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Abstract

In this paper the issue of mathematical programming and optimization has being 

revisited. The theory of optimization deals with the development of models and methods 

that determine optimal solutions to mathematical problems defined. Mathematical model 

must be some function of any solution that accompanies a value which is a measure of 

quality. In mathematics Kuhn-Tucker conditions are first order necessary conditions for 

a solution in non-linear programming. Under, certain specific circumstances, Kuhn-

Tucker conditions are necessary and sufficient conditions as well. In this paper it is also 

introduced the use of these mathematical methods of optimization in economics.
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1. Introduction

The theory of optimization deals with the development of models and methods 

that determine optimal solutions to mathematical problems defined. Optimal solution of

a mathematical problem defined is denoted by  .

To conclude that a solution is optimal, there must be a measure that determines 

its quality and allows its comparison with other possible solutions. The mathematical 

model must be some function of any solution that accompanies a value which is a 

measure of quality. This function is usually called objective or cost  function and usually 

is marked with Mathematical optimization task is to determine a solution that 

provides optimal (minimum or maximum) value of

The value of the function   corresponding to the optimal solution is 

called optimal  value.

Nonlinear programming (NP) belongs to a group of dynamic methods for solving

a large class static control tasks. Each control task in which the objective function  XF

and a set of constraints defined by nonlinear dependencies (objective function with

nonlinear function, and set limits with nonlinear algebraic equations or inequalities), 

down to the task of NP, whose optimal solution is found by any of the convenient

methods which is most suitable for finding the particular solution.

2. Setting the task

The general formulation of the NP task can be expressed as follows: Find the 

value of  n dimensional vector

                                                            ,,...,, 21 nxxxX     

for which the objective function

                                                                  ,XF                                                              (1)

gets the maximum (minimum) value, and thereby be satisfied constraints
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                                                    ,0XG                                                      (2)

                                                                         ,0X

where  XG is m dimensional vector function whose components are 

      .,...,, 21 XgXgXg m

The mathematical model of the general task of NP (1) - (2), which is written in the

most general form, involves determining those values nxxx ,...,, 21 for which the objective

function

 ,,...,, 21 nxxxF

gets the maximum (minimum) value when the constraints

  ,0,...,, 21 ni xxxg  ,,...,2,1 mi 

,0jx   .,...,2,1 nj 

Often, it is common expressions in equations (2) are called conditions and restrictions

inequality. Indexes m and n mutually independent, i.e. m can be less, equal or greater 

than n . Functions  XF and  ,Xgi  ,,...,2,1 mi  in general are nonlinear functions, 

hence the name nonlinear programming.

For convex functions the task of NP formulated in the form (1) - (2), which requires a 

minimum of objective function  XF . However, concave objective function and a set of 

constraints, the task of NP is formulated through the maximization of the objective 

function  XF set limits   0Xgi ,  .,...,2,1 mi  Reducing task of (1) - (2) the task of 

maximizing the objective function

                                                               XF ,                                                           (1’)

the set of constraints

                                                             ,0X                                                            (2’)
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and bring the task  (1 ') - (2') to the task of (1) - (2), it is not  difficult, given that in the

first and in the second case it is necessary to alter the sign function, i.e. instead  XF

you need to put   XF , or instead  XG put   XG and change the sign in the 

inequality of set constraints. In the opposite case requests are handled in the same

way.

Therefore, no matter whether we are talking about the task (1) - (2) or task (1 ') -

(2'). This feature will often use, and when it will have in mind that when it comes to the 

task (1) - (2), while talking about the task (1 ') - (2'), and vice versa. Because of these

two tasks, which are formally different, is referred to as a single task.

3. Theorem of Kuhn and Tucker

Theorem of Kuhn and Tucker1 in the literature often referred to as  theorem

saddle point. Occupies a central place in the theory of convex programming and is a

generalization of the classical method of Lagrangian multipliers.

As is known, the method of Lagrangian multiples (multipliers) provides finding

extreme values of functions which depend on several variables, and constraints that are

set by default draws. However, the theorem of Kuhn and Tucker generalizes method of

Lagrangian multipliers, expanding it by finding the extreme values of a function that

depends on several variables, but when set limits are not given but only draws and

inequality. Theorem of Kuhn and Tucker gives a necessary and sufficient condition must 

meet the vector *XX  , which is the solution of the task ( 1 ) - ( 2 ) . The criteria for 

meeting the necessary and sufficient condition is established and verified based on 

                                                          
1 Kuhn H.Tucker A., Non-Linear Programming, Proceedings of the Second Berkeley 

  Symposium on Mathematical Statistics and Probality, University of California Press,

  Berkeley, California, 1950
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generalized Lagrangian function   ,X . The establishment of the post  m - introduce 

new variables called Lagrange multiples or multipliers , which will contain the 

m ,...,, 21 . In other words, the Lagrangian multipliers are composed of components m -

dimensional vector  of which depends generalizes Lagrangian  function  which is 

dependent on the function of  mn    the variables  ),( X that are set as follows

                                           .,
1




m

i

XgXFX ii                                                      (3)

Even now you can give a precise definition of the theorem of Kuhn and Tucker as 

follows:

Vector *XX  is a solution to the task of NP, defined for finding the minimum of 

the function (1) with constraints (2), and then only when there is a vector * such 

that

                                   ,0* X        ,0*                                                             (4)

                                                                                                                                                                                                          

for all values of 0X  , .0

Then the function Ф at the point ),(  X must have a global minimum in the 

area 0X in terms of X and global maximum in the area ,0*  the terms of   , or 

in other words: ),(  X is a not negative saddle point for function  .

         Therefore this theorem is often called saddle point  theorem, given that the task of 

minimization  XF corresponds to the task of determining saddle point function  in 

which all the constraints are preserved only limitations to sign. The solution X of  

minimax task is both a solution of the minimization function  XF and vice versa.

We will show that the conditions (4) and (5) are sufficient. Let's  ),(  X sedlesta point

function in terms of the definition (5). Introducing replacement value of  over

expression (3) and (5) we get

( , ) ( , ) ( , ) (5)X X X          
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           ,
11

**

1

** ** 



m

i

m

i

m

i

XgXFXgXFXgXF iiiiii 

for all values of

,0X    .0

As the left inequality in the previous expression must be met for each  , then

                                                                   ,0* Xgi      ,,...,2,1 mi 

i.e. X an admissible plan,  because the area belongs to (D) which is defined by a set 

of  constraints  and  conditions

                                                           .0
1

** 


m

i

Xgii

The right inequality thus taking shape

      ,
1

* *



m

i

XgXFXF ii

for all values ,0X where  given the condition ,0*  it follows that

                                                         *XF   XF ,

for all values 0X that satisfy the conditions

                                                ,0Xgi            ,,...,2,1 mi 

because the value of X   is the solution of the task (1) - (2).

That the conditions (4) and (5) are required to obtain the regularity assumption upon 

which, in a pinch, there is at least one point X  X (admissible plan) such that

                            Xig <0,  ,,...,2,1 mi 

it is necessary to emphasize that the introduction of the presumption of regularity is

unnecessary for all functions  Xgi which appear as linear features (details of the proof
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here will not say). In any case, when the set limits is linear theorem of Kuhn and Tucker

does not have any restrictions.

            When functions   XF and  Xgi are differential, conditions (4) and (5) are

equivalent to the following 'local' conditions of Kuhn - Tucker:

                                              









































,0

,0

,0

*

*

**,

**,

j

j
j

j

x

x
x

x

X

X

        ,,...,2,1 nj                                    (6)

                                           









































.0

,0

,0

*

**,

**,

i

i
i

i

X

X








     ,,...,2,1 mi                                           (7)

            The terms of the Kuhn - Tucker remain valid and in some changes to the setup

of the task (1) - (2). Thus, for example, you happen to setting task constraints not 

present ,0jx   .,...,2,1 nj  In this case the three conditions (6) are replaced with only

one condition

                                                   
.0

**,











Xjx
                                                            (8)

For  the case when the functions  Xgi are linear,  the conditions  (7) is replaced by the 

condition

                                                    ,0
**,











Xi
                                                            (9)

which  is  a second  way of  writing requirement

                                          ,0Xgi              .,...,2,1 mi 
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Multipliers i ,  mi ,...,2,1 here are not restricted in terms of sign.

Finally, when the constraints  Xgi are linear and defined by the equation

                                                            ,0Xgi

conditions (6) and (7) are reduced to conditions (8) and (9), which represent a classic 

case of the method of Lagrange multipliers.

4.Constrained and unconstrained optimization 

In the classical optimization problem, the first condition for optimization is the first partial 

derivative of the Lagrangian function. Now, in nonlinear programming2there also exists 

a similar type of first-order condition, Chiang, Wainwright (2005)3. First will take one 

variable case and then two variables case. So let’s consider this problem:

                                                                                           (10)

subject to                                                                                                  (11)

In the previous expression it is assumed that is differentiable. Chiang 

,Wainwright(2005),here pose three solutions, first  ,and this is an interior 

solution of the problem4. Second, also there may be solution where ,and 

.An the third solution is . And these three conditions can be 

consolidated into one single condition:

                                                                                

(12)

                                                          
2Kuhn,H.,W.,,Tucker,W.,A.,(1951), Nonlinear programming, Second Berkeley symposium on Mathematical 
statistics and probability
3 Chiang, A., Wainwright, K.,(2005), Fundamental methods of mathematical economics, 4thed.,Mcgraw Hill 
4 This solution is interior because it lies is the region below the curve, where the feasible region is. 
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Now, for the two variables case,Wainwright(2007)5, let’s consider a utility function, and 

for the maximization problem, are some goods that constitute the bundle of goods, 

consumer maximizes his/hers utility by consumption of this gods but,every consumer 

faces budget constraint ,which is given with the following expression :

                                                                                                                         

(13)  

subject to (14)

                            and                                                                                                     

(15)

With a ration 6has been imposed to be grater or equal to .We now have two 

constraints but with the Lagrange method, this can be solved by adding second 

constraint in a same manner as first :

                                                

(16)                     

In the previous expression we know that budget constraint is binding, but 

may be not binding. The Kuhn Tucker conditions for previous problem are given 

as;

(17)

(18)

(19)

(20)

                                                          
5 Wainwright K.,(2007), Econ 400 lecture notes, Simon Fraser University
6 In the expression is the ration or the fixed portion of food allotted to some person. 
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Now from   , we require 

that , and either ,or . In the previous 

expression can be interpreted as the marginal utility of the budget. If the budget 

constraint is not met that, .

the ration constraint also is ,or . Here is interpreted as the marginal 

utility of relaxing ratio constraint. If we assume that , , the first order 

condition for maximization will become:

                                                                                                        

(21)

(22)

                                                                                                         

(23)

First, we find a solution  and ,and these two might be first solution if we did not 

ignored the constraints. Now, if the solution is not correct by iteration we assume that 

and ,so here we use both constraints and we assume that they are binding 

                                                                                            (24)              

(25)

                                                                                             (26)           

                                                                                                           (27)              

With such constraints the solution will be where the two constraints intercept. Now 

about setting up the Lagrange conditions, this conditions can be set up for a minimum 

or a maximum,now let the function and other function   for every 

,and we have to consider following optimization problem:
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                                                                                                                   (28)                           

                                                      Subject to              (29)                   

The set of points , is a feasible set. It means that is every point 

x lies in that area the solution is optimal. Now if there exist such a solution that 

where ,now we say that ith constraint is a binding constraint, Varian (1992)7. 

Otherwise if  ,we say that ith constraint is a slack constraint or that is not 

binding. Now, the Kuhn-Tucker theorem states as in Varian (1992), that, if there such a 

point that solves the optimization problem subject to , 

and the constraint qualification holds at , then there exist a set of Kuhn-Tucker 

multipliers , such that this equality holds 

i.e. ,furthermore this conditions for slackness hold such that 

, 8and the second condition . Comparing the Kuhn-

Tucker theorem to the Lagrange multiplier theorem the major difference is that the signs 

of the Kuhn-Tucker multipliers can be positive, and the Lagrange multipliers signs can 

be positive or negative. The Lagrangian for this problem subject to 

, is given as, , so when the problem is set 

to be like this Kuhn-Tucker conditions will always be non-negative9.Now, the envelope 

theorem10, exist in its regular version (unconstrained), and irregular version constrained, 

this is basic theorem for solving problems in microeconomics. Now lets consider some 

arbitrary problem11:

(30)    

Where the function, where gives the maximized value of the objective function 

as a function of parameter . Now let be the argument of the maximum value of , 

                                                          
7 Varian, R.,H.,(1992),Microeconomic analysis, third edition 
8 is some whole real number 
9 That is because , and the sum of negative numbers is negative number 
10Kimball, W. S., Calculus of Variations by Parallel Displacement.London: Butterworth, p. 292, 1952.
11E3m-lab,Lecture notes,(2011),Basics for mathematical economics,National technical university of Athens, 
Institute of communications and computer systems
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that solves the maximization problem in terms of the parameter . Now, that 

     (31)

That is derivative of   M with respect to a is given by the partial derivative of with 

respect to . 

5. Conclusion 

In mathematics Kuhn-Tucker conditions are first order necessary conditions for a 

solution in non-linear programming. Under, certain specific circumstances, Kuhn-Tucker 

conditions are necessary and sufficient conditions as well. Mathematical programming 

is capable of handling inequality constraints, and apart from its obvious application to 

industrial problems and in business management, it also enables economists to see the 

theory of consumption, production, and resource allocation in a new light, Chiang 

(1984).But some of the limitations of mathematical programming are: variables are 

assumed to be continuous (in practice more of the variables may admit integer 

values),and the static nature of the solution. 
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