have different impacts on per capita hours worked; Fisher (2006) 
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proposes the investment-specific technology shock, as a separate important business cycle 

determinant of hours.11

Some of these criticisms can be naturally addressed within our framework. In 

particular, we are interested in identifying sector level productivity shocks, from five 

different economic sectors. Given the potential for spillovers across sectors, what previous 

studies label as an ‘investment-specific’ technology shock, could just be a shock 

originating in a particular sector. Even if this is not the case, the comprehensive 

robustness examination exercise presented in Canova, Lopez-Salido and Michelacci 

(2010) finds that in the US, Gali-type neutral technology shocks explain a much greater 

fraction of output growth, the variable we ultimately seek to explain, than ‘investment-

specific’ technology shocks. We therefore follow the approach in Gali (1999) and attempt 

to identify what previous work labels ‘neutral’ technology shocks at the sector level. 

  

The challenge for structural VAR models is to disentangle orthogonal, structural 

economic shocks, 𝜺𝒕, from the correlated reduced form shocks 𝒖𝒕. This is typically 

achieved with the help of a matrix 𝑪𝟎,  such that 𝑪𝟎𝒖𝒕 = 𝜺𝒕. As discussed below, we 

recover 𝑪𝟎 either with long-run only or a combination of long-run and short-run, 

restrictions. Estimates of (10) can be used to obtain the reduced-form vector moving 

average: 

    𝒀𝒄,𝒕 = (𝑰 −  ∑ 𝑨𝒄,𝒍
𝑳
𝒍=𝟏 )−𝟏𝒖𝒕 + (𝑰 −  ∑ 𝑨𝒄,𝒍

𝑳
𝒍=𝟏 )−𝟏𝑫𝒄𝑭𝒕 = 𝑹(𝑳)𝒖𝒕 +  𝑹(𝑳)𝑫𝒄𝑭𝒕             (11)   

From (11), it is easy to see that 𝑹(𝑳)𝑪𝟎−𝟏 = 𝑪(𝑳), where 𝑹(𝑳) (𝑪(𝑳)) is the implied matrix 

of long-run reduced form (structural) multipliers. By imposing restrictions on 𝑪(𝑳), it is 

therefore possible to use long-run restrictions to recover 𝑪𝟎  and therefore identify the 

structural shocks. To understand our proposed identification restrictions better, it is 

useful to divide the matrix of structural coefficients 𝑪𝟎 and long-run multipliers 𝑪(𝑳)  

into four quadrants: 

                                                 
11 A related point, made by Fernald (2007) is that breaks hours worked data may be responsible for some of the puzzles 
typically investigated in these studies that examine the United States. It is unclear however, to which extent this critique 
applies to our work, which takes a cross-country approach. 



 
 Discussion Paper No. 38  December 2012 21 

 𝑪𝟎 = �
𝑪𝟎,𝟏𝟏 𝑪𝟎,𝟏𝟐
𝑪𝟎,𝟐𝟏 𝑪𝟎,𝟐𝟐

�             𝑪(𝑳) = �𝑪
(𝑳)𝟏𝟏 𝑪(𝑳)𝟏𝟐

𝑪(𝑳)𝟐𝟏 𝑪(𝑳)𝟐𝟐
�             (12) 

Identification with long-run restrictions only requires imposing 𝑵(𝑵−𝟏)
𝟐

 restrictions on 

𝑪(𝑳), leaving 𝑪𝟎 unrestricted. Our main identification assumption, that only permanent 

productivity shocks can affect labour productivity in the long run, meaning that 𝑪(𝑳)𝟏𝟐 is 

a matrix of zeros, provides 𝑵
𝟐

𝟒
 restrictions. The remaining 𝑵(𝑵−𝟐)

𝟒
  restrictions can be 

imposed by requiring both 𝑪(𝑳)𝟏𝟏 and 𝑪(𝑳)𝟐𝟐 to be lower triangular matrices. 

Conveniently, these restrictions can be imposed by taking the lower triangular choleski 

decomposition of 𝑪(𝑳)𝑪(𝑳)′ ≡ 𝑹(𝑳)𝜮𝒄𝑹(𝑳)′, which can be calculated from observable 

reduced form quantities. This will be referred to as identification scheme I for the rest of 

the paper. 

 The above is of course not the only possible identification scheme. To ensure that 

our results are robust to this particular choice, we also experiment with a second 

identification scheme, following the IV approach to structural VAR identification of 

Robertson and Pagan (1998). With this approach, which allows for the combination of 

short and long-run restrictions, we assume that 𝑪𝟎,𝟏𝟏 has ones on the diagonal and that 

𝑪(𝑳)𝟏𝟏 is a diagonal matrix. This allows us to interpret the shocks as sector-specific 

permanent productivity shocks. More importantly, this assumption implies that, since 

𝑪(𝑳)𝑪𝟎 = 𝑹(𝑳),  we can recover each row 𝒙 of 𝑪𝟎,𝟏𝟏 and 𝑪𝟎,𝟏𝟐 through 𝑪𝟎,𝟏𝟏(𝒙,𝑵/𝟐) =

 𝑹(𝑳)𝟏𝟏(𝒙,𝑵/𝟐)/𝑹(𝑳)𝟏𝟏(𝒙,𝒙) and 𝑪𝟎,𝟏𝟐(𝒙,𝑵/𝟐) =  𝑹(𝑳)𝟏𝟐(𝒙,𝑵/𝟐)/𝑹(𝑳)𝟏𝟏(𝒙,𝒙) (See 

Fry and Pagan, 2005).  To identify additionally the temporary demand shocks, it is 

necessary to impose some short-run restrictions. We require 𝑪𝟎,𝟐𝟏 to be a diagonal matrix 

of ones, which means that permanent productivity shocks spill over to other sectors only 

with a lag. With 𝑪𝟎,𝟏𝟏 and 𝑪𝟎,𝟏𝟐 in hand, it is possible to obtain the first 𝑵
𝟐
  elements of 𝜺𝒕. 

These will be by definition uncorrelated with the remaining elements of 𝜺𝒕, but 

correlated with 𝒖𝒕. The coefficients of 𝑪𝟎,𝟐𝟐 are therefore estimated with the first 𝑵
𝟐
  

elements of 𝜺𝒕  as instruments for the corresponding elements of 𝒖𝒕.  This identification 

scheme is referred to as identification scheme II throughout.   
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 Equipped with 𝑪𝟎, we can decompose each time series in the VAR into the 

contribution from each structural shock. That is, we can determine to what extent labour 

productivity growth, hours growth and output growth (defined as the sum of the former 

and the latter) are driven by the structural shocks or the common factors. To see how this 

done in practice, consider that based on (10), abstracting from the lag structure for 

simplicity, the data at any point in time can be expressed as: 

𝒀𝒄,𝒕 = 𝑨𝒄𝒕−𝒕𝟎𝒀𝒄,𝒕𝟎 + ∑ 𝑨𝒄𝒊𝒕−𝒕𝟎
𝒊=𝟎 𝑪𝟎𝜺𝒕−𝒊 +  ∑ 𝑨𝒄𝒊𝒕−𝒕𝟎

𝒊=𝟎 𝑫𝒄𝑭𝒕−𝒊                                     (13) 

 where 𝒕𝟎  is the base period. This expression can also be used to understand the 

contributions of the identified shocks to each series in 𝒀𝒄,𝒕. For instance, to calculate the 

contribution of a given structural shock, set that shock to zero, generate the implied path 

for all the time series and then subtract it from the actual data. This is how we compute 

the contribution of each identified shock. The contributions of the global factors are then 

obtained as the difference between the sum of the contributions from all of the identified  

shocks and the corresponding data series.12

4.4. Results  

 For this type of exercise, the choice of baseline 

period (i.e. the time after which shocks arrive) is particularly important, as people are 

assumed to know everything up until that time. Since we are interested in the impact of 

permanent labour productivity and transitory demand shocks following the onset of the 

‘Great Recession’, we choose 2008Q2 as our baseline period. 

 In this section we first show the reduced form results from our model and then 

proceed to a discussion of the identified VAR results and their policy implications. One 

interesting statistic is the distribution of 𝝀, the degree of heterogeneity in the data. Figure 

1 shows these statistics for the model estimated with and without controlling for cross-

sectional dependence. The mean of draws of 𝝀 of the former model, at .0024, is roughly 

half as large as that of the latter at .0043. This is an intuitive result: ignoring the presence 

of a common factor in the residuals may make data appear more similar across countries 

                                                 
12 In models without a common factor, temporary demand shocks are calculated as the difference between the path implied by the 
permanent productivity shocks and the data. 
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than they actually are, resulting in an artificially smaller degree of dynamic 

heterogeneity. In terms of magnitudes, it is useful to compare these numbers to the 

degree of shrinkage that is typically imposed in the Litterman (1986) prior. The former is 

typically set to between .1 - .2. The comparative statistic from our model is √𝝀, whose 

mean is between .048 and .065. This suggests that there is a substantial degree of 

heterogeneity in our data and pooling could thus lead to substantial bias.  

Figure 1: Retained draws of 𝝀 with and without cross-sectional dependence 

 

 

 In what follows, we show the results for the historical decompositions. The 

models’ estimated contributions, as well as the data, are weighted by the relative sizes of 

the sectors concerned. Results for each individual sector can be found in appendix A. 

Figure 2 shows historical decompositions for output growth from the model estimated 

without cross-sectional dependence.13

                                                 
13 Note that output growth is by definition the difference between labour productivity and hours growth. Though our model is the 
estimated on the former two quantities, historical decompositions are available for all three variables. 

 For the UK, the recent weakness in output growth 

appears to be mostly due weakness in demand as opposed to a sequence of permanent 

labour productivity shocks. The ‘Great Recession’ in Canada is mostly driven by weak 

demand, while labour productivity explains a substantial fraction of the evolution of 
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output growth in 2008 and 2009 in Germany and the UK. Figure 3 repeats this exercise in 

the model where cross-sectional dependence is accounted for. The previous conclusions 

are now clearly overturned. Both permanent labour productivity and temporary demand 

shocks now contribute roughly equal amounts to recent (2010 and 2011) weak output 

growth in the UK. Furthermore, the common factors now appear to be the most 

important determinant of output growth during the Global Financial Crisis in both 

Germany and Canada. This clearly illustrates that ignoring the issue of cross-sectional 

dependence can lead to substantial bias, resulting in incorrect research conclusions. 

Figures 4-5 repeat this exercise with identification scheme II. The results are very similar, 

suggesting that they are independent of the identification scheme. 
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Figure 2: Historical decomposition for output growth from model estimated on sector data 

– Identification scheme I 
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Figure 3: Historical decomposition for output growth from model estimated on sector data 

allowing for cross-sectional dependence – Identification scheme I 
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Figure 4: Historical decomposition for output growth from model estimated on sector data 

– Identification scheme (II) 
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Figure 5: Historical decomposition for output growth from model estimated on sector data 

allowing for cross-sectional dependence – Identification scheme (II) 
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5.  Conclusion 

Currently available dynamic panel estimators that allow for both dynamic 

heterogeneity and cross-sectional dependence are not suitable for inference in short 

panels. Those estimators that address cross-sectional dependence and are designed 

specifically for short panels, as in Bai (2009) and Saradifis (2010), do not allow for 

dynamic heterogeneity. While those that allow for cross-sectional dependence and 

dynamic heterogeneity, as in Phillips and Sul (2003) and Pesaran (2006), are not suitable 

for inference in short panels. We propose a Bayesian estimator, which allows both cross-

sectional dependence and dynamic heterogeneity and is feasible in short panels, to fill 

this gap. We use Monte Carlo simulations to compare the small sample properties of our 

estimators to those proposed in previous work and illustrate our technique by estimating 

a panel VAR on sectoral data on growth in labour productivity and hours worked for the 

G6. 

Our Monte Carlo simulations show that our proposed estimator produces estimates 

substantially less biased than either the common correlated effects pooled or common 

correlated effects mean group estimator, when the panel is short. In our application, the 

estimated panel VAR contains ten endogenous variables and two lags with seventy-six 

time series observations for each country, leaving few time series observations per 

estimated coefficient. Our analysis suggests that it is important to take both dynamic 

heterogeneity and cross-sectional dependence in our application into account. Once 

estimated, we identify permanent productivity and temporary demand shocks using long-

run restrictions, and investigate their contribution to recent output growth outturns in 

the G6 by means of a historical decomposition. The results show that taking cross-

sectional dependence into account is important. For instance, ignoring cross-sectional 

dependence would lead a researcher to believe mistakenly that recent weak UK output 

growth was entirely due to demand rather than permanent productivity shocks. 

Recent applied econometric work has relied on panel VARs for inference about 

important areas of economic policy, such as for instance the transmission of external 
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(Broda, 2004; Radatz, 2007), monetary (Goodhart and Hoffman, 2008) and fiscal policy 

(Llzzetzki, Mendoza and Vegh, 2011; Corsetti, Meier and Mueller, 2012) shocks to the 

real economy. While most of these studies are based on short panels, none of them make 

a serious effort to address both cross-sectional dependence and dynamic heterogeneity. 

This is not surprising, as previous estimators that address both issues are not suitable for 

inference in short panels. Our proposed estimator fills this gap and we show that 

ignorance of cross-sectional dependence in our estimated panel VAR model leads to 

serious econometric bias. A useful future exercise would be therefore to re-examine past 

results with our new estimator. 
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Appendix A 

Figure A2: Historical decomposition from model estimated on sector data – Identification scheme I 
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Figure A3: Historical decomposition from model estimated on sector data allowing for cross-

sectional dependence – Identification scheme I 
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Figure A4: Historical decomposition from model estimated on sector data – Identification scheme 

(II) 
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Figure A5: Historical decomposition from model estimated on sector data allowing for cross-

sectional dependence – Identification scheme (II) 
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