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Abstract 
 
For many years, Donald Shoup has been advocating cashing out free and underpriced 
curbside parking. How should this be implemented in practice, taking into account the 
stochasticity of curbside parking vacancies? Shoup has proposed setting neighborhood/period 
of the day-specific meter rates such that a common target (average) curbside parking 
occupancy rate is achieved. Taking as given how the average occupancy rate affects expected 
cruising-for-parking time and expected walking time (between parking space and destination), 
this paper investigates the optimal (surplus-maximizing) target curbside parking occupancy 
rate. The principal result is that the rate should be higher, the higher is the level of demand. 
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1. Introduction

Even on a particular city block at a particular time of day, the number

of vacant curbside parking spaces varies substantially from day to day. At

a point in time, the block's curbside parking vacancy rate is the realization

of complex curbside parking arrival (birth) and departure (death) stochastic

processes. There may be a special event on that block that generates a higher

than usual arrival rate for a period of time before that event starts, and a

concentration of departures when it is over. Or purely by chance, an abnormally

high number of people may choose to have lunch at a particular restaurant on

that block. To further complicate matters, there is spatial autocorrelation in the

vacancy rate on neighboring blocks, as drivers, unable to �nd curbside parking

on their destination block, search/cruise for parking on neighboring blocks.

The stochasticity of vacant curbside parking spaces is practically important.

Even when the average vacancy rate on a particular city block at a particular

time of day is, say, 10%, there will be days when drivers whose destination is

on that block have to spend a substantial amount of time cruising for a curb-

side parking space. So as to avoid being late for an appointment, a driver may

respond to this lack of reliability in curbside parking search time by depart-

ing home earlier and/or starting to search for parking well before reaching the

destination block.

Vickrey (1954) was the �rst economist to address the importance of the

stochastic nature of the curbside parking vacancy rate. He advocated responsive

curbside parking pricing to deal with the phenomenon. The parking meters

on a block would be simultaneously monitored, and the curbside parking fee1

1The terms "curbside parking fee" and "meter rate" are used interchangeably.
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would be adjusted responsively to achieve an ex post curbside vacancy rate,

such that there would almost always be a vacant curbside parking space on

each block, which would virtually eliminate the time wasted in cruising for

parking and the added congestion it causes. Vickrey's proposal never went

beyond the drawing board because it was technologically ahead of its time.

Recently Shoup (1999) has been advocating di�erentiating the curbside meter

rate by block and time of day so as to achieve a common target curbside parking

occupancy rate (hereafter, target occupancy rate); he has proposed a rate of

85%. Implementing his proposed scheme would require extensive data collection

but no high technology. A modi�ed version of his proposed scheme is being

implemented on an experimental basis in San Francisco (SFpark.org).

Averaged over time and space, does a target occupancy rate of 85% max-

imize social surplus, or should it be higher or lower? Should the target oc-

cupancy rate vary depending on the time of day, perhaps being lower in the

morning when the expected arrival rate exceeds the expected departure rate,

or depending on location, perhaps being higher at locations with shorter aver-

age parking durations? This paper takes a �rst step towards determining the

optimal (surplus-maximizing) target occupancy rate analytically. Assume that

space is isotropic and that the economy is in stochastic steady state, so that the

optimal target occupancy rate is invariant over time and space. Its determina-

tion can be viewed as the solution of a problem involving three modules. The

�rst relates to the outcomes of alternative search strategies, taking as given the

probability distribution of di�erent patterns of parking occupancy over space.

The second derives the probability distribution of di�erent patterns of occu-

pancy over space from the stochastic processes determining trip generation and

termination, under alternative search strategies. The third derives the surplus-

maximizing target vacancy rate under alternative search strategies. Solution
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of this problem would be formidably di�cult. To generate a problem that is

manageable, I construct a model, building on that in Arnott and Rowse (1999),

which assumes that parking spaces are uniformly distributed around the circum-

ference of a circle, trip originations are generated by a time-invariant Poisson

process at a rate that is uniform around the circle, the distance between trip

origins and destinations is constant, travel occurs in only one direction, and the

visit length at the destination is constant. Under these assumptions, a driver's

search strategy is simple: after initiating search, take the �rst vacant parking

space encountered. A driver then has only two decisions to make, how long

before her appointment time to initiate her trip, and how far before her destina-

tion to initiate search. The probabilities of encountering the �rst vacant space

at the �rst parking space, the second parking space, and so on, after parking

search is initiated, as a function of the average occupancy rate (averaged over

time and space), can then be solved for, at least computationally.

The parking planner controls the curbside occupancy rate only indirectly via

the curbside meter rate. Adding a demand function relating the Poisson rate at

which trips are initiated to the expected full price of a trip permits determination

of equilibrium and social surplus, as functions of the curbside meter rate, and

thence of the optimal curbside meter rate and the optimal target occupancy

rate.

Because the underlying stochastic processes generating the actual patterns

of curbside parking occupancy vary over both space and time and are much more

complex than the simple stochastic process assumed in the model, and because

actual two-dimensional parking search strategies are much more complex than

the simple one-dimensional search strategy implied by our model, considerable

work � data collection and analysis, and theoretical development - will need to be

done before optimal target occupancy rates can be determined in policy practice.
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I hope nonetheless that this paper adds value in providing some conceptual

foundation for their determination.

Section 2 provides a brief review of relevant literature. Section 3 presents

the model. Section 4 derives analytically the optimal target curbside occupancy

rate, taking as given the probability distribution of the number of occupied

curbside parking spaces searched prior to �nding a vacant space, conditional on

the average occupancy rate. Section 5 discusses directions for future research,

and section 6 concludes.

2. Literature review

Several papers have investigated models of rush-hour tra�c dynamics in

which individuals have a common desired arrival time at a common destination,

are perfectly informed about the availability of curbside parking spaces on a

radial artery, and can choose between vacant parking spaces. Arriving earlier

provides a larger choice set of vacant parking spaces but increases schedule delay.

Arnott et al. (1991) considered such a model of morning rush-hour travel to a

common downtown location, with bottleneck congestion upstream of downtown

parking spaces. By varying the curbside parking fee across time and location,

the planner can control the order in which parking spaces are occupied, which

a�ects the time pattern of congestion at the bottleneck. Zhang et al. (2008),

Zhang et al. (2011), and Qian et al. (2012) provide various extensions of Arnott

et al. (1991) to examine alternative downtown parking policies. Anderson and

de Palma (2004) explore a model similar to Arnott et al. (1991) without a

bottleneck but with congestible parking on side streets, one section of which

considers cruising for parking.

Arnott and Inci (2006, 2010), Arnott and Rowse (2009, forthcoming), and

Arnott et al. (2013) present a series of related models that investigate the inter-

action between cruising for underpriced curbside parking and tra�c congestion
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in an isotropic downtown area in stationary state. Curbside parking spaces re-

duce the road space available for travel, and cars cruising for parking contribute

to tra�c congestion. Arnott and Inci (2006) explores a model with only curb-

side parking, and Arnott and Inci (2010) examines the stability of the model's

equilibria. Arnott and Rowse (2009) considers a model with both curbside and

garage parking, and considers spatial competition between parking garages, and

Arnott and Rowse (forthcoming) extends that model to consider curbside park-

ing time limits and heterogeneity among parkers. Arnott et al. (2013) presents

an integrative diagrammatic analysis focusing on �rst- and second-best optimal

curbside parking capacity. All the above Arnott, Inci, and/or Rowse papers

assume that expected cruising for parking search time is given by CL/P where

C is the density per unit area of cars cruising for parking, L is parking duration,

and P is the density of curbside parking spaces, and that walking time between

the parking space and destination is zero. This speci�cation assumes that, at all

locations, parking spaces become available to a driver who is cruising for parking

according to a spatially uniform and time-invariant Poisson process with rate

P/(CL). Under this assumption, the optimal search strategy is to drive to the

destination block and wait until a space becomes available.

Arnott and Rowse (1999) is the �rst economics paper to investigate curbside

parking search at a microscopic level. Individuals and curbside parking spaces

are uniformly distributed around the circumference of a circle. An individual

waits at home for o�ers, each of which provides a �xed award, which can be col-

lected by going to a speci�ed, stochastically determined location and remaining

there for a �xed period of time. Upon receipt of an o�er, she must immediately

decide whether to take it up. Conditional on taking it up, she departs imme-

diately, decides how far from her destination to start cruising for parking, and

then takes the �rst vacant parking space, walking from there to her destination.
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Having collected the award, she returns to her parking space, drives home, and

awaits the next o�er. The paper solved for equilibrium curbside parking occu-

pancy rates, demonstrating possible multiplicity of equilibria. A weakness of the

paper, which the authors recognized, is that, to achieve tractability it assumes

that the probability that a particular curbside parking space is vacant equals

the average curbside parking vacancy rate; that is, the authors assumed away

the spatial autocorrelation of occupied curbside parking spaces.

Figure 1: Average cruising time as a function of the parking occupancy rate. PARKANALYST
vs PARKAGENT.

This �gure is reproduced from Figure 4 of Levy et al. (2012). In the current context, the di�erence

between the various PARKAGENT graphs is unimportant.

The importance of the spatial autocorrelation of occupied curbside park-

ing spaces is the focus of Levy et al. (2012). They compare the results of an

analytical model of parking search similar to Arnott and Rowse (1999), PARK-

AGENT, in which every driver is confronted with averaged conditions, with

the results of a tra�c microsimulation model, PARKANALYST, which treats

the spatial autocorrelation of occupied curbside parking spaces. Their simula-

tion results demonstrate the quantitative importance of taking into account this
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spatial autocorrelation. Figure 1 below reproduces Figure 4 of their paper. It

plots average cruising for parking time against the average occupancy rate. In

PARKAGENT, parking search time becomes signi�cant only when the average

occupancy rate is close to 100% (for example, with a occupancy rate of 99%, a

driver cruising for parking would expect to drive by 99 occupied parking spaces

before locating a vacant space, while with a parking occupancy rate of 90%, a

driver cruising for parking would expect to drive by only 9 occupied parking

spaces). In PARKANALYST, in contrast, parking search time starts to be non-

negligible with an average occupancy rate of about 85%, and at around 93% is

approximately the same as that in PARKAGENT with a 99% rate.

3. The Model

Consider an isotropic spatial economy organized on the circumference of a

circle (an "atoll economy") of in�nite radius. Trips are originated around the

circle at a uniform Poisson rate that is determined endogenously. Each trip

entails travel in one direction2 around the circle to a destination a distance δ

from where the trip originated, a visit at the destination of duration L at an

appointed time, followed by a return journey to the trip origin. All trips are by

car, and a driver must park her car curbside in the vicinity of her destination,

and walk from her parking location to her destination, and later back again

before driving back to the trip origin. Curbside parking spaces are uniformly

distributed around the circle with density P per unit length. From experience,

the driver knows the probability distribution of the number of occupied parking

spaces she will encounter after initiating cruising for parking before �nding a

vacant parking space. But she has no information on the realized con�guration

of occupied parking spaces at the time she commences her outbound journey and

2Allowing a car to turn around after it has passed the destination complicates the algebra
without adding insight.
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receives no information during her journey. Furthermore, she does not exploit

information from the pattern of occupied parking spaces that she encounters on

her journey to update the probability distribution. Under these assumptions,

there is a single rational search strategy. Start searching for parking a distance x

from the destination, where x is chosen by the driver to minimize trip cost, and

take the �rst vacant parking space. There is a curbside parking fee of f per unit

time parked. To simplify, tra�c congestion is ignored. In-transit travel speed

is v, cruising-for-parking speed is s, and walking speed is w with v > s > w.

Each trip involves an appointment at a speci�ed time. If the driver arrives

at the appointment early or late, she encounters a schedule delay cost. The

α − β − γ treatment of the value of time is employed; each unit of travel time

costs her α (whether in transit, cruising for parking, walking, or visiting at the

destination), each unit of time early costs her β, and each unit of time late

costs her γ. Consistent with intuition and the empirical literature, it is assumed

that γ > β. She decides how long before the speci�ed appointment time, e,

to initiate the trip, as well as x, so as to minimize the expected full price of a

trip, F , which includes the cost of time on the trip, schedule delay cost, and

the curbside parking payment. The expected trip duration equals the expected

time spent on the trip to the destination, the time spent at the destination,

and the expected time spent on the return trip. The expected time spent on

the trip to the destination equals the time driving before initiating cruising

for parking, plus the expected time cruising for parking, plus the expected time

spent walking from the curbside parking space to the destination. The expected

time spent on the return trip equals the expected time spent walking from the

destination to the curbside parking space plus the expected return driving time.

Expected parking duration equals the time spent at the destination plus the

expected time walking from the curbside parking space to the destination and
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back again.

We now derive expressions for the components of the individual's full trip

price. z is cruising-for-parking distance, a continuous random variable3 whose

probability distribution depends on the parking occupancy rate, Q : g(z;Q). It

is assumed that the probability distribution is monotonically decreasing (gz(z;Q) <

0) and that an increase in the occupancy rate decreases the probability that the

�rst vacant parking spot is found within a given distance of cruising for parking

(GQ(z;Q) < 0).

Given the informational assumptions, expected cruising-for-parking distance

is Ez(Q) =
´∞
0
zg(z;Q)dz. Since cruising-for-parking speed is s, expected

cruising-for-parking time is

ES(Q) =
Ez(Q)

s
(1)

A driver initiates cruising for parking a distance x prior to reaching her

destination. Thus, she may park either before or after reaching her destination.

Walking distance between the parking location and the destination (and, on the

return journey, between the destination and the parking location) is therefore

|z − x|. Since walking speed is w, the corresponding expected walking time for

the entire journey, EW , is

EW (x;Q) = 2

ˆ x

0

x− z
w

g(z;Q)dz + 2

ˆ ∞
x

z − x
w

g(z;Q)dz (2)

Since a driver's destination is a �xed distance δ from the location at which

the trip is originated, and since in-transit travel speed is v, the in-transit travel

time to the destination prior to initiating cruising for parking is (δ− x)/v. The

return in-transit travel distance equals the distance of the parking space from

3In fact, z is a discrete random variable, corresponding to the discreteness of parking
locations, but to simplify the algebra we shall treat it as continuous.
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the trip origin, which equals δ − x + z. Thus, the expected return in-transit

travel time4 is (δ−x+Ez(Q))/v, and the total expected in-transit travel time,

EI, is

EI(x;Q) =
2(δ − x) + Ez(Q)

v
(3)

The expected duration of the trip is the sum of expected cruising-for-parking

time, expected walking time, expected in-transit travel time, and visit time. The

expected time cost of a trip, ETTC, equals the expected duration of a trip times

the value of time. Thus,

ETTC(x;Q) = α[ES(Q) + EW (x;Q) + EI(x;Q) + L] (4)

To calculate expected schedule delay cost, time is measured relative to the

appointment time; viz. t = 0 is appointment time. A driver departs at t = −e

and arrives at the destination after driving to a distance x before the destination,

cruising for parking, and then walking from the parking space to the destination.

Thus, the arrival time, a, as a function of x, e, and z is given by

a(x, e, z) = −e+
δ − x
v

+
z

s
+
|z − x|
w

(5)

The schedule delay cost is - βa with early arrival and γa with late arrival. A

driver chooses e such that she arrives early with some probability, and there is

always some probability of late arrival.

There are two cases to consider. In the �rst, the driver who �nds a parking

space as soon as she starts cruising for parking arrives early. Since cruising-for-

parking speed exceeds walking speed, in this case the driver who �nds a parking

4To simplify the algebra, I ignore the possibility that the driver may choose to start cruising
for parking as soon as she leaves home. With a very high occupancy rate, this may be optimal.
Thus, I am implicitly assuming that this does not occur with the optimal target curbside
occupancy rate.
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space right at the destination arrives even earlier. In the second case, the driver

who �nds a parking space as soon as she starts cruising for parking arrives late,

but the driver who �nds a parking space right at the destination arrives early5.

I treat only the �rst case in the paper, since I judge it to be the more realistic6.

The �rst case applies under the following assumption:

A-1: a(x, e, 0) = −e+ δ−x
v + x

w < 0.

The primitive condition under which this case applies is derived in Appendix

B. Let M(x, e) denote the z corresponding to on-time arrival, as a function

of x and e, i.e. a(x, e,M(x, e)) = 0. Under A-1, as z increases, the driver

arrives increasingly early up to z = x, after which she arrives decreasingly early,

until she arrives on time at z = M(x, e), after which she arrives increasingly

late. When z < x, her walking time is (x − z)/w and she arrives early; when

x < z < M(x, e), her walking time is (z − x)/w and she arrives early; when

z > M(x, e), her walking time is (z − x)/w and she arrives late. Thus, G(x;Q)

is the probability that a driver �nds a curbside parking space before reaching

her destination, and G(M(x, e);Q) is the probability that she arrives at her

destination early.

Using (5), her expected schedule delay costs are

5It might appear that there is a third case in which both a driver who �nds a parking
space as soon as she starts cruising for parking and a driver who �nds a parking space right
at the destination arrive late. Then all drivers would arrive late. But with the cost of time
early being lower than the cost of time late, which has been assumed, this cannot be optimal
since a driver's expected trip cost would be reduced by departing earlier.

6I have no data to support this judgment. It seems counter-intuitive that a driver who
�nds a parking space as soon as she starts cruising for parking would arrive late. That it
seems so suggests that this case is uncommon.
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ESDC(x, e;Q) = β

ˆ x

0

[
e− δ

v
+ z(

1

w
− 1

s
)− x(

1

w
− 1

v
)
]
g(z;Q)dz

+β
´M(x,e)

x

[
e− δ

v − z(
1
w + 1

s ) + x( 1
w + 1

v )
]
g(z;Q)dz

+γ
´∞
M(x,e)

[
− e+ δ

v + z( 1
w + 1

s )− x( 1
w + 1

v )
]
g(z;Q)dz

(6)

where

M(x, e) = [e− δ

v
+ x(

1

v
+

1

w
)][

1

s
+

1

w
]−1 (7)

Her expected curbside parking payment is f(L+ EW (x;Q)).

4. Analysis of the Model

This section looks �rst at the driver's optimization problem, then at equi-

librium, and then at the social optimum and its decentralization.

4.1. A Driver's Optimization Problem

A driver has two decision variables, e the length of time prior to her appoint-

ment that she initiates her inbound trip, and x the distance from her destination

at which she initiates cruising for parking. She chooses e and x, taking as given

the average occupancy rate, Q, and the probability distribution g(z;Q) associ-

ated with it, so as to minimize the expected full price of a trip. The expected full

price of a trip equals the expected opportunity cost of the trip time, ETTC, plus

the expected schedule delay cost, ESDC, plus the expected curbside parking

payment, which equals the per-unit-time curbside parking fee times the expected

parking duration, which equals the visit duration plus expected walking time.

Thus, the driver's optimization problem is

minx,eF̂ (x, e;Q) = ETTC(x;Q) + ESDC(x, e;Q) + f(L+ EW (x;Q)) (8)

13



Note that e enters only ESDC.

Using (6), the �rst-order condition with respect to e is

βG(M(x, e);Q)− γ(1−G(M(x, e);Q)) = 0 or G(M(x, e);Q) =
γ

β + γ
(9)

G(M(x, e);Q) is the probability of a driver arriving early. Increasing e by one

unit results in arrival at the destination a unit time earlier, conditional on being

early, with an expected increase in schedule delay cost of βG(M(x, e);Q), and

arrival at the destination a unit time less late, conditional on being late, with

an expected decrease in schedule delay cost of γ(1−G(M(x, e);Q)). The driver

chooses e to equalize these two magnitudes. Thus, if the unit time late cost is

four times the unit time early cost, which roughly accords with the estimated

magnitudes, the driver chooses e so that she will arrive early 80% of the time.

Throughout the paper we use subscripts to denote partial derivatives. The

�rst-order condition with respect to x is

ETTCx + ESDCx + fEWx = 0 (10)

where, from (1) to (4),

ETTCx = α[EWx + EIx] = α[
4G(x;Q)− 2

w
− 2

v
]

EWx =
4G(x;Q)− 2)

w

(11)

and from (6) (the derivation is given in Appendix A),
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ESDCx = −β(
1

w
− 1

v
)G(x;Q)

+β( 1
w + 1

v )(G(M(x, e);Q)−G(x;Q))

−γ( 1
w + 1

v )(1−G(M(x; e);Q)) (12)

Combining (10) - (12) gives

(α+ f)
4G(x;Q)− 2

w

− 2α

v
− β(

1

w
− 1

v
)G(x;Q)

+ β(
1

w
+

1

v
)(G(M(x, e);Q)−G(x;Q))

− γ(
1

w
+

1

v
)(1−G(M(x; e);Q)) = 0 (13)

G(x;Q) is the probability that a driver �nds parking before reaching her desti-

nation (and therefore arrives early), G(M(x, e);Q)−G(x;Q) is the probability

that she parks beyond her destination and is early, and 1−G(M(x, e);Q) is the

probability that she arrives late (and therefore parks beyond her destination).

A unit increase in x results in the driver: a) Walking two units distance further,

conditional on �nding parking before reaching her destination, and two units

of distance less far, conditional on not �nding parking until after passing her

destination, and therefore in a total of 4G(x;Q)−2 units further, resulting in an

increase in expected walking and parking cost of (α+ f)(4G(x;Q)− 2); b) Driv-

ing in transit two units distance less far, at a saving in in-transit travel time cost

of 2α/v; c) Conditional on parking prior to reaching her destination (and there-

fore arriving early), experiencing a decrease in time early cost of β(1/w− 1/v);

conditional on parking beyond her destination and arriving early, incurring an

increase in time early cost of β(1/w + 1/v); and conditional on arriving late
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(and therefore parking beyond her destination), experiencing a decrease in time

late cost of γ(1/w + 1/v). Combining (9) and (13) yields

G(x;Q) =
(α+ f) + αw

v

2(α+ f)− β
(14)

The solution to the driver's optimization problem is given by (7), (9), and

(14), which provides three equations in three unknowns, x, e, and M . We write

the solutions in compact form as x = x(Q, f) and e = e(Q, f). Letting F denote

the minimized full trip price, we have that

F = ETTC(x(Q, f);Q)

+ESDC(x(Q, f), e(Q, f);Q)

+f(EW (x(Q, f);Q)) (15)

which is obtained by substituting x = x(Q, f) and e = e(Q, f) into (8). The

equation gives the technological relationship between the full trip price and the

occupancy rate. We refer to it as the technology function.

The comparative static properties of the drivers's optimization problem, with

the occupancy rate held constant, are recorded in table 1.

Table 1: Comparative static properties of the driver's optimization problem

f Q α β γ v s w δ L

x - + ?a + 0 - 0 + 0 0
e + ? ?a - + + - - 0 0

M(x, e) 0 + 0 - + 0 0 0 0 0

axα has the same sign as fw/v − β(1 + w/v), and eα is opposite in sign to xα.

The derivations are provided in Appendix C. Here we discuss the compara-

tive statics properties of the driver's optimization problem with respect to two

variables of particular interest, f and Q.
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How x depends on exogenous parameters can be determined from (13). xf <

0. The intuition is as follows. A rise in the curbside meter rate causes a driver to

place relatively more weight on reducing expected parking time and relatively

less on reducing expected travel time and expected schedule delay. With an

in�nite curbside meter rate, x is chosen to minimize expected walking time,

which is achieved with x such that G(x;Q) = 1/2. But with a �nite meter rate,

x is chosen so that G(x;Q) > 1/2, which implies initiating cruising for parking

farther from the destination than with G(x;Q) = 1/2, since doing so reduces

both expected in-transit travel time and expected schedule delay cost. It can

also be shown, as intuition suggests, that xQ > 0.

From (9), holding Q �xed, M(x, e), the distance a driver cruises for parking

for on-time arrival, is independent of f . Thus, Mxxf + Meef = 0. Since from

(7) Mx > 0 and Me > 0, and since xf < 0, ef > 0. eQ is of ambiguous sign,

depending on how an increase in Q a�ects GQ(z;Q)/g(z;Q) when evaluated at

z = x compared to at z = M(x, e).

4.2. Stochastic Steady-State Equilibrium

Equilibrium is determined as the solution of two equations in two unknowns.

The �rst, the technology function, relates the full trip price to the occupancy

rate and is given by (15), but with Q endogenous. The second is the stochastic

steady-state condition that, in expectation, the demand for curbside parking

time per unit distance-time, which equals the rate at which trips are initiated

per unit distance-time times the average curbside parking duration, equals the

expected number of occupied parking spaces per unit length. The rate at which

trips are initiated per unit time-distance, D, depends on the full trip price:

D = D(F ). Expected curbside parking duration equals visit duration plus

expected time spent walking from the curbside parking space to the destination

and back again, L + EW (x(Q, f), Q), where EW (x,Q) is given by (2) and
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x(Q, f) was obtained in the previous subsection. Thus:

D(F )(L+ EW (x(Q, f), Q)) = QP. (16)

Since F = D−1(QP/(1+EW (x(Q, f), Q))), this condition relates the willingness

to pay for a trip to the occupancy rate.

It is tempting to interpret (15) as a supply curve and (16) as a demand

curve. But the relevant measure of quantity is throughput, not occupancy.

Throughput, r, is the steady-state rate at which cars enter and exit the system

per unit length, and is related to occupancy according to

r = r(Q, f) =
QP

(L+ EW (x(Q, f), Q))
(17)

so that (16) may be written as D(F ) = r, which is a conventional demand
relation.

Figure 2: Graphical procedure for calculating the stochastic steady-state equilibria

Note: The diagram is qualitative. It is not drawn by graphing functions of the model for speci�c
parameter values.

While I shall work with (15) and (16) in the algebraic analysis, in the di-
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agrammatic analysis I shall focus on r − F space. Figure 2 presents a four-

quadrant diagram. Quadrant II displays (15), which relates F to Q. Quadrant

IV displays (17), which relates r to Q. Quadrant III is the 45-degree line. Quad-

rant I is the panel of particular interest, since it permits a supply-demand inter-

pretation of (15) and (16). The demand curve is an ordinary demand curve, and

slopes downward. The supply curve has upward-sloping and backward-bending

portions, and is akin to the supply curve of tra�c congestion (Walters (1961)),

for which the upward-sloping portion corresponds to congested tra�c �ow and

the backward-bending portion to hypercongested tra�c �ow. The situation here

is almost7 completely analogous, except that the congestion occurs in parking

rather than in tra�c �ow. Thus, I shall refer to congested and hypercongested

parking. Parking is congested (hypercongested) if the elasticity of expected

parking duration with respect to the occupancy rate is less than (greater than)

one. To understand why the supply curve has the shape it does, consider the

extreme situation where the parking occupancy rate is close to 100%. Expected

walking distance from the curbside parking space to the destination is very

long, resulting in a very long expected parking duration, and hence a very low

throughput.

As drawn, there are three equilibria, E1, E2, and E3. Following the analysis

in Arnott and Inci (2010), E1 is congested and stable8, E2 is hypercongested

and unstable, and E3, which cannot be displayed in Figure 2 and which corre-

sponds to gridlock but here gridlocked parking rather than gridlocked tra�c,

is hypercongested and stable. Gridlocked parking corresponds to a situation

where all parking spaces are occupied; as a result, cruising-for-parking time and

7The analogy is not complete since here, unlike in Walters (1961), analysis of tra�c con-
gestion where the individual driver chooses only trip frequency, the individual driver chooses
not only trip frequency but also x and e.

8It is possible for E1 to be hypercongested. I ignore this possibility.
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walking times are in�nite, which results in a zero in�ow rate. Gridlock is an

equilibrium since both the quantity of throughput demanded and the quantity

of throughput supplied is zero.

The comparative static derivatives are complicated since there are three

potential channels through which a change in an exogenous parameter a�ects an

endogenous variable, through x, e, and Q. Appendix D derives the comparative

static derivatives with respect to f and η, where η is a demand shifter, which

I term "demand intensity�, with higher η corresponding to a higher demand

curve. The comparative static properties of the stable, congested equilibrium,

E1, are given in Table 2.

Table 2: Comparative static properties of the stable, congested equilibrium, E1

f η

Q - +
r ?a +
F ?a +

aThe signs of rf and Ff are opposite.

The e�ects of an increase in demand on the stable, congested equilibrium can

be seen from Figure 2. The demand curve shifts out, and the supply curve does

not change position. Thus, the increase in demand unambiguously increases

both throughput and the full price of a trip. Furthermore, since throughput

and the occupancy rate are positively related when parking is congested, the

increase in demand unambiguously increases the occupancy rate.

The e�ects of an increase in the curbside parking fee on the stable, congested

equilibrium are more complicated. The parking fee increase shifts the supply

curve but has no e�ect on the demand curve. The immediate e�ect of a unit

increase in the parking fee is to shift the supply curve up by the expected parking

duration, L + EW (x(Q, f), Q). But the parking fee also a�ects x directly and

through Q, and Q directly, all of which change parking duration. It is proven
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in Appendix D that dQ/df < 0; an increase in the parking fee unambiguously

decreases the occupancy rate of the stable, congested equilibrium. However,

dr/df and dF/df are ambiguous in sign, though of opposite sign to one another.

From (17), dr/df = rf + rQdQ/df . Since the equilibrium is congested, rQ > 0,

and since we have obtained that dQ/df < 0, rQdQ/df < 0. But rf = −[r/(L+

EW (x(Q, f), Q))]EWxxf , which since EWx > 0 and xf < 0, is positive. Thus,

a rise in the curbside parking fee can lead to an increase in throughput and

hence in consumer surplus. A rise in the curbside parking fee can even lead to

a simultaneous increase in consumer surplus and parking fee revenue � a double

dividend result.

4.3. Social Optimum

The social optimum occurs where the marginal social cost of throughput

equals the marginal social bene�t. Here, since there are no externalities on the

demand side, the marginal social bene�t at a given level of throughput is given

by the corresponding point on the demand curve. Calculating marginal social

cost is complicated by the fact that per driver cost depends on the occupancy

rate rather than throughput. We proceed as follows. First, we de�ne minimized

total cost as a function of throughput:

ˆTC(r) = min
x,e,Q

r[ETTC(x,Q) + ESCD(x, e,Q)]

s.t. QP − r(L+ EW (x,Q) = 0

(18)

where EW (x,Q), ETTC(x,Q), and ESDC(x, e,Q) are given by (1) through

(4), (6), and (7). Then

ˆMSC(r) =
d ˆTC(r)

dr

The above procedure calculates the direct control total cost function, assum-

ing that the planner chooses x and e. But it is the individual driver and not
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the planner who chooses x and e. Thus, the total indirect control cost function

should be calculated, taking into account that x and e are chosen by individual

drivers, with the planner having only indirect control of x and e, through the

parking fee. It turns out, however, that this complication is immaterial since,

when the planner chooses the curbside parking fee optimally, drivers choose the

socially optimal x and e. Thus, to simplify the analysis, I solve for the direct

control social optimum, and then for the optimal parking fee that decentralizes

it.

Where X(r) is the total social bene�t derived from r trips per unit area-time

(the area under the demand curve), the direct control social welfare optimization

problem is

min X(r)− r[ETTC(x,Q) + ESDC(x, e,Q)]

s.t. QP − r(L+ EW (x,Q)) = 0 λ
(19)

where λ is the shadow price on this form of the steady-state condition. The

�rst-order conditions are

r : X ′ − ETTC − ESDC − λ(L+ EW ) = 0

Q : −r[ETTCQ + ESDCQ] + λ(P − r(EWQ)) = 0

x : −r[ETTCx + ESDCx]− λr(EWx) = 0

e : −r[ESCDe] = 0

(20)

Note four things. First, it is evident from the �rst-order condition with

respect to r that λ is the shadow price of a curbside parking space per unit

time. Second, the �rst-order condition with respect to e is the same as the

corresponding driver's �rst-order condition, (9). Third, from (10), the driver's

�rst-order condition with respect to x is the same as the corresponding �rst-

order condition for the social optimum when the curbside parking fee is set

equal to the shadow price of parking. Thus, as claimed, drivers make socially
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e�cient decisions with respect to both x and e when the curbside parking fee

is set equal to the shadow price of parking. The intuition is straightforward.

There is only one externality in the model, the parking externality. When this

is internalized, drivers make socially e�cient decisions. Fourth, the problem is

decomposable. The �rst step entails calculating ˆTC(r) per (18), the second step

entails maximizing X(r)− ˆTC(r), with respect to r.

From the �rst-order condition with respect to Q, the shadow price of a

curbside parking space equals

λ =
r[ETTCQ + ESDCQ]

P − r(EWQ)
(21)

The interpretation of this shadow price as the parking externality cost re-

quires some care. First, the λ in (21) is exactly the same as the λ in (18), since

the externality is a production externality. Second, the externality operates

through Q and not directly through r. Instead a marginal increase in r a�ects

Q, and the marginal increase in Q generates the external costs by increasing

all drivers' trip cost. Third, while there are two values of Q that solve the

steady-state condition for a given r, one associated with hypercongested park-

ing, the other with congested parking, in determining the social optimum only

the congested value of Q is relevant. Thus, we may express how the social cost

minimizing Q varies with r, per (18), as Q = Q∗(r), and similarly we may write

e = e∗(r) and x = x∗(r). Then total cost can be rewritten as

ˆTC(r) = r[ETTC(x∗(r), Q∗(r)) + ESDC(x∗(r), e∗(r), Q∗(r))]

so that (since the derivatives with respect to x∗(r) and e∗(r) equal 0 via the

Envelope Theorem)
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ˆMSC(r) = ETTC(x∗(r), Q∗(r)) + ESDC(x∗(r), e∗(r), Q∗(r))

+ {[ETTCQ(x∗(r), Q∗(r)) + ESDCQ(x∗(r), e∗(r), Q∗(r))]rQ∗
′
(r)},

where, from the steady-state condition, rQ∗
′
(r) = (L + EW )r/(P − rEWQ).

The sum of the �rst two terms on the right-hand side is average trip cost so

that the residual term in curly brackets is the marginal parking congestion

externality cost, which is analogous to the familiar marginal congestion exter-

nality cost. Raising throughput (drivers/distance-time) by 1 unit increases the

occupancy rate by Q∗
′
(r) (unitless), which raises each inframarginal driver's

cost ($/trip) by [ETTCQ(x∗(r), Q∗(r)) + ESDCQ(x∗(r), e∗(r), Q∗(r))]Q∗
′
(r)

($/trip) and hence the total cost ($/distance-time) of inframarginal drivers by

[ETTCQ(x∗(r), Q∗(r)) + ESDCQ(x∗(r), e∗(r), Q∗(r))]rQ∗
′
(r). Or, put more

informally, as is conventionally done, the marginal driver imposes an exter-

nal cost on each of the r inframargial drivers by [ETTCQ(x∗(r), Q∗(r)) +

ESDCQ(x∗(r), e∗(r), Q∗(r))]Q∗
′
(r).

The social optimum is decentralized simply by setting the curbside parking

fee equal to λ∗.

In the standard diagrammatic analysis of the tra�c congestion externality,

the marginal congestion externality cost equals the vertical distance between

the marginal social cost of a trip and the user cost. Here, a driver's user cost

depends on his choice of x and e, which depends on the curbside parking fee.

De�ne the user cost function when the parking fee is set equal to the value of

λ, evaluated at the social optimum, λ∗ to be
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ûc(r;λ∗) = r[ETTC(x(Q̂(r, λ∗), λ∗), Q̂(r, λ∗))

+ ESDC(x(Q̂(r, λ∗), λ∗), e(Q̂(r, λ∗), λ∗), Q̂(r, λ∗)), Q̂(r, λ∗))

+ λ∗(L+ EW (x(Q̂(r, λ∗), Q̂(r, λ∗))

where Q̂(r, λ∗) corresponds to the congested solution to the steady-state condi-

tion when the curbside parking fee is set equal to λ∗.

Figure 3 presents the social optimum diagrammatically in a form familiar

from the analysis of congestion pricing. The social optimum occurs at the

intersection of the demand curve and the marginal social cost curve, msc. The

curve uc is the user cost curve when the curbside parking fee is set at the

optimal level, per the above de�nition. When the curbside parking fee is set at

the optimal level, the supply curve is the user cost curve shifted up by λ∗(L+

EW (x(Q̂(r, λ∗), Q̂(r, λ∗)). And the equilibrium when the curbside parking fee

is set at the optimal level coincides with the optimum.
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Figure 3: Decentralization of the social optimum.

Note: The diagram is qualitative. It is not drawn by graphing functions of the model for speci�c
parameter values.

The comparative static derivatives of the social optimum with respect to η,

which we term demand intensity and which corresponds to an outward shift in

demand are

dr

dη
> 0,

dQ

dη
> 0,

dx

dη
?,
de

dη
?,
dM(x, e)

dη
> 0,

dλ

dη
> 0,

dF

dη
> 0 (22)

Note that the increase in η a�ects the driver's choice of x and e through an

increase in both Q and f .

One result is of paramount importance � the socially optimal target curbside

parking occupancy rate is increasing in demand intensity9. Thus, the search for a

9It is tempting to generalize from this result to real-world situations, arguing for example
that the occupancy rate should be higher during peak than o�-peak hours, or at more rather
than less congested locations. I caution the reader against doing so. First, the real world
in more complex than the model here, including intra-day tra�c dynamics, heterogeneity of
drivers and street space, and two-dimensional rather than one-dimensional search. Second,
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universal socially optimal target curbside parking occupancy rate is a will o' the

wisp. The intuition is straightforward. The shift upwards in the marginal social

bene�t curve implies an increase in the optimal throughput, which requires an

increase in the occupancy rate.

Most other comparative static derivatives are ambiguous in sign. For one

thing, from (20) most contain terms in ETTCQQ, ESDCQQ, and/or EWQQ,

each of which depends on GQQ, about which no assumption has been made10.

5. Directions to Future Research

In discussing directions for research, I have in mind what would need to be

done to extend the model for use in practical applications, such as SFpark.

� Incorporating tra�c congestion

The interaction between curbside parking and tra�c congestion is practi-

cally important, and should be considered in any model that aims to derive a

realistic optimal target curbside parking occupancy rate. In a series of related

papers, Arnott and Inci (2006, 2010), Arnott and Rowse (2009, forthcoming),

and Arnott et al. (2013), Arnott, Inci, and Rowse have developed a sequence

of related models that treat the interaction between curbside parking, garage

parking, and tra�c congestion in a isotropic, two-dimensional area in steady

state11. The model of this paper could be augmented to include the interaction

the result relates to a change in a single exogenous variable, η, whereas in the real world,
exogenous variables need not change one at a time; for example, more congested locations
may have a systematically lower or higher curbside parking density, and peak-period drivers
may have a higher value of time than o�-peak drivers. Third, there are scale e�ects. One
might think that the optimal occupancy rate depends on the ratio of demand intensity to
curbside parking capacity. But this is incorrect since a doubling of curbside parking capacity
implies a doubling of the number of parking spaces visited within a given distance.
Nevertheless, since negative results generalize form more speci�c to more general settings,

one my safely conclude that, in real-world situations, the optimal target curbside occupancy

rate is not constant over time and space.
10Rather obviously, a doubling of all exogenous monetary values has no e�ect on the opti-

mum r, Q, x, e, and M , but causes a doubling of F .
11The papers provide an unsophisticated treatment of curbside parking search. Either

parking is unsaturated everywhere, in which case curbside parking search costs are zero, or

27



between curbside parking and tra�c congestion in the same way as was done

in Arnott and Inci (2006). Curbside parking interacts with tra�c congestion in

two important ways. Having parking curbside reduces the road space available

for tra�c �ow, and cars searching for parking contribute to tra�c congestion.

With tra�c congestion added, the optimal amount of curbside to allocate

to parking (optimal curbside parking capacity) can be determined both when

tra�c congestion is e�ciently priced and when it is not, as was done in Arnott

et al. (2013) with their less sophisticated treatment of tra�c congestion. For

each level of demand, social surplus is solved for as a function of curbside parking

capacity, with account being taken that drivers decide on trip frequency, as well

as x and e, taking the occupancy rate and curbside parking fee as �xed, so as

to maximize their private surplus.

� Garage parking

Arnott and Rowse (2009) added private garage parking to the Arnott-Inci

model of downtown parking and tra�c congestion. That paper ignores that costs

of searching for parking inside parking garages, and provides two treatments of

private garage location and costs. In the simpler treatment, garage parking

is provided continuously over space at constant cost and priced at this cost

(Bertrand competition). In the more sophisticated model, garages are discretely

spaced due to economies of scale in garage construction, and consequently have

market power. Garage parking could be introduced into the model of this paper

in either of these two ways. Since SFpark is adjusting parking prices so as to

achieve a target occupancy rate not only curbside but also in public parking

garages, the model would be more useful if it were extended to treat search for

parking inside parking garages, as well as public garages.

parking is saturated everywhere, in which case expected curbside parking search time equals
the curbside parking turnover rate per unit area divided by the stock of cars cruising for
parking per unit area.
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� Rush-hour dynamics

One earlier paper, Arnott et al. (1991), and several recent papers (Qian et al.

(2012), Zhang et al. (2008) and Zhang et al. (2011)) have been written that

extend Vickrey's bottleneck model of rush-hour tra�c congestion to include

parking. The papers provide di�erent simpli�ed treatments of parking and

cruising for parking. The model of this paper, with its more sophisticated

treatment of parking, could be extended relatively straightforwardly to treat

rush-hour tra�c and parking dynamics via the bottleneck model. Doing so

would permit investigation of whether the target curbside parking occupancy

rate should di�er according to the stage of the rush hour.

� Two-dimensional space

This paper had two main goals. The �rst was to develop a structural model

of curbside parking that has the potential of being extended to the point where it

can be applied in practical policy contexts. The second was to make the general

point that there is no universal optimal target curbside parking occupancy rate.

The paper has, I think, achieved these modest goals. But the model is still far

from practical application. One of its most obvious de�ciencies is that it almost

trivializes the curbside parking search problem by treating it as one-dimensional.

But practically curbside parking search is two-dimensional, and two-dimensional

parking search is much more di�cult to treat than one-dimensional parking

search. A �rst step in analyzing two-dimensional parking search is to model it

in an isotropic space (an in�nite plain or the surface of a sphere). A driver's

optimal parking search strategy (e.g., drive to the destination block, and cruise

around the block until a parking space opens up) depends on other drivers'

search strategies, which suggests that there may be multiple equilibria.

29



� Anisotropic space

The monocentric city is perhaps the simplest interesting anisotropic space.

Arnott et al. (1991) and Anderson and de Palma (2004) have analyzed curb-

side parking in the monocentric city model. Drivers park from the CBD either

inwards or outwards depending on the parking fee structure. Parking inwards

is more e�cient since it concentrates the distribution of arrivals, conditional

on the distribution of departures. While analysis of curbside parking in the

monocentric city model generates important general insight, for policy purposes

what is of interest is the actual street network, which requires downtown tra�c

microsimulation models to deal with. Thus, an important topic on the research

agenda is to strengthen these models' parking modules, for instance by accom-

modating heterogeneity in search strategy.

� Heterogeneity

Heterogeneity is potentially important in any nonlinear model. It remains

to be seen how important driver heterogeneity is in determining the optimal

target curbside parking occupancy rate.

� Estimating the g(z;Q) function

SFpark is collecting comprehensive data on the occupancy histories of public

parking garages and individual parking meters. These data are insu�cient to

measure social surplus. To do this, it is necessary to relate aggregate travel costs

to the observables, such as the curbside occupancy rate and the distribution of

curbside parking times. The model indicates that the form of g(z;Q) is central

to this relationship. All previous theoretical work has assumed this function to

be negative exponential (where z is treated as continuous) or binomial (where

z is treated as discrete). But Levy et al. (2012) persuasively demonstrates

that this assumption may lead to a severe downward bias in the estimation of

curbside parking search time as a function of the occupancy rate. The form of
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this function depends on the curbside parking search strategy. Determining its

form analytically under alternative parking search strategies appears to be very

di�cult. A more promising avenue is to estimate it from microsimulation, for

�rst isotropic networks, then di�erent ideal types of anisotropic networks, and

then real networks.

� Curbside capacity, parking time limits, and the nonlinear pricing of curbside
parking

Recent policy discussion has focused on cashing out free and heavily sub-

sidized curbside parking by raising meter rates until curbside occupancy rate

targets are met, with little attention being paid to other aspects of curbside

parking policy, such as curbside parking capacity, curbside parking time limits,

and the nonlinear pricing of curbside parking. In an extended calibrated nu-

merical example, Arnott et al. (2013) illustrate that, in heavily congested down-

town areas where garage parking is available, it may be optimal to eliminate

curbside parking altogether, at least on the most congested streets, especially

when curbside parking is substantially underpriced. When drivers di�er in visit

length and the value of time, when curbside parking is underpriced, and when

garage parking is available, Arnott and Rowse (forthcoming) show that curbside

parking time limits both decrease cruising for parking and increase the parking

turnover rate, both of which make shopping downtown more attractive. Curb-

side parking time limits and a curbside parking meter rate generate a form of

non-linear pricing of curbside parking. Today's hi-tech parking meters permit

the implementation of arbitrary non-linear curbside parking pricing.

6. Conculsion

Policy makers are coming to recognize the importance of parking policy in the

management of downtown auto congestion. One aspect of parking policy that

has recently received considerable attention is e�cient curbside parking pricing.
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The general rule is that the market-clearing price is the e�cient price. This rule

applies to curbside parking, but because of the stochasticity associated with

curbside parking entry and exit, its implementation would require responsive

pricing, in which the parking fee on a particular block at a particular time of

day would depend on the particular realization of the stochastic process. Such

pricing would be informationally demanding, hard to implement, and annoying

to drivers. A more practical policy is to set curbside parking fees ex ante. The

e�cient ex ante fee would balance the e�ciency cost of having the fee below its

market-clearing level when realized demand is high (cruising for parking costs)

and the e�ciency cost of having the fee above its market-clearing level when

demand is low (unutilized curbside parking capacity).

How should the e�cient ex ante curbside parking fee on a particular block

and for a particular period of the day be determined in practice? Donald Shoup

has advocated setting block- and time-period speci�c fees so that a common

average curbside parking occupancy rate is achieved. The cities of San Francisco

and Los Angeles are implementing Shoup's proposal on an experimental basis

(SFpark and LA Express Park, respectively).

This paper developed a simple, structural model of curbside parking to in-

vestigate the theoretical basis for an optimal target curbside parking occupancy

rate rule. Parking takes place on the outside of a circle, and only the (stochas-

tic) steady state is analyzed. The analysis contained three elements. The �rst

solved for drivers' optimal strategy in cruising for parking, taking as given the

probability function for the number of curbside parking spaces searched before

a vacant space is found, which depends on the curbside occupancy rate, as well

as the curbside parking fee. The second solved for steady-state equilibrium in

which, in expectation, occupied parking spaces per unit length (the occupancy

rate times the density of parking spaces per unit length) equals throughput
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per unit length times parking duration (visit duration plus time walking be-

tween the parking space and the destination). And the third solved for the

social optimum. Analogously to Walters' well-known diagrammatic analysis of

steady-state tra�c congestion (1961), at the optimum the marginal social cost

of throughput equals the marginal social bene�t, and the optimum can be de-

centralized by imposing a parking fee such that a driver faces the marginal social

cost of a trip. The corresponding optimal target curbside parking occupancy

rate is higher, the higher is realized demand intensity.

The paper provides the conceptual basis for not only determining the optimal

target curbside parking occupancy rate, but also for undertaking welfare analysis

of policies related to curbside parking. Much remains to be done, however,

in extending the model in the direction of realism, before it can usefully be

implemented in speci�c policy contexts, as was discussed in section 5.

SFpark is gradually adjusting parking fees by lock until target curbside oc-

cupancy rates are achieved. Comprehensive data are being collected on the

occupancy experience of every parking meter and every public parking garage

in the programs. But to undertake welfare analysis, it is necessary to relate

occupancy rates to driver costs, including cruising-for-parking time costs, walk-

ing costs, and schedule delay costs. One approach is to collect the data needed

to estimate these relationships directly. An alternative approach is to apply a

structural model, such as an extended version of this paper's model. A crucial

element of both approaches is to estimate cruising-for-parking search strategies.
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Appendix A. ESDCx

(NOT INTENDED FOR PUBLICATION)

To avoid the need to �ip backwards, we repeat (6) and (7):

ESDC(x, e;Q) = β

ˆ x

0

[
e− δ

v
+ z(

1

w
− 1

s
)− x(

1

w
− 1

v
)
]
g(z;Q)dz

+β
´M(x,e)

x

[
e− δ

v − z(
1
w + 1

s ) + x( 1
w + 1

v )
]
g(z;Q)dz

+γ
´∞
M(x,e)

[
− e+ δ

v + z( 1
w + 1

s )− x( 1
w + 1

v )
]
g(z;Q)dz

(6)

where

M(x, e) = [e− δ

v
+ x(

1

v
+

1

w
)][

1

s
+

1

w
]−1 (7)

Note that

Mx(x, e) = (
1

v
+

1

w
)[

1

s
+

1

w
]−1 > 0. (A.1)

Then
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ESDCx(x, e;Q) = β[−(
1

w
− 1

v
)G(x;Q) + (

1

w
+

1

v
)(G(M(x, e);Q)−G(x;Q)]

−γ[(
1

w
+

1

v
)(1−G(M(x, e);Q))] + β[−(

1

s
− 1

v
)xg(x;Q) + (

1

s
− 1

v
)xg(x;Q)]

+β[e− δ

v
−M(x, e)(

1

w
+

1

s
) + x(

1

w
+

1

v
)]g(M(x, e);Q)Mx(x, e)

−γ[−e+
δ

v
+M(x, e)(

1

w
+

1

s
)− x(

1

w
+

1

v
)]g(M(x, e);Q)Mx(x, e)

= β[−(
1

w
− 1

v
)G(x;Q) + (

1

w
+

1

v
)(G(M(x, e);Q)−G(x;Q)]

−γ[(
1

w
+

1

v
)(1−G(M(x, e);Q))]

+β[e− δ

v
−M(x, e)(

1

w
+

1

s
) + x(

1

w
+

1

v
)]g(M(x, e);Q)Mx(x, e)

−γ[−e+
δ

v
+M(x, e)(

1

w
+

1

s
)− x(

1

w
+

1

v
)]g(M(x, e);Q)Mx(x, e)

= β[−(
1

w
− 1

v
)G(x;Q) + (

1

w
+

1

v
)(G(M(x, e);Q)−G(x;Q)]

−γ[(
1

w
+

1

v
)(1−G(M(x, e);Q))]

+βe− δ

v
− [e− δ

v
+ x(

1

v
+

1

w
)] + x(

1

w
+

1

v
)g(M(x, e);Q)Mx(x, e)

−γ−e+
δ

v
+ [e− δ

v
+ x(

1

v
+

1

w
)]− x(

1

w
+

1

v
)g(M(x, e);Q)Mx(x, e)

= β[−(
1

w
− 1

v
)G(x;Q) + (

1

w
+

1

v
)(G(M(x, e);Q)−G(x;Q)]

−γ[(
1

w
+

1

v
)(1−G(M(x, e);Q))]

= −2
βG(x;Q)

w
+ (

1

w
+

1

v
)(βG(M(x, e))− γ(1−G(M(x, e)))

(A.2)

Appendix B. The Primitive Necessary and Su�cient Condition for

A-1

(NOT INTENDED FOR PUBLICATION)

Recall that a(x, e, z) is de�ned to be the arrival time of a driver who departs

a period of time e before her appointment, starts cruising for parking a distance

x before her destination, and cruises for parking a distance z before �nding her
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�rst vacant parking space, and is given by

a(x, e, z) = −e+
δ − x
v

+
z

s
+
|z − x|
w

(5)

Recall too

A-1: a(x, e, 0) = −e+
δ − x
v

+
x

w
< 0

This assumption states that a driver who �nds a parking space as soon as she

starts cruising for parking arrives early. This appendix derives the necessary

and su�cient condition on parameter values and functional forms such that

A-1 holds. Where A = 1/w − 1/v, A-1 can be rewritten as

δ

v
< e− xA. (B.1)

We shall derive e and x as functions of exogenous parameters using the �rst-

order conditions for them, and then substitute these functions in (B.1). The

�rst-order condition with respect e is given by (9) and that with respect to x is

given by (13).

Recall that M(x, e) is the distance cruising for parking consistent with on-

time arrival, i.e. a(x, e,M(x, e)) = 0. Under A-1, since the driver who parks

at his destination arrives early, the driver who arrives exactly on time parks

beyond her destination, from (5)

M(x, e) = (e− δ

v
+ xB)

1

C
(7)

where B = (1/v + 1/w) and C = (1/s+ 1/w).

Substituting (7) into (9), the �rst-order condition with respect to e is

(e− δ

v
+ xB)

1

C
= G−1{ γ

β + γ
} (B.2)
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From (14), which is obtained from substituting (B.2) into (13), the �rst-order

condition with respect to x is

x = G−1{
α+ f + αw

v

2(α+ f)− β
} (B.3)

Substituting (B.3) into (B.2) yields

e =
δ

v
− xB + CG−1{ γ

β + γ
}

=
δ

v
−BG−1{

δ + f + αw
v

2(α+ f)− β
}+ CG−1{ γ

β + γ
} (B.4)

Substituting (B.3) and (B.4) into (B.1) yields

−BG−1{
α+ f + αw

v

2(α+ f)− β
}+ CG−1{ γ

β + γ
} −AG−1{

α+ f + αw
v

2(α+ f)− β
} > 0 (B.5)

Since B +A = 2/w, this reduces to

− 2

w
G−1{

α+ f + αw
v

2(α+ f)− β
}+ CG−1{ γ

β + γ
} > 0

or

1

2
(1 +

w

s
) >

G−1{
α+ f + αw

v

2(α+ f)− β
}

G−1{ γ

β + γ
}

. (B.6)

Appendix C. Comparative Statics of the Driver's Optimization Prob-

lem

(NOT INTENDED FOR PUBLICATION)

From (9), the �rst-order condition with respect to e is

(γ + β)G(M(x, e);Q)− γ = 0 (C.1)
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where, recall,

M(x, e) = [e− δ

v
+ x(

1

v
+

1

w
)][

1

s
+

1

w
]−1

From (14), the �rst-order condition with respect to x, after the �rst-order

condition with respect to e has been substituted in, is

[2(α+ f)− β]G(x;Q)− [(α+ f) +
αw

v
] = 0 (C.2)

We denote the x and e that solve (C.1) and (C.2) by x(f,Q) and e(f,Q).We

are interested in the e�ects of changes in f and Q on e and x. Totally di�eren-

tiating (C.1) and (C.2) yields

(γ + β)g(M(x, e);Q)Me(x, e)de

+ (γ + β)g(M(x, e);Q)Mx(x, e)dx

= −(γ + β)GQ(M(x, e);Q)dQ+ 0df

or

(γ + β)g(M(x, e);Q)[
1

s
+

1

w
]−1de

+ (γ + β)g(M(x, e);Q)(
1

v
+

1

w
)[

1

s
+

1

w
]−1dx

= −(γ + β)GQ(M(x, e);Q)dQ+ 0df (C.3)

0de+ [2(α+ f)− β]g(x;Q)dx

= −[2(α+ f)− β]GQ(x;Q)dQ+ (1− 2G(x;Q))df (C.4)
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Since x and e are the endogenous variables, and Q and f the exogenous

variables, we obtain from (C.3) and (C.4) that

xQ = −GQ(x;Q)

g(x;Q)
> 0 (C.5)

xf =
1− 2G(x;Q)

(2(α+ f)− β)g(x;Q)]
(C.6)

= −
β + 2αw

v

[2(α+ f)− β]2
< 0, using(14)

ef = −(
1

v
+

1

w
)xf > 0 (C.7)

Also, from (C.3),

g(M(x, e);Q)[
1

s
+

1

w
]−1eQ

+ g(M(x, e);Q)(
1

v
+

1

w
)][

1

s
+

1

w
]−1xQ

= −GQ(M(x, e);Q)

so that, from (C.5)

eQ = −(
1

v
+

1

w
)xQ −

GQ(M(x, e);Q)[ 1s + 1
w ]

g(M(x, e);Q)

= (
1

v
+

1

w
)
GQ(x;Q)

g(x;Q)
− (

1

s
+

1

w
)
GQ(M(x, e);Q)

g(M(x, e);Q)

which is of ambiguous sign.

Appendix D. Comparative Static Properties of Equilibrium

(NOT INTENDED FOR PUBLICATION)

We write the equations characterizing equilibrium as
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ETTC(x(Q, f), Q) + ESDC(x(Q, f), e(Q, f), Q)

+ f(L+ EW (x(Q, f), Q))− F = 0

D(F ; η)− r = 0

(L+ EW (x(Q, f), Q)r −QP = 0

We do this since we are interested in the e�ects of exogenous variables not

only on F and Q, but also on r, since social bene�t depends on the level of

throughput, and since this formulation facilitates the presentation of results in

the familiar terms of supply and demand (r−F space). Note that η is a demand

shifter, with an increase in η corresponding to an increase in demand.

We are interested in the e�ect of an increase in the meter rate and also

of demand on the equilibrium. This system looks somewhat complicated, but

note that the individual chooses x and e to minimize F , so that the �rst-order

derivatives with respect to x and e in the �rst equation can be ignored. Total

di�erentiation of the system of equations yields

[ A 0 −1

0 −1 D′

B L+ EW 0

][ dQ

dr

dF

]
=

[ −(L+ EW )

0

−EWxxf

]
df +

[ 0

−Dη

0

]
dη

where

A = ETTCQ + ESDCQ + fEWQ and B = (EWxxQ + EWQ)r − P (D.1)
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Now,

∆ = −[(EWxxQ + EWQ)r − P ]

−D′(L+ EW )[ETTCQ + ESDCQ + fEWQ] (D.2)

Under a reasonable adjustment process12, equilibria can be shown to be stable

when ∆ is positive and unstable when it is negative.

We obtain

dQ

dη
=
Dη(L+ EW )

∆

dr

dη
= − [(EWxxQ + EWQ)r − P ]Dη

∆

dF

dη
=
Dη(L+ EW )[ETTCQ + ESDCQ + fEWQ]

∆
(D.3)

These results are consistent with Figure 2. At a stable equilibrium, an

increase in demand causes an increase in the steady-state occupancy rate, and

an increase in the full price of a trip. Intuitively, an increase in demand should

increase throughput i� the elasticity of the average time parked with respect

to Q is less than 1.0. This is con�rmed by rewriting the equation for dr/dη in

(D.3) as

12A natural adjustment process has the drivers entering the city at a rate based on the
expected full price, which can be based on myopic expectations or perfect foresight, and
exiting according to the model description. Arnott and Inci (2010) formally examine the
stability of an analogous model, with the modi�cation that visit lengths have a negative
exponential distribution.

41



dr

dη
=
−[(EWxxQ + EWQ)r − P ]Dη

∆

= [
−rDη

∆
][(EWxxQ + EWQ)− (L+ EW )

Q
]

= [
−rDη(L+ EW )

∆Q
][

(EWxxQ + EWQ)Q

(L+ EW )
− 1]

The term in the �rst square brackets on the RHS is negative, and that in the

second square brackets is negative i� the elasticity of average parking time with

respect to Q is less than one, which is the case at a congested equilibrium.

dQ

df
=

[D′(L+ EW )2 + EWxxf ]

∆
< 0

dr

df
=

[−(L+ EW )D′[(EWxxQ + EWQ)r − P ] + EWxxf [ETTCQ + ESDCQ + fEWQ]D′]

∆

dF

df
=
−[(EWxxQ + EWQ)r − P ](L+ EW ) + EWxxf [ETTCQ + ESDCQ + fEWQ]

∆

The comparative static derivatives with respect to f are more complicated since

the change in the parking fee a�ects the endogenous variables not only directly

but also through Q, x, and e. Totally di�erentiating (15), the full price equation,

gives

dF

df
= [L+ EW (x(Q, f), Q] + [ETTCQ + ESDCQ + fEWQ]

dQ

df

via the Envelope Theorem. Thus, in terms of Figure 2, a change of df in the

parking fee shifts up (15) by df times the parking duration. Totally di�erenti-

ating the steady-state, (17), equation yields
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EWxxf + [L+ EW (x(Q, f), Q]
dr

df
+ [EWxxQ + EWQ − P ]

dQ

df
= 0.

It was established in Appendix C that xf < 0, and elsewhere that EWx >

0. Thus, holding the occupancy rate constant, an increase in the parking fee

causes throughput to increase because expected walking time and hence parking

duration decrease. An increase in the parking fee by df causes throughput to

increase by −EWxxf/[L + EW (x(Q, f), Q], and, in terms of Figure 2, (17) to

shift to the right.

We know too that ETTCQ +ESDCQ + fEWQ > 0, EWxxQ +EWQ−P >

0 under congestion, and xQ > 0. Thus, at a stable, congested equilibrium,

dQ/df < 0. The sign of dr/df is opposite to the sign of dF/df since equilibrium

lies on the negatively-sloped demand curve, which is unchanged by the parking

fee increase. But without further assumptions, their signs are indeterminate.

It is not their indeterminacy that is surprising, but the unambiguous sign of

dQ/df .

If dQ/df is ambiguous, by continuity it would be possible for dQ/df to equal

zero. Suppose this is the case. From the stationary state condition, the increase

in the curbside parking fee would then cause visit duration to fall, requiring a

rise in throughput, and hence a decrease in the full price. But from the full

price equation and the Envelope Theorem applied to x(Q, f) and e(Q, f), a rise

in the curbside parking fee with no change in the occupancy rate leads to an

increase in the full price of a trip, a contradiction.

References

Anderson, S.P., de Palma, A., 2004. The economics of pricing parking. Journal

of Urban Economics 55, 1�20.

43



Arnott, R., Inci, E., 2006. An integrated model of downtown parking and tra�c

congestion. Journal of Urban Economics 60, 418�442.

Arnott, R., Inci, E., 2010. The stability of downtown parking and tra�c con-

gestion. Journal of Urban Economics 68, 260�276.

Arnott, R., de Palma, A., Lindsey, R., 1991. A temporal and spatial equilibrium

analysis of commuter parking. Journal of Public Economics 45, 301�335.

Arnott, R., Rowse, J., 1999. Modeling parking. Journal of Urban Economics

45, 97�124.

Arnott, R., Rowse, J., 2009. Downtown parking in auto city. Regional Science

and Urban Economics 39, 1�14.

Arnott, R., Rowse, J., forthcoming. Curbside parking time limits. Transporta-

tion Research A .

Arnott, R.J., Inci, E., Rowse, J., 2013. Downtown curbside parking capacity.

Technical Report. CESifo Working Paper: Public Finance 4085.

Levy, N., Martens, K., Benenson, I., 2012. Exploring cruising using agent-based

and analytical models of parking. Transportmetrica 0, 1�25. doi:10.1080/

18128602.2012.664575.

Qian, Z.S., Xiao, F.E., Zhang, H., 2012. Managing morning commute tra�c

with parking. Transportation Research Part B 46, 894�916.

Shoup, D.C., 1999. The trouble with minimum parking requirements. Trans-

portation Research Part A 33, 549�574.

Vickrey, W., 1954. The economizing of curb parking space. Tra�c Engineering,

November 29, 62�67.

44

http://dx.doi.org/10.1080/18128602.2012.664575
http://dx.doi.org/10.1080/18128602.2012.664575


Walters, A.A., 1961. The theory and measurement of private and social cost of

highway congestion. Econometrica 29, 676�699.

Zhang, X., Huang, H.J., Zhang, H., 2008. Integrated daily commuting pat-

terns and optimal road tolls and parking fees in a linear city. Transportation

Research Part B 42, 38�56.

Zhang, X., Yang, H., Huang, H.J., 2011. Improving travel e�ciency by parking

permits distribution and trading. Transportation Research Part B 45, 1018�

1034.

45


	CESifo Working Paper No. 4416
	Category 2: Public Choice
	September 2013
	Abstract
	Arnott_ontheoptimaltarget rev.pdf
	Introduction
	Literature review
	The Model
	Analysis of the Model
	A Driver's Optimization Problem
	Stochastic Steady-State Equilibrium
	Social Optimum

	Directions to Future Research
	Conculsion
	Appendix
	bold0mu mumu ESDCxESDCxESDCxESDCxESDCxESDCx
	The Primitive Necessary and Sufficient Condition for A-1
	Comparative Statics of the Driver's Optimization Problem
	Comparative Static Properties of Equilibrium
	References



