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Abstract

I consider the problem of assigning agents to indivisible objects, in
which each agent pays a price for his object and all prices sum to a given
constant. The objective is to select an assignment-price pair that is envy-
free with respect to the agents’ true preferences. I propose a simple mech-
anism whereby agents announce valuations for all objects and an envy-free
allocation is selected with respect to these announced preferences. I prove
that the proposed mechanism implements both in Nash and strong Nash
equilibrium the set of true envy-free allocations.
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1 Introduction

I study the problem of assigning a set of indivisible objects to a set of agents.
Each agent wants exactly one object, and his preferences are quasilinear in money.
Each agent must pay a price corresponding to the object he gets, and prices are
required to sum to a given number. A standard example is the housemate problem
where a group of tenants is sharing an apartment. The objective is to determine
who gets which room and how much each must pay subject to the constraint that
the sum of their contributions must equal the rent of the apartment. However,
neither the valuations of objects, nor the number that the prices must sum up to,
need to be positive. An example with a negative price constraint includes heirs
sharing inheritance that besides indivisible objects contains a divisible object -
money. Negative valuations imply that the objects are not goods but rather bads
or burdens. For example, a central government with fixed budget assigning waste
disposal sites and other duties/projects to municipalities.

When deciding on the assignment of agents to objects and the corresponding
prices, we may want to meet certain criteria. The usual requirements include
efficiency and envy-freeness. Efficiency ensures that the welfare of society as
a whole is maximized, while envy-freeness guarantees that each agent prefers
his own object-price pair to the object-price pair of any other agent. In this
sense envy-freeness is a sufficient condition for the stability of the assignment.
Moreover, in this model it implies efficiency which makes it an attractive solution
concept.

There exists a wide literature that uses the above framework. Shapley and
Shubik [13] showed that the set of efficient and envy-free allocations can be found
as a solution to a linear programming problem. Subsequent contributions have
proposed different algorithms to find a particular envy-free allocation. Examples
selecting envy-free allocations when prices are required to sum to a given number
include algorithms by Abdulkadiroǧlu et al. [1] and Haake et al. [8]. Since
the set of efficient and envy-free allocations is usually not a singleton, these
algorithms pick up different solutions, corresponding to different price vectors.
In related works, Brams and Kilgour [5] and Chin Sung and Vlach [6] impose
the additional constraint that prices must be nonnegative and analyze when the
selected allocation is envy-free. The requirement of nonnegative prices is justified
when objects are goods and the price constraint is positive, like in the room-
sharing problem.

A shortcoming of all of the above studies is that they treat the valuations of
objects as known by the social planner. However, in a more realistic setup the
social planner lacks such perfect knowledge and instead solicits agents’ valuations.
Yet agents are interested to maximize their own utility and, in general, have no
incentives to reveal their true valuations. Therefore, if we insist on using an
algorithm to reach a particular allocation, a question arises on the scope that
agents may manipulate the outcome by misrepresenting the valuations.
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Motivated by these algorithms, I consider a mechanism that, given the an-
nounced valuations, selects an allocation that is efficient and envy-free with re-
spect to these announced preferences. It is a direct revelation mechanism where
agents’ actions are messages of the valuations they attach to each object. The
particular price vector that the mechanism selects among all possible envy-free
prices, coincides with the one that would be selected by the algorithm of Ab-
dulkadiroǧlu et al. [1]. The advantage of this algorithm is that it provides a
formula for the selected price vector in terms of the announced preferences, mak-
ing it easy to establish whether there is a profitable deviation. In addition, since
the algorithm by Abdulkadiroǧlu et al. [1] does not specify which efficient as-
signment to be selected with respect to the announced preferences, I introduce
a tie-breaking rule to ensure that the assignment is efficient with respect to the
true preferences.

I prove that the proposed mechanism double implements the set of efficient
and envy-free allocations both in Nash and strong Nash equilibrium. That is,
I show, first, that all envy-free allocations (with respect to the true valuations)
are outcomes of some (strong) Nash equilibrium of the game induced by the
mechanism and, second, all (strong) Nash equilibrium outcomes of the game
are envy-free. One implication of the result is that when choosing an efficient
and envy-free allocation a social planner does not need to worry about strategic
issues since the selected allocation will be envy-free not only with respect to the
announced preferences but also with respect to the true ones. This provides a
justification on strategic grounds for the use of social choice functions selecting
envy-free allocations.

Although truth-telling need not be an equilibrium strategy, and in this sense,
the allocation rule defined by the mechanism can be said to be manipulable,
the scope for agents to manipulate the allocations is limited in equilibrium. In
any (strong) Nash equilibrium the reported preferences will induce an allocation
such that agents will be envy-free with respect to their true preferences. Thus,
it also provides an answer to the question posed by Abdulkadiroǧlu et al. [1]
on the possible equilibria of the preference manipulation game induced by their
algorithm.

When there is no requirement that prices must sum to a certain amount, it
has been shown (Leonard [10]) that truth-telling is a dominant strategy for the
mechanism which selects an efficient assignment of objects and agents pay the
so-called agent-optimal prices. However, when prices are required to sum to a
given amount, there is a trade off between strategy-proofness and envy-freeness:
if the price that an agent pays depends on his valuations, then he would have
incentives to misrepresent them, ruling out truth telling as a dominant strategy.
On the other hand, if prices are independent of preferences, then envy-freeness is
not guaranteed. Therefore, I use (strong) Nash equilibrium as a solution concept.

Another desirable feature of the proposed mechanism is that it is balanced,
unlike the implementation in dominant strategies which requires side-payments

2



to the third party. The latter can be justified in certain cases, for instance, when
objects are auctioned and a seller receives the revenue such as in Demange et al.

[7]. However, there are economic examples where such side-payments are ruled
out or their amount is fixed in advance in which case a balanced mechanism is
the appropriate one.

Tadenuma and Thomson [15] are the first to study the strategic aspects of
using envy-freeness as a solution concept to allocate a single indivisible good to
one of several agents when monetary compensations are available. They prove
that both the set of Nash equilibrium allocations and that of strong Nash equilib-
rium allocations coincide with the set of envy-free allocations with respect to the
true preferences. They showed that the result holds for any selection rule from
the set of envy-free allocations and for any preference relation that is continuous
and strictly monotone in money. Beviá [4] extends the result to the multiple
objects case while restricting the preferences to quasi-linear in money. Beviá’s
[4] approach is more general in that she works with correspondences while my
mechanism selects a single-valued outcome. As a consequence, Beviá [4] must
use modified equilibrium concepts appropriate to multi-valued outcomes.

The remaining of the paper is organized as follows. The following section
provides the formal model and some results necessary for the proof. Section 3
defines the implementation problem and states the theorem. An example for
two-agent two-object case is provided in Section 4 before proving the theorem in
Section 5. Final remarks in Section 6 conclude the paper. Some of the proofs are
relegated to the Appendix.

2 Preliminaries

The set of agents is I = {1, ..., n} and generic elements of I will be denoted by i
and k. The set of objects is J = {1, ..., n} with generic elements of J denoted by j
and l. Throughout it is assumed that the number of agents and objects is the same
n.1 It is assumed that each agent consumes one and only one object. The matrix
of true valuations is A = [aij]i∈I,j∈J where aij ∈ R is the valuation that agent i
assigns to object j. The assignment of agents to objects is given by a one-to-one
mapping µ : I → J . I denote a price vector by p = (p1, ..., pn) ∈ Rn. Utilities
are quasi-linear in money, namely, the utility of agent i from being assigned to
object µ(i) and paying its price pµ(i) is ui(pµ(i)) = aiµ(i) − pµ(i). Let M denote the
set of assignments. An allocation is an assignment-price pair (µ, p) ∈ M × Rn.

Definition 1 An assignment µ ∈ M is efficient if
∑

i∈I

aiµ(i) ≥
∑

i∈I

aiη(i) for all

assignments η ∈ M .

1See the discussion in Section 6 when the number of agents and objects is different. Note,
however, that the results stated in this section do not require that |I| = |J |.
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Definition 2 An allocation (µ, p) ∈ M × Rn is envy-free if ui(pµ(i)) ≥ ui(pj)
for all i ∈ I and j ∈ J .

Given an envy-free allocation (µ, p) ∈ M×Rn we will refer to p as an envy-free
price. Also denote by MA the set of efficient assignments relative to the matrix
of valuations A. Svensson [14] proves that if the allocation (µ, p) is envy-free then
the assignment µ is efficient. One can also think of envy-freeness as a requirement
of stability since each individual prefers his object to any other object, given the
vector of prices. Therefore, envy-freeness is used as a solution concept in most
models dealing with indivisible objects, see for example Alkan et al. [2], Aragonés
[3], Haake et al. [8], and Klijn [9].

The assignment problem of indivisible objects was first addressed by Shapley
and Shubik [13] who proved that the problem can be translated into a linear
programming problem where the efficient assignments are obtained from the pri-
mal problem but envy-free prices and the corresponding utilities come from the
dual problem as shadow prices. Given the matrix of valuations A, define with the
coalitional function w(A, T,Q) the maximal value that a coalition of agents T ⊆ I
can obtain when assigned to a set of objects Q ⊆ J . It can be expressed in terms
of the following linear programming problem2: given the matrix of valuations A
and subsets T and Q, choose (xij)i∈T,j∈Q to solve for

w(A, T,Q) ≡ max
∑

i∈T,j∈Q

aijxij (1)

subject to

∑

i∈T

xij ≤ 1 for any j ∈ Q (2)

∑

j∈Q

xij ≤ 1 for any i ∈ T (3)

xij ≥ 0 for any i ∈ T, j ∈ Q (4)
∑

i∈T,j∈Q

xij = min(|T |, |S|). (5)

This primal problem has a corresponding dual problem where the costs of inputs
— agents and objects — are minimized. Shadow prices are prices of objects and
utilities of agents. Given the matrix of valuations A and subsets T and Q, choose
(ui)i∈T and (pj)j∈Q to solve for

w(A, T,Q) ≡ min
∑

i∈T

ui +
∑

j∈Q

pj (6)

2The last condition is needed to ensure that agents will be assigned to objects even if their
valuations are negative.
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subject to

ui + pj ≥ aij for any i ∈ T, j ∈ Q. (7)

Then the solution of the primal has the property that xij takes values 0
or 1 for all i ∈ T and all j ∈ Q. Assume that T = I and Q = J . The primal
problem solves for an efficient assignment of objects as follows: given the solution
(xij)i∈I,j∈J , define the assignment µ by letting µ(i) = j if and only if xij = 1. The
dual problem gives the set of envy-free prices (this follows from constraint (7)
since ui ≥ aij − pj for all i ∈ I and all j ∈ J) and the corresponding utilities
(ui ≡ ui(pµ(i))).

The set of envy-free prices forms a lattice that possess the following property:
if p′ and p′′ are two envy-free price vectors then so are the price vectors p and p
where p

i
= min(p′i, p

′′
i ) and pi = max(p′i, p

′′
i ). This property is proven in Shapley

and Shubik [13], see also Roth and Sotomayor [12] (chapter 8). The lattice has
an agent-optimal price vector p∗ ≥ 0 such that p ≥ p∗ ≥ 0 for all envy-free and
non-negative prices p.

Given an efficient assignment µ, an agent-optimal price can be calculated3

(see Leonard [10] or Roth and Sotomayor [12]) using the coalitional function,
defined by equation (1), as

p∗µ(i) = w(A, I\{i}, J) − w(A, I\{i}, J\{µ(i)}), (8)

for each i ∈ I. From (8) it follows that p∗µ(i) does not depend on the object
valuations of agent i. Using this property Leonard [10] proves that the mech-
anism that selects the agent-optimal prices p∗ is strategy-proof. His result is a
consequence of the well-known Clark’s pivotal mechanism and is a special case
of the results proven by Roberts [11] for quasilinear utility functions.

Here I state some additional results that will be useful later in proving the
theorem.4

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T,Q)
is continuous and weakly increasing in aij.

It is shown in the proof of the Proposition 1 that when i ∈ T and j ∈ Q equation
(1) can be written as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1) (9)

where const2 = w(A, T\{i}, Q\{j}) and const1 is a coalitional worth that is
obtained by solving the original assignment problem subject to the additional
constraint that agent i is not assigned to object j. Since neither const1 nor const2
is affected by the change in aij they can be considered constants. Function (9) is
obviously continuous and weakly increasing in aij.

3For an example how to calculate agent-optimal prices, see Section 4.
4The proofs are provided in the Appendix.
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Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the

same for all efficient assignments of objects.

Proposition 2 allows us to establish immediately the following result.

Corollary 1 Fix an envy-free price vector p. Under all efficient assignments of

objects each agent gets the same utility:

aiµ1(i) − pµ1(i) = aiµ2(i) − pµ2(i)

for all i ∈ I and where µ1 and µ2 are any two efficient assignments of objects.

3 Implementation Problem

In the implementation problem that I consider I restrict the set of feasible price
vectors and require the prices to sum to a given number C:

∑

j∈J pj = C. One
can think in terms of an economy that consists of the set J of indivisible objects
and a quantity C of the divisible object - money - that must be distributed among
n agents.

Let 4C denote the set of price vectors that sum to C. Since all feasible
price vectors are required to belong to this set, from now on it is understood
that an allocation is an assignment-price pair (µ, p) ∈ M × 4C . And with an
envy-free price vector p I will only refer to price vectors that meet the price
constraint: p ∈ 4C . Notice that the set of envy-free prices in 4C is non-empty.
For example, if we take the agent-optimal price vector p∗ and add a constant c
(positive or negative) to each element of p∗, the envy-freeness is preserved. We
can always choose c such that p∗ + c1 ∈ 4C , where vector 1 ≡ (1, ..., 1) ∈ Rn.

Given C and the matrix of valuations A, denote the set of envy-free alloca-
tions in M × 4C with G(A). If a social planner were to choose an allocation
(µ, p), arguably, he would prefer to select one from the set of envy-free alloca-
tions (µ, p) ∈ G(A) since these allocations meet the desirable normative criteria of
envy-freeness and hence efficiency. The algorithms proposed by Abdulkadiroǧlu
et al. [1], Aragonés [3], Brams and Kilgour [5], Haake et al. [8], and Klijn [9]
were designed to select allocations from the set G(A). However, all of them rely
on the knowledge of matrix A. If the social planner does not know the true pref-
erences of agents, he will need to solicit them. A question arises whether agents
have strategic incentives to reveal their true valuations. That is, an agent can
find it profitable to announce valuations of objects different from his true ones.5

Given this misrepresentation of preferences there is no guarantee anymore that
the selected allocation by any of the algorithms will satisfy envy-freeness with

5Truth-telling is a dominant strategy when the assignment µ is efficient and agent i pays the
agent-optimal price p

∗µ(i) of the object he gets. However, in general the agent-optimal prices
will not meet the price constraint, p∗ /∈ 4C , and therefore, (µ, p∗) /∈ G(A).
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respect to the true preferences. However, it will be demonstrated that, with the
help of an appropriate tie-breaking rule, selecting an allocation that is envy-free
with respect to the announced preferences, not necessarily the true ones, achieves
in the equilibrium envy-freeness with respect to the true valuations.

I propose a direct revelation mechanism where each agent is required to an-
nounce only his own valuations of objects and the mechanism selects an envy-
free allocation with respect to the matrix of announced valuations. Formally, a
strategy of agent i is a vector of object valuations bi = (bi1, ..., bin) ∈ Rn that
he announces. Given the matrix of reported valuations B = [bij]i∈I,j∈J , denote
the set of envy-free allocations implied by the matrix B by G(B). A mecha-
nism g is a mapping from the space of valuations into the space of allocations
g : Rn×n → M × 4C . I restrict attention to mechanisms that, for each matrix
of valuations B, will select an allocation (µ, p) from the envy-free set G(B). The
justification why to consider such mechanisms was provided before - the envy-
freeness is the standard solution concept for such type of problems and there
exist works that analyze how to select an allocation from the set G(B) although
usually ignoring strategic issues.

In general, the set of envy-free prices is not a singleton. From all envy-free
prices the price vector that I select corresponds to the one that would be selected
according to the algorithm of Abdulkadiroǧlu et al. [1] when applied to the matrix
B. The advantage of this price vector is its explicit linear relationship with the
agent-optimal prices, given by the equation:

pj = p∗j +

C −
∑

m∈J

p∗m

n
for all j ∈ J. (10)

where p∗ is the vector of agent-optimal prices implied by B. According to this
formula each agent i ∈ I pays the agent-optimal price corresponding to the object
he gets p∗µ(i) plus the equal share of the difference between the price constraint
and the sum of all agent-optimal prices.

The utility of agent i having object µ(i) and paying price pµ(i), by applying
equation (10), is

ui(pµ(i)) = aiµ(i) − pµ(i) = aiµ(i) −
C

n
−

n − 1

n
p∗µ(i) +

1

n

∑

l 6=i

p∗µ(l). (11)

It follows that the utility of agent i is decreasing in its own agent-optimal price
but increasing in each of other agent-optimal prices keeping the assignment µ
fixed. We know from equation (8) that p∗µ(i) does not depend on the valuations
of objects reported by agent i, that is, he cannot affect his own agent-optimal
price. However, he can affect the agent-optimal prices of other objects.

If there are several efficient assignments of agents to objects with respect to
the reported valuations B then the mechanism g will break ties according to the
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following rule. Order all objects and all agents, and without loss of generality
assume that the order corresponds to the natural one: σ(i) = i for all i ∈ I
and σ(j) = j for all j ∈ J , and keep these orders fixed. Start with object 1 and
proceed iteratively. If all efficient assignments allocate object 1 to the same agent
i, then let agent i get it. Otherwise choose among all efficient assignments the
one that assigns object 1 to the agent that has announced the smallest valuation
for object 1: µ(i) = 1 if bi1 < bk1 for any k such that there exists an efficient
assignment ν ∈ MB under which ν(k) = 1. If bi1 = bk1 for two or more agents
then select the agent from this set who has been assigned the lowest number:
µ(i) = 1 if i < k when bi1 = bk1. In general, assume that objects 1 to l − 1
are already assigned. If all remaining efficient assignments allocate object l to
the same agent i, then let agent i get it. Otherwise choose among all efficient
assignments the one that assigns object l to the agent that has announced the
smallest valuation of object l: µ(i) = l if bil < bkl for any k such that there
exists an efficient assignment ν ∈ MB such that ν(k) = l and ν−1(j) = µ−1(j)
for already assigned objects j ∈ {1, ..., l − 1}. If bil = bkl for two or more agents
select the agent from this set who has been assigned the lowest number: µ(i) = l
if i < k when bil = bkl. Thus the tie-breaking rule selects a unique assignment
among all efficient assignments with respect to B. Thus, the mechanism g defines
a game form, and given A, the pair (A, g) is a game in normal form.

Assume that the strategy profile B has been announced. When a set of agents
T deviates and announces a different vector of valuations b′T ∈ R|T |×n, that leads
to another profile B ′ = (b′T , b−T ). When there is only one deviator, T = {i},
the strategy profile after the deviation is denoted by B ′ = (b′i, b−i). Denote the
allocation induced by the deviation by g(B ′) = (µ′, p′). The solution concept
that I use is strong Nash equilibrium.

Definition 3 A strategy profile B ∈ Rn×n is a strong Nash equilibrium

relative to (A, g) if there is no coalition T and strategy profile b′T such that

ui(p
′
µ′(i)) ≥ ui(pµ(i)) for all i ∈ T and ui(p

′
µ′(i)) > ui(pµ(i)) for at least one i ∈ T .

Denote the set of strong Nash equilibrium outcomes relative to (A, g) by OSNE
(A,g) ,

that is OSNE
(A,g) = {(µ, p) ∈ M × 4C |g(B) = (µ, p) for some pure strategy strong

Nash equilibrium B relative to (A, g)}. Similarly, we can define Nash equilibrium
if we restrict the set of deviators T to a single agent i and denote the set of Nash
equilibrium outcomes relative to (A, g) by ONE

(A,g).
Now we are ready to state the main result of the paper:

Theorem The mechanism g double implements the social choice correspondence

G both in Nash and strong Nash equilibrium: ONE
(A,g) = OSNE

(A,g) = G(A) for all

A ∈ Rn×n.
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4 An Example

Before providing the proof of the theorem, consider the following numeric two
agent-two object example with the price constraint C = 20 and the matrix of
valuations

A =

(

15 18
6 22

)

.

The efficient assignment is µ(1) = 1 and µ(2) = 2 since 15+22 > 6+18. The set
of all envy-free prices is delimited by the equations p2 = 3 + p1 and p2 = 16 + p1

and shown in Figure 1 by the shaded area. To obtain the agent-optimal price of
object 1, we find that w(A, I\{1}, J) = 22 and w(A, I\{1}, J\{µ(1)}) = 22, and
by applying equation (8), p∗1 = 22 − 22 = 0. In the same way we can find that
p∗2 = 18 − 15 = 3. Thus the agent-optimal prices are p∗ = (0, 3).

−5 0 5 10 15 20 25
0

5

10

15

20

25

p
1

p 2

Figure 1: The set of envy-free prices

The prices that sum up to C are represented with the line connecting the
points (20,0) and (0,20). The intersection of this line with the shaded region
gives the set of envy-free prices that meet the price constraint. In general, there
are an infinity of prices that are envy-free and meet the price constraint. The
mechanism g that I consider selects, given the announced valuations, envy-free
prices obtained from the agent-optimal prices by increasing all of them by the
same amount so that the price constraint is met. If the announced valuations are
A, then the vector of prices selected by the mechanism is p = (8.5, 11.5) (found
by adding 8.5 to the agent-optimal prices p∗).

The algorithm by Abdulkadiroǧlu et al. [1] would also select the prices p =
(8.5, 11.5). Their algorithm finds the first envy-free price when we move from the
initial price vector p0 = C

n
along the rent constraint. Thus, the price p obtained
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by the algorithm is the most ‘equal’ price among all envy-free prices. In the
example we start from p0 = (10, 10) and reach p = (8.5, 11.5). The proposed
mechanism does not ensure neither nonnegative prices nor individual rationality
since it depends on the magnitude of C.6 In the example, if C < 3 all envy-free
price vectors have at least one negative price and if C > 37 then there is no
envy-free price that would be individually rational.

In general, agents do not have incentives to announce the true valuations.
Agent 1, by announcing the vector b = (2, 18), still gets object 1 according
to the tie-breaking rule but pays 2 instead of 8.5. Since, in order to find an
efficient assignment, what matters is the relative magnitudes of valuations we
can define βi ≡ bi2 − bi1. Then agent i gets object 2 and agent k gets object
1 if βi > βk or if βi = βk and bi1 > bk1. One can check that when agent i
gets object 2 and agent k gets object 1 the agent-optimal prices are given by
p∗1 = max(−βi, 0) and p∗2 = max(βk, 0). It is easy to check that any strategy
profile B where 3 ≤ β1 = β2 ≤ 16 and b11 ≤ b21 is a Nash equilibrium. When
β1 = β2 both assignments are efficient with respect to the announced preferences,
but by announcing b11 ≤ b21 the tie-breaking rule ensures that the mechanism will
select the assignment that is also efficient with respect to the true preferences.

In the proof of the theorem I consider two types of deviations when an agent
feels envy. The first occurs when the agent still gets the same object after the
deviation but the other agent now must pay a higher price and thus, according to
the price constraint, the deviating agent pays a lower price. For example, consider
β2 > β1, β2 > 0 and β1 < 3 and matrix A represents the true preferences. Given
the announced preferences, µ(1) = 1 and µ(2) = 2 and the agent-optimal prices
are p∗1 = max(−β2, 0) = 0 and p∗2 = max(β1, 0). Therefore p1 = p∗1 + (20 −
p∗1 − p∗2)/2 = (20 − max(β1, 0))/2 > 8.5 and p2 = 20 − p1 < 11.5. Agent 1 feels
envy since 15 − p1 < 18 − p2. Agent 1 can deviate and announce β ′

1 = β2 and
b′11 < b21. Then agent 1 still gets object 1 but pays only p′

1 = (20 − β2)/2 < p1

since p′∗1 = max(−β2, 0) = 0 and p′∗2 = max(β ′
1, 0) = β2. Thus he had a profitable

deviation.
The second type of deviation occurs when an agent gets the object he envies

at the price that the agent who was originally assigned to it paid. For example,
if 0 ≥ β2 > β1 and matrix A represents the true preferences then µ(1) = 1
and µ(2) = 2, p∗1 = max(−β2, 0) = −β2 and p∗2 = max(β1, 0) = 0. Agent
1 must pay p1 = (20 − β2)/2 > 8.5 and like in the previous case, feels envy.
Agent 1 can profitably deviate by announcing β ′

1 = β2 and b′11 > b21. After
the deviation the efficient assignment is µ′(1) = 2 and µ′(2) = 1 with agent-
optimal prices p′∗1 = max(−β ′

1, 0) = −β2 and p′∗2 = max(β2, 0) = 0. Agent 1 pays
p′2 = p2 = (20 + β2)/2 < 11.5. A similar profitable deviation exists when β2 = β1

and b11 = b21. Then agent 1 is assigned to object 1 and will feel envy if β1 < 3.
Agent 1 is strictly better off by announcing b′11 > b21 while keeping β ′

1 = β2. If

6An allocation (µ, p) ∈ M ×4C is individually rational if uiµ(i)(pµ(i)) ≥ 0 for all i ∈ I.

10



β1 = 3 then agent 1 is indifferent between getting object 1 and 2. Observe that
the examples discussed cover all the cases when agent 1 could feel envy when he
is originally assigned to object 1.

When there are more than two agents, it gets a little bit more complicated
to demonstrate the existence of a profitable deviation when an agent feels envy.
It may not be anymore possible either to increase the price paid by the agent
who is assigned to the object that is envied or to obtain that object at the price
that the agent who was originally assigned to it paid. For example, consider the
following matrix of announced valuations

B =





5 10 15
5 10 0
0 10 20





and C = 30. The agent-optimal prices are p∗ = (0, 5, 10) and the prices selected
that sum to 30 are p = (5, 10, 15). There are two efficient assignments µ1(1) =
1, µ1(2) = 2, µ1(3) = 3 and µ2(1) = 2, µ2(2) = 1, µ2(3) = 3. The tie-breaking rule
selects the first assignment. Suppose that agent 3 envies object 2 at the given
prices: a32 − 10 > a33 − 15. Agent 3 can not increase the prices of objects 1
and/or 2 and thus decrease the price of object 3 and still get it. And neither he
can obtain object 2 at price p2 = 10. By announcing the vector of valuations
b′3 = (0, 15 + ε, 20) where ε > 0 ensures that µ′(3) = 2 and the agent-optimal
prices will be p′∗ = (0, 5, 10−ε) and the selected prices p′ = (5+ε/3, 10+ε/3, 15−
2ε/3). For ε sufficiently small agent 3 will find it advantageous to deviate since
a32 − 10 − ε/3 > a33 − 15.

5 Proof of The Theorem

Throughout the proof fix a matrix of true valuations A, and assume without loss
of generality that the orders of agents and objects needed to define g are both
1, 2, ..., n.

The set of Nash equilibria contains the set of strong Nash equilibria: OSNE
(A,g) ⊆

ONE
(A,g). To establish the statement of the theorem, one needs to demonstrate,

first, that for every envy-free allocation one can construct a strategy profile B
that is a strong Nash equilibrium of the proposed game (A, g) (Lemma 1) implying
G(A) ⊆ OSNE

(A,g) ⊆ ONE
(A,g); second, that a strategy profile B where an agent feels

envy at allocation g(B) = (µ, p) can not be a Nash equilibrium of the game
(A, g) (Lemma 2) implying OSNE

(A,g) ⊆ ONE
(A,g) ⊆ G(A). Combining the results of

both Lemmas gives the desired result: ONE
(A,g) = OSNE

(A,g) = G(A).

Lemma 1 Let (µ, p) be an envy-free allocation. Then there is a strong Nash

equilibrium B of (A, g) such that g(B) = (µ, p).

11



Proof: Take an envy-free allocation (µ, p) ∈ G(A). Consider the following strat-
egy profile B: each agent i ∈ I announces bi = p + ci1 ∈ Rn where scalars ci

satisfy the following relationship for any two agents i and k: ci < ck if and only
if µ(i) < µ(k). I claim that the given strategy profile constitutes a strong Nash
equilibrium.

Observe that any possible assignment of objects is efficient with respect to B.
The only envy-free price vector is p. The way how the scalars ci for i = {1, ..., n}
were chosen ensures that the unique assignment, selected according to the tie-
breaking rule, will be µ: an agent i who announced the smallest bi1 among all
agents will be assigned to object 1 and by construction it was agent µ−1(1).
Among the remaining n − 1 agents, agent µ−1(2) announced the smallest bi2

therefore he is assigned to object 2, and so forth.
Assume on the contrary that there exists a profitable deviation by a group

of agents T . Given the strategy profile after deviation B ′ = (b
′

T , b−T ), the mech-
anism g selects an allocation (ν, p′). Since before deviation all agents i ∈ T
preferred their object-price pair to any other object-price pair and for a devia-
tion to be profitable it must be that

aiν(i) − p′ν(i) ≥ aiµ(i) − pµ(i) ≥ aiν(i) − pν(i) (12)

with the first inequality strict for at least one agent i ∈ T . It follows that for all
i ∈ T

p′ν(i) ≤ pν(i) (13)

with at least one inequality strict. Thus there exits an object j whose price has
strictly decreased: p′

j < pj. Observe that if T = I it follows immediately that
the new price vector does not sum to C, a contradiction.

If T  I choose one of the objects j whose price has decreased the most.
Since after the deviation the selected allocation g(B ′) = (ν, p′) is envy-free with
respect to the matrix B ′ then for each non-deviating agent i ∈ I\T we have an
inequality

biν(i) − p′ν(i) ≥ bij − p′j. (14)

Using the fact that before the deviation biν(i) − pν(i) = bij − pj since bi = p + ci1

we obtain for each agent i ∈ I\T that

0 > p′j − pj ≥ p′ν(i) − pν(i) (15)

for the assignment ν. Thus it follows that p′
ν(i) < pν(i) for all i ∈ I\T . Combining

it with (13) and summing up over all objects gives

n
∑

j=1

p′j <

n
∑

j=1

pj,

a contradiction since both price vectors must sum to C.

12



Lemma 1 says that an envy-free allocation can be supported as a strong Nash
equilibrium of (A, g). Therefore, if (µ, p) ∈ G(A) then (µ, p) ∈ OSNE

(A,g) . Note also
that the proof does not depend on any particular way the prices are determined
as long as they are envy-free with respect to the announced matrix B.

Lemma 2 Let B be a strategy profile such that g(B) = (µ, p) /∈ G(A). Then B
is not a Nash equilibrium of (A, g).

Proof: Let g(B) = (µ, p) be given and assume that agent i envies object j:

ui(pj) > ui(pµ(i)). (16)

Let p∗ ∈ Rn be the agent-optimal price for B. I will construct a profitable
deviation in two steps. In the first step I increase the announced valuation of
object j by agent i to b′ij which is just enough to ensure that there exists an
efficient assignment ν such that ν(i) = j.7 As a result of the first step deviation
the price of object j either strictly increases or remains the same. Depending on
the case I construct the second step deviation. If the price has increased then
the agent lowers valuation b′ij by an ε. I show that he is still assigned to object
µ(i) but now pays less. If the price of object j did not change after the first
step deviation then the agent now increases valuation b′ij by an ε to secure the
assignment to object j. It is possible that the price of object j increases as a result
of this second step deviation. However, for ε sufficiently small the after-deviation
utility of agent i is still higher than before the deviation.

Thus, in the first step consider a possible deviation b′i where agent i announces

b′ij = w(B, I, J) − w(B, I\{i}, J\{j}) ≥ bij

and b′ik = bik for all k 6= j. According to (9) we can distinguish between two
cases before the deviation. First, there was an efficient assignment ν ∈ MB such
that ν(i) = j. Then we have const1 ≤ w(B, I\{i}, J\{j}) + bij = w(B, I, J).
Then by the construction of the deviation b′ij = bij and w(B′, I, J) = w(B, I, J).
Second, there was no efficient assignment ν ∈ MB such that ν(i) = j. It implies
that w(B, I\{i}, J\{j}) + bij < const1 = w(B, I, J). By substituting this result
for const1 in equation (9) but applied to calculate w(B ′, I, J), it again follows
that w(B′, I, J) = w(B, I, J). Since after the deviation every assignment that
achieves the coalitional worth equal to w(B ′, I, J) is efficient, it follows that all
assignments that were efficient before the deviation remain efficient after. That
is, the deviation b′i was constructed in such a way that no assignment that was
efficient is destroyed by the deviation and if the deviation adds an additional
efficient assignment, it must assign agent i to object j: if ν ∈ MB then ν ∈ MB′

,

7It could be that there already existed an efficient assignment ν such that ν(i) = j, but
according to the tie-breaking rule agent i was assigned to object µ(i). In that case we do not
change the announced valuation bij in the first step at all.
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and if ν ∈ MB′

but ν /∈ MB then ν(i) = j. It follows that µ ∈ MB′

. Therefore
we can take the assignment µ to find the agent-optimal price of any object l ∈ J
after the deviation according to (8):

p′∗l = w(B′, I\{µ−1(l)}, J) − w(B ′, I\{µ−1(l)}, J\{l}). (17)

Since w(B′, I, J) = w(B, I, J) and b′µ−1(l)l = bµ−1(l)l for all l ∈ J because the only

valuation to change was bij but µ(i) 6= j, therefore the second term of (17) does
not change:

w(B′, I\{µ−1(l)}, J\{l}) = w(B ′, I, J) − b′µ−1(l)l = w(B, I, J) − bµ−1(l)l.

By Proposition 1 the first term is weakly increasing in bij:

w(B′, I\{µ−1(l)}, J) ≥ w(B, I\{µ−1(l)}, J).

Therefore none of the agent-optimal prices can decrease as a result of the devia-
tion.

In the continuation I analyze the following two cases:

Case 1 The agent-optimal price of object j strictly increases: p′
∗j > p∗j.

It means that

w(B′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J).

This can happen only if b′ij > bij and there exists an efficient assignment η :
I\µ−1(j) → J for B′ such that η(i) = j. Applying (9) we obtain that8

w(B′, I\{µ−1(j)}, J) = const2 + b′ij > (18)

w(B, I\{µ−1(j)}, J) = max(const1, const2 + bij).

Choose ε > 0 such that

const2 + b′ij > const2 + b′ij − ε > max(const1, const2 + bij).

Now consider a deviation where agent i announces b′′ij = b′ij − ε and b′′ik = bik

for all k 6= j. In what follows I compare the strategy profile after the deviation
B′′ = (b′′i , b−i) with the initial strategy profile B = (bi, b−i). First, after the
deviation the set of efficient assignments does not change MB = MB′′

, and hence
µ ∈ MB′′

is again selected. Second, using the same argument as when discussing
the deviation B′ = (b′i, b−i), none of the agent-optimal prices can decrease as a
result of the deviation. Third, from (18) it follows that

w(B′, I\{µ−1(j)}, J) > w(B ′′, I\{µ−1(j)}, J) > w(B, I\{µ−1(j)}, J),

8Observe that the values of constants const1 and const2 change depending on the sets T ⊆ I
and Q ⊆ J but not on the value of bij while keeping the rest bkl, for k 6= i and l 6= j, fixed.
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and, as a result, p′′∗j = p′∗j−ε > p∗j. Fourth, the agent-optimal price of object µ(i)
does not change pµ(i) = p′′µ(i) since by (8) it does not depend on the valuations of

agent i. Then, according to (11), agent i is strictly better off after the deviation
b′′i , thus strategy profile B was not an equilibrium.

Case 2 The agent-optimal price of object j remains the same: p′
∗j = p∗j.

First I argue that this case implies that none of the agent-optimal prices
will change due to the deviation b′i, namely, p′∗k = p∗k for all k ∈ J . From
Proposition 2, in order to check whether a price vector is envy-free, one may
consider any efficient assignment. Choose µ ∈ MB since by the construction of
B′ the assignment µ ∈ MB′

. Clearly, the only agent who could feel envy under
the price vector p∗ and the assignment µ, given the matrix of valuations B ′, is
agent i and only with respect to object j. Suppose that agent i envies object j.
Then we obtain that

b′iµ(i) − p∗µ(i) < b′ij − p∗j = b′ij − p′∗j = b′iµ(i) − p′∗µ(i),

where the first equality comes from the assumption that p′
∗j = p∗j and the second

equality comes from Corollary 1, since the deviation was constructed to ensure
that there exists an assignment ν ∈ MB′

such that ν(i) = j. However, by (8)
p′∗µ(i) = p∗µ(i), a contradiction. Thus nobody feels envy relative to B ′ under price
vector p∗. And it was argued before that as a result of the deviation b′i, the agent-
optimal prices cannot decrease, therefore p∗ must be the vector of agent-optimal
prices after the deviation.

Now consider a deviation b′′i where agent i announces, for sufficiently small ε,

b′′ij = b′ij + ε

and b′′ik = bik for all k 6= j. After the deviation all efficient assignments will
allocate object j to agent i: ν(i) = j for all ν ∈ MB′′

and B′′ = (b′′i , b−i). In
what follows I compare the situation when the strategy profile B ′ = (b′i, b−i) is
used with the situation when the strategy profile B ′′ = (b′′i , b−i) is used. Take
any efficient assignment after the deviation b′′i : ν ∈ MB′′

. This assignment was
efficient before the deviation: ν ∈ MB′

. Again, agent i cannot affect his own
agent-optimal price, here, the price of object j. According to (8), before the
deviation the price of any object l 6= j is equal to

p∗l = w(B′, I\{ν−1(l)}, J) − w(B ′, I\{ν−1(l)}, J\{l}), (19)

where

w(B′, I\{ν−1(l)}, J\{l}) = w(B ′, I\{ν−1(l), i}, J\{l, j}) + b′ij
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since ν(i) = j. After the deviation b′′ij the second term of (19) has increased by
ε, that is,

w(B′′, I\{ν−1(l)}, J\{l}) = w(B ′, I\{ν−1(l)}, J\{l}) + ε

for all l 6= j. The first term of (19) before the deviation is

w(B′, I\{ν−1(l)}, J) = max(const1, const2 + b′ij).

Therefore, after the deviation b′′ij, it belongs to the interval:

w(B′, I\{ν−1(l)}, J) + ε ≥ w(B ′′, I\{ν−1(l)}, J) ≥ w(B ′, I\{ν−1(l)}, J).

It follows that the agent-optimal prices of objects other than j cannot increase
and each of them can decrease at most by ε: p∗l − ε ≤ p′′∗l ≤ p∗l for all l 6= j.
Since, according to (11), the utility of agent i is increasing in the agent-optimal
prices paid by other agents, consider the worst case: p′′

∗l = p∗l − ε for all l 6= j.
Then the utility of the agent i after the deviation is ui(p

′′
j ) = ui(pj) −

n−1
n

ε. By
(16), for sufficiently small ε,

ui(p
′′
j ) = ui(pj) −

n − 1

n
ε > ui(pµ(i)).

Thus, for sufficiently small ε, announcing

b′′ij = w(B, I, J) − w(B, I\{i}, J\{j}) + ε

is a profitable deviation for agent i and the matrix B could not form a profile of
Nash equilibrium strategies.

From Lemma 2 it follows that if B is a Nash equilibrium of (A, g) it must
be envy-free, that is, if g(B) ∈ ONE

(A,g) then g(B) ∈ G(A). Lemma 1 already

established the converse inclusion G(A) ⊆ OSNE
(A,g) ⊆ ONE

(A,g). Therefore G(A) =

OSNE
(A,g) = ONE

(A,g). Thus I have proven that the mechanism doubly implements the
no-envy correspondence, which associates with each preference profile the set of
envy-free allocations, both in Nash and in strong Nash equilibrium.

Remark 1 Another definition of strong Nash equilibrium is obtained by requiring

that a deviating coalition should have a strategy which makes every member of

the coalition strictly better off. Let us denote the set of strong Nash equilibrium

outcomes relative to (A, g) for this definition by OSNE∗

(A,g) . In general, OSNE
(A,g) ⊆

OSNE∗

(A,g) ⊆ ONE
(A,g) holds true. Since it is shown that OSNE

(A,g) = ONE
(A,g), OSNE

(A,g) =

OSNE∗

(A,g) = ONE
(A,g) holds as well.
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6 Concluding Remarks

Given the announced preference profile, the mechanism selects a particular envy-
free price vector although there may exist other envy-free prices. Beviá [4] demon-
strates that the result extends to other selection rules, both single- and multi-
valued, from the set of envy-free allocations when preferences are restricted to be
quasilinear in money. However, the use of the given price selection rule entails
no loss of generality since with the same rule one can achieve any envy-free price
with respect to the true preferences as an equilibrium outcome of the game. Be-
sides, the given selection rule possesses other desirable characteristics that makes
it a natural candidate to use. In the absence of the price constraint, an envy-
free allocation can be implemented in dominant strategies where envy-free price
vector corresponds to the agent-optimal prices. Once there is an additional price
constraint, the agent-optimal prices will not in general sum to it. The price vector
selected by the mechanism, given the announced preference profile, is simply ob-
tained by increasing or decreasing all agent-optimal prices by the same amount.
Abdulkadiroǧlu et al. [1] propose an algorithm how to find the given price vector
and argue that its functioning resembles market process when the prices of over-
demanded objects increase while the prices of under-demanded objects decrease
in each iteration of the algorithm. They also show that if there exists an envy-
free price vector that is nonnegative (with respect to the announced preferences),
then the price selected by their algorithm must also be nonnegative.

Tadenuma and Thomson [15] established the result for any preference rela-
tion that is continuous and strictly monotone in money. Whether it holds true
for multiple object case is an open question. While the construction of an equi-
librium strategy profile would proceed along the lines of Lemma 1, the reasoning
behind Lemma 2 can not be generalized. Nevertheless, I conjecture that any
strategy profile when an agent feels envy with respect to the true preferences
can be eliminated as an equilibrium outcome due to the continuity and strong
monotonicity of preferences in money.

A feature of the mechanism is that an equilibrium strategy profile B will
usually imply multiple efficient assignments with respect to the announced valu-
ations. Therefore the mechanism always needs to rely on the tie-breaking rule to
select the right assignment. However, the set of possible equilibria is not affected
by the particular tie-breaking rule. One could substitute the present tie-breaking
rule with any other rule that selects correctly the efficient assignment with re-
spect to the true valuations. For example, a valid tie-breaking rule could be that
additionally to their valuations agents announce the object they prefer. In equi-
librium, each agent would announce the object that would be assigned to him if
the true valuations were known. An advantage of the proposed tie-breaking rule
however is that it requires that agents announce only their own valuations.

Notice that the mechanism does not ensure individual rationality, that is,
agents may get lower utility by playing the game than by choosing not to partici-
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pate. Thus it implicitly assumes that agents are forced to participate in the game.
The reason is that the model imposes an exogenous price constraint which if big
enough, rules out the existence of individually rational and envy-free allocations.
On the other hand, if the constraint is variable so that it accommodates individ-
ual rationality, one could simply apply the results of Leonard [10] and Demange
et al. [7] to implement in dominant strategies.

The model explicitly assumes that the number of agents and objects is the
same. If the number of agents exceeded the number of objects one could introduce
fictitious objects and the previous analysis would still apply. However, when the
number of objects exceeds the number of agents, the introduction of fictitious
agents does not work since it implies that some fictitious agent would need to
pay a price or receive a transfer of the object he is assigned to. As a result the
actually paid prices would not meet the price constraint.

7 Appendix: Proofs of Propositions 1 and 2

Proposition 1 Given a matrix of valuations A, the coalitional function w(A, T,Q)
is continuous and weakly increasing in aij.

Proof: If either i /∈ T or j /∈ Q then w(A, T,Q) does not depend on aij and can
be treated as constant - obviously continuous and weakly increasing in aij. As-
sume that i ∈ T and j ∈ Q. Given a solution (xkl)(k,l)∈T×Q to the primal problem
(1)-(5), either xij = 0 or xij = 1. It follows that the maximal value w(A, T,Q) is
either the maximal value of the linear programming problem (1)-(5) subject to
the additional constraint that xij = 0, or it is the maximal value of the problem
(1)-(5) subject to the additional constraint that xij = 1, which ever is greater.
Given this result, we can write equation (1) as

w(A, T,Q) = max(const1 + aij · 0, const2 + aij · 1), (20)

where
constr =

∑

(k,l)∈T×Q\{(i,j)}

aklxkl

given the solution (xkl)(k,l)∈T×Q to (1)-(5) subject to the additional constraint
xij = 0 (r = 1) or subject to the additional constraint xij = 0 (r = 2). The
function in (20) is obviously continuous and weakly increasing in aij. Note that
const2 = w(A, T\{i}, Q\{j}) since agent i has been assigned to object j and each
agent can be assigned to at most one object and vice versa.

Proposition 2 Given a matrix of valuations A, the set of envy-free prices is the

same for all efficient assignments of objects.

Proof: Take any two efficient assignments µ1 and µ2. Assume, on the contrary,
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that the price vector p is envy-free for the assignment µ1 but it is not envy-free
for the assignment µ2. Envy-freeness of µ1 implies that

aiµ1(i) − pµ1(i) ≥ aiµ2(i) − pµ2(i) (21)

for all i ∈ I. Assume without loss of generality that agent 1 envies object j under
assignment µ2:

a1µ1(1) − pµ1(1) ≥ a1j − pj > a1µ2(1) − pµ2(1). (22)

Summing up equation (21) across all agents and using equation (22) we obtain

∑

i∈I

aiµ1(i) −
∑

i∈I

pµ1(i) >
∑

i∈I

aiµ2(i) −
∑

i∈I

pµ2(i),

contradicting the assumption that µ2 was an efficient assignment.
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