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1.  The forward-looking dimension of inflation targets

Knut Wicksell’s analysis of monetary policy, as described in “The Influence of the

Rate of Interest on Prices” (1912), has been influential among policymakers.  His

account is simple: “[l]ower bank-rates when prices are getting low, and raise them

when prices are getting high”.  Today, numerous central banks follow a milder

version of this prescription when setting monetary policy, and use interest rates to

feed back on inflation (i.e. the rate of change of the price level, rather than the level

itself as Wicksell suggested) according to a strategy known as ‘inflation targeting’.

Inflation targeting has some clear advantages over alternative monetary strategies. It

shifts the focus of policy directly on to the ultimate goal of stable inflation; it makes

monetary policy more accountable by offering ex post measures of inflation

performance; and through greater accountability (see Berger et al, 2001) and

monitorability, it provides a commitment mechanism that enhances the trust of the

public in the anti-inflationary credentials of the monetary authorities.  This, in turn,

increases the probability of achieving low and stable inflation both in the short and in

the medium run.

As is widely recognised by both policymakers and monetary economists, the very

success of any inflation target depends on one proviso: that the authorities aim at

future rather than past or current inflation.1 This is surely what Wicksell meant

when he used the term ‘getting’: raise interest rates when prices (and/or inflation) are

expected to rise, not when they are already high.

But why is it so important that authorities aim at future rather than current or past

inflation? The answer is simple. Current inflation is normally predetermined by

existing contracts and by inertia in inflation expectations; central banks have little

instantaneous control of inflation. So typically, monetary policy can influence

inflation only with a lag, whose length and effectiveness are not entirely clear.2 It

follows that the delayed response of inflation to monetary actions obliges monetary

authorities to react in a pre-emptive fashion to the behaviour of prices. In fact, a

myopic policy that reacts only to present or past events may itself become a source of

                                                          
1 See King (1997), Svensson (1997), and Bernanke et al (1999).
2 See Batini and Nelson (2001a) for a discussion of monetary lags and model-free measures of the
delay between policy actions and inflation in the UK and the US.
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macroeconomic instability, for the very reasons outlined by Friedman (1960). And

even when inflation is not itself sticky, targeting future inflation is still desirable

provided that prices are not perfectly flexible, as shown in Clarida, Gali and Gertler

(2000) henceforth CGG (2000).

Among inflation-targeting countries, forward-lookingness in inflation targets is

obtained by responding to future expected inflation. The conditional inflation

forecast for a horizon corresponding to the control lag is the de facto intermediate

variable for monetary policy. For example, in New Zealand, Canada and the United

Kingdom, monetary policy is based on explicit (and in some cases, published)

inflation forecasts. In other inflation-targeting countries, like Sweden, Finland,

Australia, Spain and Mexico, inflation forecasts are sometimes less explicit but

nevertheless a fundamental part of the monetary policy process.

To examine the implications of the actual decision framework under inflation

targeting, economists have proposed two classes of forward-looking rules: inflation

forecast targeting rules (Svensson (1997) and Rudebusch and Svensson (1999)) and

inflation forecast-based rules (Batini and Haldane (1999))3.

Inflation forecast targeting (henceforth IFT) rules are those transition paths of the

policy instrument that minimise a loss function penalising expected inflation

deviations from target subject to a given dynamic model of the economy.

Analytically, this amounts to solving for the first-order condition in a standard

stochastic linear quadratic regulator problem (cf. Chow (1970), Turnovsky (1977) and

Sargent (1987)). Under commitment, these rules are then optimal and efficient in the

sense of Ball (1997) and are both deterministically and stochastically stable

(Turnovsky, 1977), which makes them immune from the dangers of excessive

forward-lookingness.4

                                                          
3 Rules analogous to inflation forecast-based rules were suggested also in Black et al (1997) .
4 Evans and Honkapoja (2001, 2002) examine stability and determinacy for optimal policy rules under
learning. They find that optimal timeless-perspective-based interest rate setting by the central bank can
lead to indeterminacy, so that the economy may not converge to the desired rational expectations
equilibrium. This is a consequence of the result that the Riccatti equation for full commitment optimal
control is associated with n unstable and n stable roots. The actual system under control is characterised
by each of these roots multiplied by δ1/2, where δ is the discount factor. Thus if one of the unstable
eigenvalues is less than 1/δ1/2, then it will turn into a stable eigenvalue for the system. Hence it is still
possible that there may be too many stable eigenvalues, and hence indeterminacy. A discussion of the
behaviour of solutions under learning for simple Taylor-type rules can be found in Bullard and Mitra
(2001a, 2001b).
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Inflation forecast-based (henceforth IFB) rules are simple rules that respond to

deviations of expected inflation from target.  From a theoretical point of view,

analysis and simulation of IFB rules under the assumption that the authorities are

uncertain about the shocks that will hit the economy at any point in time, have shown

that these rules share a number of desirable features. This is because they are usually

good approximations of optimal feedback rules.5 However, as these rules are not fully

optimal, they can lead to dynamic instability or indeterminacy.6 A standard result in

the literature is that to avoid indeterminacy, the monetary authority must respond

aggressively (i.e. with a coefficient above unity, but not excessively large) to expected

inflation (see the seminal work of Woodford (1994) and Bernanke and Woodford

(1997) followed up by CGG (2000), and Levin, Wieland and Williams (2001),

henceforth LWW).  The indeterminacy implications of certain parametrisations of IFB

rules was also pointed out by other recent contributions including, notably, Chari,

Christiano and Eichenbaum (1998), Schmitt-Grohe and Uribe (2000) and Carlstrom

and Fuerst (1999, 2000).7 By contrast, the instability implications of these rules are

not often investigated.8 From an empirical point of view, CGG (2000) found for the

US that the Fed appears to have indeed responded to expected inflation at either one

quarter or one year ahead. Furthermore, the coefficient for the interest rate response to

expected inflation has been considerably greater than 1 during the Volcker-Greenspan

era. They also found that the same coefficient was significantly less than 1 in the pre-

Volcker era, a possible cause, they argue, of the poor macroeconomic outcomes at the

time. Similarly, for the UK, Nelson (2001) finds that the low inflation period from

1992 is indeed characterised by a Taylor rule with a response of the nominal rate to

expected inflation above unity, suggesting that the move towards an inflation

targeting regime may have enhanced inflation stabilisation in the UK.

This paper extends the existing literature on the uniqueness and stability conditions

for an equilibrium under IFB rules. In particular, we demonstrate analytically that, for

a variety of structural models, both are a function not just of the degree of

                                                          
5 See, among others, Svensson (1996), Bernanke and Woodford (1997), Clarida, Gali and Gertler
(2000) and Batini and Haldane (1999).
6 In what follows we refer interchangeably to the concepts indeterminate equilibria and sunspot
equilibria. In reality, the latter are a particular class of indeterminate equilibria, i.e. where the multiple
solutions to the model depend on extraneous random variables called ‘sunspots’. For a discussion of the
differences between these two concepts, see Benhabib and Farmer (1999).
7 Other contributions analysing the ability of simple rules to ensure determinate solutions include
Benhabib, Schmitt-Grohe and Uribe (2001).
8 Batini and Haldane (1999) provide an intuitive interpretation to the instability problem with IFB rules.
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responsiveness of the policy instrument to deviations of inflation expected at some

horizon j from target, but rather of the ‘right’ combination of that degree and the

chosen feedback horizon9. In this sense we advance beyond the results in LWW

(2001), concerning the determinacy implications of longer-horizon forecast-based

rules, but which were restricted to numerical investigation. An analytical derivation of

the conditions for uniqueness and stability of equilibria is important because

numerical results are subject to the particular choice of parameters in the model and in

the rule, and so may not be general. More specifically, we find that reacting too

aggressively to events that lie too far in the future may deliver results that are as bad

as those obtained by responding to events that lie too far into the past.  In this respect,

we prove analytically, that the finding in CGG (2000) that a response coefficient

greater than unity to next quarter’s expected inflation in an IFB rule is a necessary and

sufficient condition for determinacy, does not generalise to the case when longer

feedback horizons are used. This is an important warning for inflation-targeting

central banks, because real-world procedures typically involve stabilising inflation in

the medium-run, one to two years out, so they are potentially vulnerable to this

drawback.

The plan of the paper is as follows. Section 2 investigates when IFB rules can lead to

instability or indeterminacy by discussing the stabilising properties of IFB rules with

different degrees of forward-lookingness. To do so we start by calculating inflation-

output volatility frontiers for a small AS-AD closed-economy structural model with

sticky inflation as in Clarida, Gali and Gertler (1999) (henceforth CGG (1999)) and

similar to the Fuhrer and Moore henceforth FM model in LWW (2001) under

various shocks for alternative parametrisations of these rules. We also calculate upper

and lower bounds of parameter values associated with determinate and stable

equilibria. In Section 3 we explain the analytics of why excessive policy forward-

lookingness may trigger dynamic instabilities or involve multiplicity in equilibria as

suggested by the results in Section 2. For this purpose, using this same model, we

conduct a standard root-locus analysis under the alternative forward-looking rules.

This illustrates a general method with which to identify the feedback/horizon pairs

that are associated with unique and stable equilibria, and we also offer an economic

interpretation of the results. Section 4 applies this method to the small AS-AD

                                                          
9 Woodford (2002) also warns of the use of forecasts too far ahead, a warning that we extend below to a
more general interest rate rule.
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structural sticky-price model used by CGG (2000) and LWW (2001). It also

theoretically demonstrates that the determinate outcome from aggressive policy

responses to next period’s expected inflation does not generalise to ever-increasing

forward-looking rules. Section 5 offers some concluding remarks and discusses the

policy implications of our findings. A Technical Appendix proves the theorem of

Section 4.

2.  Can inflation-forecast-based rules be destabilising or lead to multiple
equilibria?

Symbolically, an IFB rule takes the following generic form:

Rt = γ Rt −1 + θ (1−γ)[Etπt+j − πT] (1)

where Rt denotes the short-term nominal interest rate, πt is consumer price inflation,

πT is the inflation target, and Et is the expectational operator based on information

available at time t.  Rule (1) assumes that policymakers set the nominal interest rate so

as to respond to deviations of the inflation term from target and of output from

potential. In addition, it assumes that policymakers have a tendency to smooth rates,

in line with the idea that central banks adjust the short-term nominal interest rate only

partially to eliminate the gap between the previous period nominal rate and the current

target level. Thus equation (1) includes a lagged interest rate term on the right hand

side.10 Given our notation, the larger the parameter γ, the greater the degree of interest

rate smoothing.

j is the feedback horizon of the central bank. When j = 0 the central bank feeds back

from current dated variables only. When j > 0, the central bank feeds back instead

from deviations of forecasts of variables from target. This is a proxy for actual policy

in inflation targeting countries, notably the United Kingdom, that apparently respond

to deviations of current inflation from its short or medium forecast.  Finally θ, the

feedback parameter, is greater than 0. The bigger is θ, the faster is the pace at which

the central bank acts to eliminate the gap between expected inflation and its target

value.  As we show later, the stabilizing characteristics of (1) depend both on the

magnitude of θ and the length of the feedback horizon j.

                                                          
10 Alternatively, one can just accept that empirical estimates of (1) support a non-zero value of γ.
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IFB rules have various desirable properties.11 Because they embody transmission lags,

they generally help improve inflation control (lag-encompassing).  These rules can be

designed to smooth the path of output as well as inflation, despite not feeding back

from the former explicitly (output-encompassing).  Finally, IFB rules deliver clear

welfare improvements over Taylor-type rules, which respond to a more restrictive

subset of information variables (information-encompassing).

2.1 Necessary and sufficient conditions for uniqueness and stability of equilibria

As mentioned above, depending on the precise combination of the pair (j, θ), IFB

rules can lead the economy into instability or indeterminacy. To understand better

how this can happen, think of the model economy as one being governed by the

behaviour of a set of variables x1 and x2 and a set of shocks u. Let us also assume that

the vector x2 is a set of forward-looking, i.e. non-predetermined variables, while x1

represents pre-determined variables. Assume that the equilibrium dynamics of the

economy can be written as:

t
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Technically, the condition for a stable and unique equilibrium depends on the

magnitude of the eigenvalues of the C matrix. If the number of eigenvalues outside

the unit circle is equal to the number of non-predetermined variables, the system (2)

has a unique equilibrium which is also stable (see Blanchard & Kahn (1980), Farmer

(1999), Evans and Honkapoja (2001)).

Instability occurs when the number of eigenvalues of C outside the unit circle is larger

than the number of non-predetermined variables.  In practice, this implies that when

the economy is pushed off its steady state following a shock, it cannot ever converge

back to it, but rather finishes up with (e.g.) explosive inflation dynamics

(hyperinflation or hyperdeflation).  In the particular case of instability triggered by a

specific parametrisation of the policymakers’ IFB rule, this arises because the choice

of the pair (j, θ) is not the ‘right’ one. Typically this means that the parameter pair

does not imply a strong enough response to induce those changes in the short-term

                                                          
11 See Batini and Haldane (1999).
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real interest rate, which are necessary to offset movements in inflation following a

shock. In this case the rule is said to be ‘destabilising’.

By contrast, indeterminacy occurs when the number of eigenvalues of C outside the

unit circle is smaller than the number of non-predetermined variables. Put simply, this

implies that when a shock displaces the economy from its steady state, there are many

possible paths leading back to equilibrium, i.e. there are multiple well-behaved

rational expectations solutions to the model economy. With forward-looking rules this

can happen when policymakers respond to private sector’s inflation expectations and

these in turn are driven by non-fundamental exogenous random shocks (i.e. not based

on preferences or technology), usually referred to as ‘sunspots’. If policymakers set

the coefficients of the rule so that this accommodates such expectations, the latter

become self-fulfilling.12 This implies that the rule is unable to pin down the behaviour

of one or more real and/or nominal variables, making many different paths compatible

with equilibrium (see Kerr and King (1996), Chari, Christiano and Eichenbaum

(1998), CGG (2000), Calstrom and Fuerst (1999, 2000), Svensson and Woodford

(1999), and Woodford (2000)). The fact that the rule itself may introduce

indeterminacy and generate so called ‘sunspot equilibria’, is of interest because

sunspot fluctuations i.e. persistent movements in inflation and output that

materialise even in the absence of shocks to preferences or technology are typically

welfare-reducing and can potentially be quite large.13

                                                          
12 To see why this happens, consider a simple example of ‘sunspots’ generated by the following model,
expressed in deviation form:

πt =Etπt+1+χ1yt (i)    yt  = −α(Rt − Etπt+1)  (ii)
where (i) represents an expectations-augmented Phillips curve; Roberts (1995) derives this, based on
either the presence of price adjustment costs, or staggered contracts (as in Calvo, 1983). Equation (ii)
represents a static IS relationship. Suppose the central bank reacts aggressively to expected inflation by
setting nominal interest rates at Rt = θEtπt+1 where θ > 1. Consider a scenario in which the private sector
anticipates that inflation next period will be equal to 1. This will lead to an increase in real interest
rates, with a consequent reduction in demand of α(θ −1). From (i), this implies that price-setting
behaviour will lead to a current inflation rate of 1−χ1α(θ −1), which we define as π0. Assuming that
this is positive, it follows that 0 < π0 <1. If we then lead equations (i) and (ii) forward in time and take
expectations, consistency requires that the sequence of successive inflationary expectations is given by
1, 1/π0, 1/π0

2, 1/π0
3, However, these inflation expectations tend to infinity, which is not credible,

implying that the scenario of non-zero inflationary expectations is also not credible. On the other hand,
suppose that the central bank is not aggressive, and θ < 1. The interest rate then does not even react
one-for-one to inflation It follows that π0 > 1, and hence that the sequence of inflationary expectations
tends to zero. This sunspot sequence is then credible, so that private sector expectations have become
self-fulfilling.
13 Empirical analysis measuring the contribution of sunspot shocks to aggregate fluctuations are of two
types. First, calibration exercises that assess how allowing for sunspot shocks can help in matching
model properties to business cycle regularities. These include Farmer and Guo (1994), Schmitt-Grohe
(1997, 2000), Thomas (1998) and Wu and Zhang (2000). Second, analyses that try to identify sunspot
shocks from rational expectations residuals that are left unexplained by exogenous fundamentals. These
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For IFB rules, for example, CGG (2000) seem to imply that, assuming an optimising

model with Calvo-type price-stickiness, the necessary and sufficient condition for

determinacy is that the parameter θ must be greater than 1 when j = 1.14 LWW (2001)

by contrast, examined the implications for determinacy when longer horizons than

j =1 are used, by computing numerical conditions for a set of calibrated sticky-price

and sticky inflation models. In what follows we also experiment with various forward

horizons but, in addition, we show analytically that what matters for determinacy is

the combination of the feedback parameter and the chosen horizon, not the former

alone. Importantly, we also show that various parametrisations of IFB rules can not

only trigger multiple equilibria (sunspots) but can also cause unstable inflationary

outcomes. In all cases, an analytical investigation is key because numerical results are

subject to the particular choice of parameters in the model and in the rule, and so may

not be general.

2.2 Examples of instability and indeterminacy with IFB rules in a small AS-AD

optimising model with sticky inflation

To demonstrate that simple forecast-based rules may be destabilising or lead to

indeterminate solutions, in this section we evaluate their performance by constructing

the implied inflation-output volatility frontiers using a small scale AS-AD structural

closed-economy RE model similar that of Batini and Haldane (1999), Batini and

Nelson (2001b), CGG (1999) and the FM model of LWW (2001). The assumption

that the economy is closed, albeit that most inflation-targeting countries are small

open economies, is done for simplicity.  Still, as shown in Batini and Haldane (1999),

the destabilising characteristics of IFB under specific parametrisations carry over in

full to the open economy case and so our analysis is interesting for that case too.

                                                                                                                                                                     
include Farmer and Guo (1995), Salyer (1995) and Salyer and Shreffin (1998). The evidence on the
importance of sunspots for macrofluctuations from this research is mixed. However, more recent
estimates by Lubik and Schorfheide (2002) obtained by extending the likelihood-based estimation of
dynamic stochastic general equilibrium models to account for multiple equilibria for the US suggests
these may have been modest before 1979.
14 Carlstrom and Fuerst (2000) reversed the findings in CGG (2000) by using a model that modifies the
traditional MIUF set-up to account for more realistic CIA timing assumptions and imposes finite price
stickiness. They showed that to ensure determinacy, the central bank should instead follow a backward-
looking policy rule, where the interest rate responds aggressively (i.e. setting θ >1) to past inflation,
rather than future, expected inflation rates.
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Once we remove foreign variables and constants in each equation, so that variables

are expressed in terms of deviations from equilibrium, the model excluding the

policy rule  can be written as follows:

             yt = α1 yt-1 + α2 Et yt+1 − α3 [ Rt  − Et πt+1 ]+ εISt (3)

πt  = χEt πt+1 + (1 − χ)πt − 1 + χ2[ yt  + yt-1]+ επt (4)

where yt is the output-gap, πt is  inflation and Rt is the short-term nominal interest rate.

εISt and επt are aggregate demand and aggregate supply shocks, assumed to be white

noise. Equation (3) is the model’s IS equation, with real output depending positively

on leads and lags of itself and negatively on the ex ante real interest rate. As in Fuhrer

(2000), lags of the dependent variable on the right hand side can be rationalised by

assuming that preferences over consumption exhibit habit formation.  This implies

that preferences are not time-separable in consumption, so that households’ utility

depends not only on the level of consumption in each period, but also on its level in

the previous period. Equation (4) is similar to that from an aggregate supply curve

based on the assumption of two-period overlapping real wage contracts. It can be

derived by assuming intertemporal optimisation on the part of agents with a concern

for relative wages, as in Rankin and Ascari (2001); or by assuming that price contracts

are set as in Calvo (1983) but in addition are indexed to lagged inflation rates, as in

Christiano, Eichenbaum and Evans (2001). The assumption that both output and

inflation depend on lags as well as leads of themselves, significantly improves the

ability of this model to match UK and US data (for the UK see Batini et al (2001); for

the US see Fuhrer (2000) and Fuhrer and Moore (1995)).

In particular, following Batini and Haldane (1999) we set α1 = 0.75, α2 = 0 and χ =

0.2: with this parameterisation, the model has a backward-looking IS function and a

partially forward-looking AS equation (as in Fuhrer (1997)). Batini and Haldane

(1999) show that with these parameters the model’s transmission mechanism is rather

sluggish and is broadly in line with simulation responses from VAR-based studies of

the effect of monetary shocks in the UK. The rest of the parameters are also calibrated

to UK data, following Batini and Haldane (1999). The shock processes are modelled

as in Batini and Nelson (2001b), who generated residuals from the model equations

(2)-(3) using UK data over the period 1981Q1-1998Q1.



12

Charts 1 and 2 below plot the loci of output/inflation variability points delivered by

rule (1), as the horizon j of the inflation forecast is varied, for different values of the

feedback parameter, θ. More specifically, Chart 1 plots asymptotic variances obtained

by solving the model with a unit variance shock to aggregate demand. Chart 2 does

the same for aggregate supply shocks.  Along the loci, we vary j between zero

(current-period inflation targeting) and six (one and a half-year-ahead inflation

forecast targeting) periods. Points to the south and west in Charts 1 and 2 are welfare-

superior, and points to the north and east inferior.
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A few important points emerge from these charts. First, the optimal feedback horizon

is positive and lies somewhere between one and three quarters ahead.  This forecast

horizon secures as good an inflation performance as any other, while at the same time

delivering low output variability. This is because for this model, 1-3 quarters is

around the horizon at which monetary policy has its largest marginal impact. At

shorter horizons than this, the adjustment in monetary policy necessary to return

inflation to target is that much greater the upshot of which is a destabilisation of

output. Second, feeding back from a forecast horizon much beyond three quarters

leads to worse outcomes for both inflation and output variability. This is the

symmetric counterpart of the arguments used above.  Just as short-horizon targeting

implies reacting too late to the inflationary consequences of economic shocks

 thereby requiring a large and output-costly policy response, long−horizon targeting

can equally imply that policy reacts too soon in anticipation of those same
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consequences, thereby setting in train an almost destabilising expectational feedback.

Third, higher values of θ, the feedback parameter, shift the j-loci to the left, towards

welfare-superior portions of the inflation/output volatility space, for all values of the

feedback horizon j. Intuitively, this is due to the fact that more aggressive policy

responses (higher θ) are taken into account by price and wage setters in the economy

when setting their contracts. These adjust their inflation expectations closer to the

central bank’s target as they will now expect smaller deviations of inflation from

target. As this happens automatically, simply by virtue of model-consistent

expectations, in effect interest rates do not have to move as much to correct future

inflation gaps as they would have to, had the policymakers announced a less

aggressive policy rule (lower θ). The consequence of this spontaneous adjustment in

inflation expectations is lower output variability and hence lower inflation variability.

When the model is unstable or indeterminate, inflation-output volatility pairs cannot

be computed and hence do not appear in Charts 1 and 2. For this reason, Table 1

below lists critical values for θ, the feedback parameter, for given values of j,

associated with unique and stable equilibria. This helps to trace viable rule

parametrisations in (θ, j) space. The table indicates that, in general, too low values of

θ are associated with unstable outcomes; whereas too high values are associated with

indeterminate outcomes. In particular, for all j > 1, stability requires a response

coefficient θ above 1. This is in line with the conventional wisdom in the literature

that nominal rates have to rise (or fall) more than inflation, to elicit corresponding

moves in the real interest rate (see, among others, Woodford (2000), Taylor (2000),

CGG (2000), and LWW (2001)). The table also reveals that upper and lower values of

the bounds for θ change with j, in line with the idea that it is the combination of

feedback size and length of horizons which matters for stability and uniqueness of

equilibria under IFB rules. For instance, in this set-up, when j = 1, stable and unique

equilibria can be generated by a wide range of θ (1.4 to infinity). However, as j

increases, the range of θ ensuring determinacy (as well as stability) gets increasingly

narrow. With j = 8, for instance, the case in which the central bank responds to

deviations of two-years-ahead expected inflation from target, the maximum value of θ

that is associated with determinate solutions is 3.2. In practice, this means that the

more forward-looking the policymaker is in responding to inflation gaps, the more

care should be taken in adopting aggressive responses. With stronger responses,
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private sector’s inflation expectations condition on the pre-emptiveness of the central

bank behaviour. For too large values of θ, this can set in train a self-fulfilling

expectational sunspot sequence, leading to indeterminacy.  This result contradicts the

general statement in LWW (2001) that in models where inflation and output are

highly persistent, forward-looking policy (reacting to expected inflation up to four

years ahead) is relatively immune to indeterminacy problems.15

The existence of indeterminacy for higher values of θ at longer horizons explains why

the j-loci for θ  = 6 and θ = 12 in Chart 1, for example, are shorter than the other j-loci

in the chart. Determinate solutions for these values only exist for j up to 5 and 3,

respectively.

Table 1: Critical values of θθθθ for stability (lower) and indeterminacy (upper)

Feedback
horizon j in eq(1)

Lower θ
bound

Upper θ
Bound

0 4.2 Infinity
1 1.4 Infinity
2 1.0 148
3 1.0 36
4 1.0 15.8
5 1.0 8.8
6 1.0 5.4
7 1.0 4.0
8 1.0 3.2

To summarise, when compared to those in CGG (2000) and LWW these results are

revealing in two important respects.  First, they indicate that below unity, values of

the feedback parameter θ do not necessarily generate multiple solutions. Rather, in

this model they lead to unstable outcomes. Also, the lower threshold for avoiding

instability is greater than 1 when either current or one-quarter-ahead inflation

forecasts is used in the rule (i.e. it is equal to 4.2 and 1.4 when j = 0 and j = 1,

respectively).

                                                          
15 LWW (2001) find that determinacy in the FM, sticky-inflation closed-economy  model obtains for all
combinations of 0 < θ  ≤ 10 and 0 ≤ γ ≤ 1.5 in (1)  with j ≤ 16. The FM model assumes that the weights
on the backward and forward-looking components of inflation expectations are both equal to 0.5,
whereas in this exercise we place a higher weight on backward than forward-looking inflation
components in equation (4). This is sufficient to reverse LWW (2001)’s result. More on this later,
where we experiment with model calibrations that are similar or identical to those used by LWW
(2001).
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Second, our findings indicate that the conclusion in CGG (2000) that an aggressive

response to forward inflation is necessary and sufficient for determinacy is not valid

for this model when the feedback horizon is longer than one quarter. For j > 1,

determinacy in our set-up exists only for values of θ below a certain threshold. We

find that this, in turn, is a function of the inflation horizon to which the rule responds.

Third, in contrast to LWW (2001), we show that it is not necessarily true that (any)

persistence in inflation and output minimises the risks of indeterminacy at longer lags

for a wide range of feedback and smoothing parameters.

In practice, the possibility that indeterminate solutions arise with IFB rules for any

given θ, is in general not merely a function of j. Rather, it will depend on the overall

or economy-wide degree of forward-lookingness in the model economy. So in model

(3)-(4) it will depend, for example, also on the parameter χ, which dictates the extent

by which wage and price-setters look forward when deciding their current contracts.

The larger this parameter, the more volatile are wages and prices, and hence the lower

the upper critical value of θ  for each horizon j.  We explore this issue in more detail

in the next section, where we provide an analytical explanation by means of the root-

locus technique. In Section 4 we apply this technique to the model used by CGG

(2000) and show how our results apply to that model.

3.   Root-locus analysis of the stability and determinacy properties of forward-

looking rules

In order to gain further insight into the stabilising properties of IFB rules, we analyse

their performance by using the ‘root locus’ technique, an approach that is commonly

used in the control engineering literature. This allows us to identify precisely the

range of stabilising feedback parameters associated with these rules, and also to

measure how long a lead is suitable for conventional sticky-price/sticky-inflation

models before indeterminacy sets in.  So it advances upon the numerical analysis in

LWW (2001) because it enables us to write down parametrically the conditions for

stability and determinacy under inflation forecast-based rules and so draw more

general conclusions.

                                                                                                                                                                     



16

In practice, the root locus technique illustrates diagrammatically how the roots of the

characteristic equation describing the dynamics of the model vary when the feedback

term θ changes. As the conditions for stability and determinacy of the model hinge on

the value of these roots, from these diagrams we can infer which regions of the (θ, j)

parameter space are associated with well-behaved solutions. In our case the technique

entails deriving a separate diagram for each value of j. However, in the majority of

cases a clear pattern emerges quickly, so in what follows we only draw these diagrams

at most for j = 0,...,4.

3.1 Ex ante Real Interest Rate Rules

For didactic reasons, we start off with an ex ante real interest rate rule rather than a

rule for the nominal interest rate. This rule is different from the one used in CGG

(2000) and LWW (2001), so we do not compare our results with those yet, but leave

that to subsection 3.2 where we employ a nominal rule. For ease of exposition we

assume that target inflation is 0, and we also assume that γ = 0, so that (1) becomes:

Rt  – Etπt+1 = θ Etπt+j (5)

Furthermore, we assume that there is no forward-looking term in the IS equation (3)

and also assume initially that χ = 0,  so that wage setting and inflation are purely

backward-looking. We can now rearrange model (1), (3), (4) to obtain a reduced form

expression for inflation as:

)()( 1112311321 −−+−+− ++++−= tttjttjtttt EE εεχεππθαχππ (6)

The solution to this is characterised by the roots of the equation

χ2α3θzj(z + 1) + z – 1 = 0 (7)

where z is the forward operator. It is clear that the reduced form solution of (6)

depends only on πt-1 and no other lags of π. Thus, the only admissible values of θ will

be those where there is exactly one root of (7) inside the unit circle (since the number

of stable roots must equal to the number of predetermined variables for a unique and

stable equilibrium to exist). As explained in Section 2, if all solutions of z lie outside

the unit circle, then the system is unstable; whereas if more than one lies inside the

unit circle, then the solution will be indeterminate.
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We are now in a position to apply the root locus technique. In this respect, Chart 3

depicts the complex plane,16 and shows how the j + 1 roots of (7) change as θ varies

between 0 and ∞. Also shown is the unit circle.

Consider firstly the case j = 1. When θ  = 0, there is only one root of (7), at z =1

(indicated by the bold dot ‘• ’). When θ is very small, equation (7) reveals that there is

another root at − ∞. As θ becomes very large, we can again see from (7) that there are

two roots, at 0 and −1. For j = 1, therefore, a first portion of the root locus starts at 1

and move leftwards in the direction of the arrow, ending at z = 0. A second portion of

the locus starts at − ∞, and also heads in the direction of the arrow, this time

rightwards, eventually ending at z = −1.

The next diagram to the right in Chart 3 shows the case when j = 2. With this

feedback horizon there are two complex roots at infinity for very small θ. From

there, as θ increases,the two curved arms of the root locus then move towards the real

axis. When they meet, one root heads for z = 0, and the other for z = –1.

(a) j = 1 (b)  j = 2 (c)  j = 3 (d)  j = 4

Chart 3. Characteristic roots for the model with α2 = χ = 0

More generally, for arbitrary values of j, there will be j arms (asymptotically at equal

angles to their neighbour) of the root locus all converging in from infinity, as θ

increases, towards the roots at z = 0 and z = −1, plus the portion of the locus from z =

1 to z = 0.

                                                          
16 In this plane, the horizontal axis depicts real numbers, and the vertical axis depicts imaginary
numbers. If a root is complex, i.e. z = x + iy, then its complex conjugate x-iy is also a root. Thus the
root locus is symmetric about the real axis.
All root-loci diagrams are based on output from Matlab, using the package Linear System Learner,
available from http://users.ece.gatech.edu/~bonnie/education/LSLNR/).
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So what can we infer from these diagrams regarding the type of equilibrium for each

(θ, j) pair?

Let us consider again the case j = 1 in Chart 3. In this case, as θ increases, there is

always one stable and one unstable root17 (i.e. one value of z is outside and the other

inside the unit circle at all times), so that a unique solution for inflation always exists:

there is no risk of incurring either unstable or indeterminate outcomes.18 For larger

values of j, again instability never arises as one might expect for a real interest rate

rule as there is always at least one stable root. However, beyond a certain value of

θ (different for each j, and in line with results in Table 1) there are too many stable

roots (converging on 0 and – 1 from the point where the two root locus arms meet,

within the unit circle), so that the solution is indeterminate. As explained earlier in our

discussion of the determinants of sunspot equilibria (see footnote 7), when the rule

implies a direct link between the interest rate and inflation expectations, any non-

fundamental shock to inflationary expectations will imply a decline in the real interest

rate, which stimulates demand. In turn, this induces a rise in actual inflation, which

confirms expectations making them ‘self-fulfilling’. However for smaller values of

θ, these ‘sunspot shocks’ are exponentially increasing in their effects, implying that

the same non-fundamental shocks involve declines in the real rate of interest, that are

incompatible with the central bank inflation targeting strategy. As private agents

reject this scenario as illogical, inflation expectations are reined in, which drives the

system to its unique saddle path solution. By contrast, when the value of θ is large, the

final effect on real rates of sunspot shocks is negligible, so agents incorporate the

effects of the shocks in their expectations. As any type of shock can be potentially

accommodated this way by agents and confirmed by the central bank via the rule, the

solution to the model and thus the ensuing inflation path is not unique (too many

stable roots).

Another conclusion that emerges clearly from these diagrams is that there exists, in

practice, a trade-off between volatility and indeterminacy. In other words, by

choosing a large feedback parameter the central bank can reduce inflation and output

volatility to their minima, but at the same time risk ending up with sunspot

                                                          
17 Note that this can easily be shown by the more conventional method of checking the roots of the
quadratic equation obtained from (7).
18 The reason for the difference between this and the results of Section 2 is the different parameter
values.
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fluctuations and multiple equilibria, which are ultimately welfare-reducing. On the

other hand, by choosing small values of θ  (so that the stable root may be close to 1)

and therefore ruling out indeterminate solutions, it risks higher inflation and output

volatility (unstable outcomes).19

We now turn to the case where wage formation depends on forward expectations, so

that χ > 0.  In this case, again assuming that the central bank sets the ex ante real

interest rates, it follows that the characteristic equation for the reduced form inflation

expression is given by:

χ2α3θzj(z + 1) − (z − 1)(χz − (1 − χ)) = 0 (8)

(a)  j = 1 (b)  j = 2 (c)  j = 3

Chart 4. Characteristic roots for the model with α2 = 0, 0.5 > χ > 0

Chart 4 shows the root locus diagrams, as θ increases, for the case when wage

formation is mainly backward-looking, i.e. when χ < 0.5 (as in Batini and Haldane

(1999) and Batini and Nelson (2001a)). For brevity, we only show the root loci for the

cases where j = 1, 2, 3. In general, higher values of j would give similar diagrams, but

with more arms of the loci heading in to the roots at 0 from infinity. As in Chart 3 for

the case when χ = 0, the solution is unique if there is exactly one stable root. It

follows that for j = 1 there is stability and determinacy for all values of θ. However,

when j > 1, there is always a value of θ beyond which there are too many stable roots

and therefore, here as well, there is a trade-off between volatility and indeterminacy.

                                                          
19 Of course, this trade-off is distinct from the effect on the interest rate created by having large values
of θ; although the volatility of inflation may be reduced, it follows that because interest rates are
proportional to inflation, it is possible that as θ increases, the volatility of interest rates may increase.
This is an issue that is beyond the scope of this paper, and we do not pursue it here.
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Thus large θ  reduces volatility, but risks multiple equilibria, while small θ  (with the

stable root close to 1) results in higher volatility, but no indeterminacy.

When wage formation is mainly forward-looking, i.e. when 1 ≥ χ > 0.5, the analysis is

somewhat different.  This is in line with our intuition that what matters for stability

and uniqueness is not just the forward-looking behaviour of the policymakers, but

rather, the ‘economy-wide’ degree of forward-lookingness (i.e. the extent to which the

private sector forward-looking behaviour combines with the pre-emptiveness of the

central bank to give an overall measure of forward-lookingness in the economy).

      (a) j = 1              (b)  j = 2                        (c)  j = 3

Chart 5. Characteristic roots for the model with α2 = 0, 1 > χ > 0.5

Chart 5 shows a similar set of root loci to Chart 4 for this case. However, here we see

that for small values of θ, the stable characteristic root is less than (1−χ)/χ (with

values of this root being located in the portion of the root locus to the left of

(1−χ)/χ on the real axis).  In practice, this means that the larger is χ, the less volatile

is inflation. For example, if χ = 0.8, then the stable root is less than 0.25, so there is no

need to be overly aggressive in order to reduce volatility. It follows that here, contrary

to the previous cases, there is no longer a trade-off between volatility and

indeterminacy, unless the monetary authority is resolved to reduce volatility to its

absolute minimum. This is because when the private sector is very forward-looking

when setting wage and price contracts, the central bank need only be mildly forward-

looking to ensure both low inflation and output variability and uniqueness of the

equilibrium.

In summary, this analysis suggests that the trade-off between volatility and

indeterminacy with forward-looking rules is strictly related to the extent by which
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wage and price setters in the economy are forward-looking. The same forward horizon

can give determinacy for large regions of the feedback parameter space if agents are

predominantly forward-looking. The same is not true when these are predominantly

backward-looking in setting their contracts. In this case the set of feasible feedback

parameter values shrinks progressively as the feedback horizon lengthens.

3.2 Nominal Interest Rate Rules

We now investigate a nominal interest rate rule (as used in CGG (2000) and LWW

(2001)) for the model (1), (3), (4), corresponding to the simulations of Section 2, and

including the assumption of nominal interest rate smoothing, which requires 0 < γ  <

1. This is somewhat more difficult to analyse using root locus techniques than the ex

ante real interest rate rule, so we conduct a more general analysis of this rule only

later in Section 4. After some effort, it is possible to show that the characteristic

equation for this rule is given by

0=+−−++−−−− + 1)()1(1)]())(
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It is clear that a necessary (but not sufficient) condition for stability is that θ  > 1,

since nominal interest rates must respond at least one-for-one to expected inflation.

Since both the supply and demand equations now contain dynamics of order 1, and in

addition the interest rate rule has dynamics of order 1 it is now necessary to have

exactly three stable roots (one for each non-predetermined variable). In equation (9),

the term inside the square brackets has roots that cannot easily be characterised.

Nevertheless, it is instructive to investigate its roots for the particular case of the

parameters of Section 2:

γ  = 0.5, α2 = 0, α1 = 0.75, χ = 0.2, χ2  = 0.2, α3 = 0.5
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         (a) j = 0                       (b) j = 1          (c) j = 2         (d) j = 3

Chart 6. Characteristic roots for the model with nominal interest rate rule

(Diagrams not completely to scale)

The root locus diagrams associated with this parametrisation are shown in the chart

above. They are slightly difficult to interpret, so we explain them one by one. First

note that for θ  = 0, there are four roots, two of which are complex, another one equal

to 0.5, and the last slightly larger; in addition for all leads there is a root at z = 1 when

θ  = 1. For lead j = 0, at θ  = 1, the two complex roots lie outside the unit circle (note

that this cannot be inferred from the root locus diagram, and requires separate

checking). As θ  increases further, it eventually reaches a threshold value (see Table

1) for which there are 3 stable roots, two complex and one real, As θ  increases further

towards ∞, the real stable root heads for z = 0, while the two complex roots meet on

the negative part of the real axis, with one root continuing on to 0 and the other to –1.

Thus beyond the threshold value of θ, there are always exactly 3 stable and one

unstable root, so the system is stable and determinate. For lead j = 1, at θ  = 1, there is

only one stable root, but once the stability threshold of θ is reached, there are always

exactly 3 stable and 1 unstable roots (note that there is a value of θ such that the root

at + ∞ suddenly switches to a root at − ∞). For lead j = 2, once θ is slightly greater

than 1, there are 3 stable roots, two of which are complex. However, for very large

values of θ, there is indeterminacy, as all 5 roots are stable, with 4 converging on z =

0 and one on z = − 1. For lead j = 3, the story is similar, except that as θ → ∞, there

are 5 stable roots converging on z = 0, and one unstable root converging on z = − 1.

For leads greater than 3, the story is much the same, except that indeterminacy kicks

in at ever lower values of θ.  In this sense, these results are in contrast with results in
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LWW (2001), as they find that, using the FM model, determinacy obtains for a wide

range of feedback parameter values.20

4. Application of the Root Locus technique to a New Keynesian Structural

Sticky-Price Model

We now apply the root locus technique to examine the properties of IFB rules in the

model used by Bernanke and Woodford (1997) (with expectations conditional on the

previous period's information), CGG (2000) and LWW (2001).21 We will show that

this is not merely a mechanical procedure, but that it also provides some insights as to

how far ahead one can use inflation forecasts to influence nominal interest rates.

The CGG (2000) analysis is particularly interesting because of their empirical work

on US monetary policy rules and their general conclusion that a feedback response

above unity to next quarter’s expected inflation leads to determinacy.22 We can now

verify whether the results of Section 2 are specific to our previous model or can be

generalised to other models with different degrees of nominal rigidities. In practice, in

model (3)-(4) inflation depends on a moving average of the output gap, and output is

entirely backward-looking, which implies that results will not be identical between the

two models.

The inflation and output equations in the model used by CGG (2000) have the

following form (in deviations about the mean):

)*(1 ttttt yyE −+= + λπδπ  (10)

                                                          
20 Note that however, the calibration of the AS equation in the FM model in LWW (2001) implies a
higher degree of forward-looking behaviour (χ = 0.5) than our calibration here (where χ = 0.2) and so,
in principle, involves a different trade-off between volatility and indeterminacy.
21 This is a dynamic model and consists of two structural equations. The first is a standard expectational
IS curve, as in Kerr and King (1996), Woodford (1996) and McCallum and Nelson (1997). The second,
characterising the supply side is based on Calvo (1983), is discussed under different expectational
assumptions in Bernanke and Woodford (1997), and is fully derived by Gali (2002).
22 CGG (2000) found for the US, that there were clear differences in the conduct of monetary policy pre
and post 1979. Their estimates indicate that the Fed appears to have indeed responded to expected
inflation at either one quarter or one year ahead in both periods. However, the coefficient for the
interest rate response to expected inflation has been considerably greater than 1 during the Volcker-
Greenspan era, while the same coefficient was significantly less than 1 in the pre-Volcker era, a
possible cause, they argue, of macroeconomic instability at the time. More precisely, they find that the
feedback coefficient on expected inflation took a value between 2 and 3 after 1979. This contrasted
with feedback on the one-quarter-ahead output gap, which although significant in both periods, had a
fairly large size only prior to 1979. As a consequence, we continue with the strategy of the previous
section, and focus solely on feedback from forward-looking inflation.
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where the notation is as before, and y* is an exogenous stochastic process

interpretable as the log of the natural rate level of output in period t. The third and

final equation in the model is the nominal interest rate rule (1). So we assume that

there is no feedback on the output gap, broadly in line with CGG (2000) empirical

estimates for the US post 1979 period. Finally the inflation target is set at 0 for

convenience.

Equation (10) is derived by assuming that firms in the economy are monopolistically

competitive and that each has a constant probability of changing its price at each

period, as in Calvo (1983). This implies that each firm will set current prices such that

the weighted average of future anticipated mark-ups over marginal cost exactly

matches a constant mark-up. Equation (11) is derived by combining a standard Euler

equation for consumption obtained by assuming that the expected utility of the

representative consumer increases in both consumption and leisure and a market-

clearing condition, relating output to consumption.23

Given equations (1), (10), (11), it is possible to show that the characteristic equation

for the system is given by:

(1 − γ)θzj+1 + (z − γ)[σ/λ(δz − 1)(z − 1) − z] = 0  (12)

which we rewrite for convenience as:

θzj+1 + A(z − γ)(z − α)(z − β) = 0 (13)

where A = σδ/(λ(1− γ)). It is easy to demonstrate that α < 1 and β > 1.

We can now draw a similar set of root locus diagrams to those derived in Section 2

(one for each lead j), for varying θ. Inspection of equations (1), (10) and (11) suggests

that stability and uniqueness (no sunspots) occur only if there is exactly one stable

root. Furthermore examination of (12) indicates as pointed out by CGG

(2000) that the potentially critical value of θ, for determinacy, is unity.

                                                          
23 It is easy to show that: if (i) output only depends on labour, (ii) real marginal cost depends on the real
wage, and (iii) output demand expressed in logs depends approximately linearly on consumption
expressed in logs, then the marginal costs, when expressed in real terms, are proportional to the gap
between output yt and its natural rate yt*.
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        (a) j = 0          (b) j = 1   (c) j = 2 (d) j = 3

Chart 7. Characteristic roots for the New Keynesian model

Chart 7(a) confirms this by showing that for j = 0, i.e. feedback on current inflation,

the system is stable and has a unique equilibrium for all values of θ  > 1; once the root

locus has passed through z = 1, there is exactly one stable root, as required for

determinacy. In addition, and in contrast to our results for the model in Section 2, for

values of θ  < 1 there are no unstable outcomes, but rather indeterminacy. This is due

to the entirely forward-looking nature of the model, which contrasts with the

predominantly backward-looking model of Section 2. As we have argued above, it is

the overall degree of forward-lookingness in the economy that matters for the

occurrence of self-fulfilling sunspots.24 When the rule starts responding to inflation

expectations at longer horizons (j ≥ 1), self-fulfilling inflationary expectations and

sunspot equilibria are once again possible as θ becomes too large.25 These manifest

themselves as soon as the root locus enters the unit circle. For the case j = 1, using

one-period ahead forecasts, it is clear from Chart 7(b) that indeterminacy occurs when

the root locus enters the unit circle at z = −1. Thus the critical upper bound for θ is

obtained by substituting z = −1into (12), and corresponds exactly to that obtained by

Woodford (2002).26 We note, as he does, that the greater is the degree of inertia γ in

the interest rate rule, the less binding is this upper bound. For inflation expectations at

                                                          
24 Note the contrast between this model and that of Section 2. The latter had problems of indeterminacy
for high values of θ, while for this model indeterminacy occurs at low values of θ.  The reason is
because the earlier model is predominantly backward-looking, while this model is mainly forward-
looking. Were we to use an interest rate rule for current inflation (j = 0) in this model, we would also
find that there is a problem of instability for high θ, as opposed to low θ for the model of Section 2.
25 This finding is in line with that in Bernanke and Woodford (1997), which assume that policy
responds to private-sector forecasts rather than to model-consistent forecasts as we do here.
26 Bernanke and Woodford (1997) already derived analytical conditions for indeterminacy for the case
when j =1 and γ  = 0, using this model with expectations conditional on the past period’s information
set.
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longer horizons, Charts 7(c) and 7(d) are indicative of the general shape of the root

locus in the proximity of the unit circle.

Chart 7 also gives further clues as to whether it is possible to have indeterminacy for

certain forward horizons for inflation, independently of the level of the feedback

parameter θ. Clearly this will not happen when there is exactly one stable root for

some given θ; this is the situation where the arms of the root locus starting from α and

β meet to the right of z = 1, before they branch off into complex values away from the

real, horizontal axis (which is the case drawn in Charts 7(c) and (d)). However, it

could happen that the two arms instead meet inside the unit circle and then remain

within it; this would imply that there was never exactly one stable root, which would

in turn imply indeterminacy.

Examining the chart, it appears that whenever θ  increases beyond 1, the root of the

equation increases to a value greater than 1. However, this is no longer true when the

root locus from β passes through z = 1 from the right. This is because in this case

these two complex arms of the locus stay within the unit circle. We therefore conclude

that there is determinacy for θ  > 1 if ∂z/∂θ > 1 at z = 1 i.e. the root locus passes

through z = 1 from the left. Conversely, there is indeterminacy if ∂z/∂θ  < 0 at z = 1.

The associated results are summarised in the following theorem, and proved in the

Technical Appendix.27

Theorem:

Whatever the combination of parameter values, there is always some lead J such that

for  j > J there is indeterminacy for all values of θ.

The implication therefore is that the analysis of CGG (2000) does not generalise to the

case when longer feedback horizons are used. From the proof, the relevant values of j

for indeterminacy for all θ are characterised by

j  − (1/(1− γ)+ (1− δ)σ/λ) > 0

Therefore, using parameters γ  = 0.5, discount factor δ =0.99, coefficient of relative

risk aversion σ  = 1, this inequality is satisfied for all j ≥ 3 for values of the output
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elasticity of inflation λ >0.01. There is substantial empirical evidence on the

parameter λ  based on US data, the lowest value reported by CGG (2000) being 0.05.

For γ  = 0.8, as estimated by CGG, this inequality is satisfied for all j ≥ 6, so that use

of forward-looking inflation beyond five quarters would be ruled out; this is therefore

a fairly robust upper limit.

Note that these results are consistent with those of LWW in their Figure 2, which

were obtained using numerical simulation. In addition, their results in Figure 3 for

longer horizons are in general agreement with our theorem, that greater interest rate

smoothing (higher γ) gives smaller scope for indeterminacy.

As real-world inflation target procedures typically involve stabilising inflation in the

medium-run, one to two years out, corresponding to j ranging from 4 to 8, our

findings represent an important warning for inflation-targeting central banks. For

example, if the model of the US economy used by CGG (2000) were to be truly

representative of reality, then our findings indicate that for reasonable parametrisation

of monetary policy rules, there is a significant risk of sunspot fluctuations arising

from self-fulfilling expectational sequences in the US whenever the Fed responds to

expected inflation at horizons beyond one and a quarter years.

5. Conclusions

IFB rules are simple rules that respond to deviations of expected inflation from target.

Simulation of IFB rules has shown that they have a number of desirable features

because they are usually good proxies of optimal feedback rules. However, as these

rules are not fully optimal, they can lead to dynamic instability or indeterminacy. A

result in the literature (e.g. Bernanke and Woodford (1997) and CGG (2000)) is that

to avoid indeterminacy, the monetary authority must respond aggressively (i.e. with a

coefficent above unity, even if not too large) to expected inflation. By contrast, the

instability implications of these rules are not often investigated.

This paper has extended the existing literature on the uniqueness and stability

conditions for equilibrium under IFB rules. Advancing upon numerical results in

LWW (2001), we have demonstrated analytically, for a variety of structural New

                                                                                                                                                                     
27 A similar result is theorised in Giannoni and Woodford (2001), Proposition 5, page 47, but only for
the case when γ  = 0.
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Keynesian models, that both are a function not just of the degree of responsiveness of

the policy instrument to deviations of inflation expected at some horizon j from target,

but also of that chosen feedback horizon. In particular, we have found that reacting

too aggressively to events that lie too far into the future, may deliver results that can

be as bad as those obtained by responding to events that lie too far into the past. In

this respect, we have shown that an above unity response to expected inflation more

than one quarter out, is not a necessary and sufficient condition for determinacy.

Furthermore, beyond a certain expectation horizon, any feedback will produce

indeterminacy, and a consequent lowering of welfare. This is an important warning

for inflation-targeting central banks, particularly as the model used by CGG (2000)

and LWW (2001) is subject to self-fulfilling sunspot sequences for feedback on

inflation forecasts as little as six quarters out.

By using the root locus analysis a technique borrowed from the control engineering

literature we have shown how to identify the feedback/horizon pairs that are

associated with unique and stable equilibria for a variety of real business cycle sticky-

price and sticky-inflation models. We find that this is a simple and robust way to

unveil the analytical rationale behind instability or indeterminacy at too long a lag, for

given feedback. Indeed, the root locus method is possibly the only one that is capable

of revealing our main theoretical result.
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Technical Appendix

Proof of Theorem

The derivative ∂z/∂θ is obtained from implicit differentiation of (13):

zj+1 + ((j+1)θzj + A[(z − γ)(z − α) + (z − β)(z − α) +  (z − γ)(z − β)])∂z/∂θ = 0     (Α1)

In particular, at the point θ  = 1, z = 1, it is given by

1 + (j+1 + A[(1− γ)(1− α) + (1− β)(1− α) + (1 − γ)(1 − β)])∂z/∂θ = 0 (A2)

Note that if we now use the definition of A = σδ/(λ(1 − γ)), and the implicit values

αβ = 1/δ, α + β = 1 + 1/δ + λ/(δσ), then for j =1, (A2) can be rewritten

1 − [ γ/(1−γ) + (1−δ)σ/λ]∂z/∂θ = 0

so that ∂z/∂θ > 0; this complements what is shown in Chart 7(a), where we deduce

that there is determinacy for a range of θ  greater than 1.

For more general j, (A2) can be rewritten as

1 + [ j - 1/(1−γ) - (1−δ)σ/λ]∂z/∂θ = 0

It is therefore clear that there must exist a minimum value of j above which the term

multiplying ∂z/∂θ is positive. Hence ∂z/∂θ < 0  as required when the lead j is large

enough.




