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Abstract
This paper extends recent research on the behaviour of the t-statistic in a long-horizon re-
gression (LHR). We assume that the explanatory and dependent variables are generated
according to the following models: a linear trend stationary process, a broken trend station-
ary process, a unit root process, and a process with a double unit root. We show that, both
asymptotically and in finite samples, the presence of spurious LHR depends on the assumed
model for the variables. We propose an asymptotically correct inferential procedure for test-
ing the null hypothesis of no relationship in a LHR, which works whether the variables have
a long-run relationship or not. Our theoretical results are applied to an international data
set on money and output in order to test for long-run monetary neutrality. Under our new
approach and using bootstrap methods, we find that neutrality holds for all countries.
Keywords: Long-horizon regression, asymptotic theory, deterministic and stochastic trends,
unit roots, structural breaks, long-run monetary neutrality.
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Resumen
Este art́ıculo extiende investigación reciente sobre el comportamiento del estad́ıstico t en
una regresión de horizonte largo (RHL). Suponemos que la variable explicativa y la depen-
diente son generadas de acuerdo a los siguientes modelos: un proceso lineal estacionario en
tendencias, uno de tendencia quebrada, uno de ráız unitaria, y uno con doble ráız unitaria.
Mostramos tanto asintóticamente como en muestras finitas, que la presencia de RHL espuria
depende del modelo asumido para las variables. Proponemos un procedimiento de inferencia
asintóticamente correcto para probar la hipótesis nula de no relación en una RHL, el cual
funciona ya sea que las variables tengan una relación de largo plazo o no. Nuestros resul-
tados teóricos son aplicados a un conjunto internacional de datos sobre producto y dinero
para probar neutralidad monetaria de largo plazo. Bajo nuestro nuevo enfoque, y usando
métodos de remuestreo, encontramos que la neutralidad se mantiene para todos los páıses.
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1 Introduction

Valkanov (2003) studies the asymptotic behaviour of the -statistic in a long-horizon re-

gression and finds that, under a local-to-unity framework in an  process, this statistic

diverges, even when both variables are generated independently of each other. A similar

divergent behaviour of the -statistic is reported in Lee (2007) for the case of independent

fractionally integrated processes.

This has potentially important implications for statistical inference in areas of economics

in which Long-Horizon Regressions (LHRs) have been used; for example in the areas of stock

returns predictability, the Fisher effect, monetary neutrality, and the exchange rate and

fundamentals.1 For instance, a popular time-series approach for testing long-run monetary

neutrality, put forward by Fisher and Seater (1993), is based on the time series properties of

money and output, and on the -statistic in a long-horizon regression model. In this context,

divergence of the -statistic would indicate, with probability approaching one as the sample

size grows to infinity, a long-run relationship between money and output, i.e., rejection of

the (long-run) monetary neutrality proposition.

After more than two decades of research on testing for unit roots, there is still no consen-

sus on the source of persistence in the long-run behaviour of many macro variables. There

is a variety of empirical models in the literature that support different types of long-run

nonstationary behaviour, with linear trends, linear trends with breaks and unit roots being

very popular ones.2

In this paper, we study the asymptotic behaviour of the -statistic in a long-horizon

regression under different combinations of linear trends, linear trends with breaks and unit

root processes among the dependent and explanatory variables. This has not been explored

before in the literature of long-horizon regressions, and has important inferential implications

in applied work in economics.

Our results show that the asymptotic spurious long-horizon regression phenomenon de-

pends on the assumed data generating process for both the dependent and the explanatory

variables. For instance, we corroborate Valkanov’s finding when both variables follow a unit

root, but we also find that when the explanatory variable follows a unit root while the de-

pendent follows a linear trend, then the -statistic does not diverge. On the other hand,

when both variables follow a broken trend model, the statistic diverges, spuriously rejecting

1See Valkanov (2003) for an interesting discussion of the first three areas in the context of LHR, and

Chen and Chou (2010) for empirical evidence on the relationship between exchange rates and fundamentals.
2There is also a literature on testing for a unit root against some non-linear alternative model, as the

Threshold Autoregressive models, Smooth Transition Autoregressive models, and the Markov Switching

models (see for instance Caner and Hansen (2001), Kapetanios, et. al. (2003), and Nelson, et. al (2001)).

The analysis of these cases is out of the scope of the paper.
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the null of no relationship (between independent variables). We arrive at such conclusion

from the calculation of the order in probability for the -statistic in a long-horizon regression.

In general, we find that a spurious long-horizon regression problem will arise whenever the

dependent variable, the explanatory variable, or both, are hit by a permanent shock, which

could be of an stochastic or deterministic nature. In order to alleviate this problem, we

introduce a procedure that asymptotically guarantees correct inference, whether the vari-

ables have a long-run relationship or not: given a significance level, when the variables are

independent, the null of no relationship will not be rejected, while when the variables are

cointegrated, the null will be rejected, correctly indicating a long-run relationship.

We also present new evidence on monetary neutrality for the international data set an-

alyzed in Noriega (2004) and Noriega et. al. (2008), which comprises money and output

data for Australia, Argentina, Brazil, Canada, Italy, Mexico, Sweden, and the UK. Based on

our asymptotic results, we test for long-run neutrality by rescaling a bootstrapped -statistic

in a long-horizon regression for each country, using output and money data generated from

models identified by Noriega et. al. (2008). Our results indicate that, in all cases, monetary

neutrality cannot be rejected.

We discuss in section 2 the issue of the trending mechanisms for the variables. Section

3 presents the asymptotic results, which we derive both under the null of no long-run rela-

tionship between the variables, and under the alternative of cointegration. The finite sample

counterpart of our limit theory is analyzed in section 4 via simulations. Section 5 presents

the empirical application of testing for monetary neutrality. The final section concludes.

2 Trending mechanisms for the data

Since the early 1980s, a great deal of effort has been devoted to uncover the trending nature

of economic time series.3 However, the issue has not been resolved yet, and while there are

authors who favor the use of stochastic trends for macro data, there are others in favour of

deterministic ones. Some have even argued that data can be uninformative as to whether

the long-run trend is better described as deterministic or stochastic.4

In general, the empirical literature has shown that the long-run behavior of macro data

can be well characterized using linear deterministic trends, linear deterministic trends with

3Some examples of this can be found in Nelson and Plosser (1982), Perron (1989, 1992, 1997), Murray

and Nelson (2000), Cook (2005), Assaf (2008), Maslyuk and Smyth (2008), Rahman and Saadi (2008), and

Kim and Perron (2009).
4For an analysis on whether the long-run trend function of US real output should be modelled as trend

stationary or difference stationary see, among others, Rudebusch (1993), Diebold and Senhadji (1996), Nelson

and Murray (2000), Papell and Prodan (2004), Vougas (2007), and Darne (2009).

2



structural breaks, or stochastic trends. As an example of this set of models, Noriega et.

al. (2008, NSV hereafter) found that for Australia, Sweden and the UK, long-annual data

on output and money seem to be well characterized by a Broken Trend Stationary ()

model. As an illustration, the case of Australia is reproduced in Figure 1, where the data is

shown ( is real output and  is money) together with its respective fitted (broken) trend.

Figure 1

Long-run trend for Australia output and money

 ∼ (0) + 3 breaks  ∼ (0) + 2 breaks
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Note: L (LT) stands for Level (Level and Trend)

NSV also find that for Canada,  seems to follow a linear trend model, while  a broken

trend one. For Argentina and Mexico,  follows a  model, while  a unit root one. For

Brazil  follows a  model, while  follows a double unit root process. Furthermore, for

the US and Denmark, deviations of  and  from a linear trend seem to reject a unit root,

making  and  Trend Stationary, or . Finally, for Italy, a unit root [or (1)] model was

most supported by the data for both  and .

From the above examples, and indeed from many other examples in the empirical litera-

ture, it seems reasonable to assume that linear trends, broken trends, and stochastic trends

are capable of adequately represent the long-run behaviour of macro data. We therefore

study inference using Long-Horizon Regressions (LHRs) under four DGPs, described in the

following assumption:
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Assumption. The  s for  =   are as follows

Case Name Model

1.   =  + + 

2.   =  +  + +  + 

3. (1) ∆ =  + 

4. (2) ∆2 = 

where  and  are independent innovations obeying the general level conditions of As-

sumption 1 in Phillips (1986), and ,  are dummy variables allowing changes in the

trend’s level and slope respectively, that is, = 1(  ) and = (−)1(  ),

where 1(·) is the indicator function, and  is the unknown date of the break in . We de-

note the break fraction as  = ( ) ∈ (0 1) where  is the sample size. The  s

include both deterministic and stochastic trending mechanisms, with 12 possible nonstation-

ary combinations of them among the dependent and explanatory variables.5 Note that the

(2) case is restricted to the  variable only. This is so because of our particular interest

on testing for monetary neutrality, which we explore in Section 5. In this regard, empirical

evidence suggests that the (2) case might be relevant for nominal variables in levels, such as

the level of monetary aggregates or the price level, but not for data in real terms, or growth

rates of nominal data.6

Lemma 1 collects useful results on the innovations of the Assumption for subsequent

analysis. The proof is given in Appendix 1.

Lemma 1. For  =  , let the random variables {}∞1 obey Assumption 1 in Phillips

(1986, p. 313). Define
P

=1 −+1 = , and let the sample size  and the length of the

horizon  grow such that 

→  ∈ (0 1) when both  →∞ and  →∞. Then

) −12
P

=+1( − −) ≡  = (1)

) −1
P

=+1( − −)2 ≡ 2 = (1)

) −12
P

=+1( − −)( − −) ≡  = (1)

) −32
P

=+1  ≡  = (1)

) −2
P

=+1 
2
 ≡ 2 = (1)

) −2
P

=+1  ≡  = (1)

) −32
P

=+1( − −)( −−) ≡  = (1)

) −1
P

=+1 ( − −) ≡  = (1)

) −52
P

=+1 ( −−) ≡  = (1)

5The cases of (1) processes with fractionally integrated processes is studied in Lee (2007).
6See for instance Juselius (1996, 1999), Haldrup (1998), Muscatelli and Spinelli (2000), Coenen and Vega

(2001), and Nielsen (2002).
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The asymptotic analysis of next section will make use of sample moments of the models

in the Assumption. We collect them in Lemma 2 by factoring out descending powers of

the sample size. In this way, the orders in probability can be determined by retaining only

the asymptotically relevant terms, upon a suitable normalization. We omit the proof since

these sample moments can be obtained by (sometimes tedious but) direct calculation, using

results in Lemma 1.7

Lemma 2. If, for  =  , the random variables {}∞1 obey Assumption 1 in Phillips

(1986, p. 313) and 

→  ∈ (0 1) when both  →∞ and  →∞, then the sample moments

of ∗ ≡
P

=1∆
hi−+1, can be written as follows:

) For the case of  following a  process:

)
P

=+1 
∗
 = (1− )

2 + 
12

)
P

=+1 
∗2
 = 2(1− )2

3 + 2
32 + Su2

)
P

=+1 
∗

∗
 = 2(1− )

3 + 
¡
 + 

¢
 32 + 

12

) For the case of  following a  process:8

)
P

=+1 
∗
 =

©
(1− ) +

£
(1− )− 1

2
2
¤

ª
 2 +( )

)
P

=+1 
∗2
 =

©
(1− )22 + 

£
2 (1− )− 2

¤
 +

£
(1− )2 − 2 +

1
3
3
¤
2
ª
 3

+( 2)

)
P

=+1 
∗

∗
 = [

2(1− ) + 
£
(1− )− 1

2
2
¤

+
£
(1− )− 1

2
2
¤
+ ]

3 +( 2)

where  ≡ 1
3
(− )

3
+ 1

2
 (− )

2
+  (− )− 1

3
(− )

3 − 1
2
 (− )

2

+1
2
2 + (1− − )

2, and  =  − 

) For the case of  following an (1) process:

)
P

=+1 
∗
 = (1− )

2 + 
32

)
P

=+1 
∗2
 = 2(1− )2

3 + 2
52 + SSu2

2

)
P

=+1 
∗

∗
 = 2(1− )

3 + 
£
 + 

¤
 52 + 

2

) For the combination where  follows a  process, while  a  process (for the reverse

case simply interchange the  and  subscripts):P

=+1 
∗

∗
 =

©


2(1− ) + 
£
(1− )− 1

2
2
¤ª

 3 + ( +
1
2
)

2 +

( +  +  ) 32 +( )

) For the combination where  follows a  process, while  an (1) process (for the reverse

case simply interchange the  and  subscripts):

7Calculations were assisted by the software Mathematica 6.
8For the  processes we compute the sample moments assuming that    and +  1  = .

These assumptions imply that the break occurs in the first half of the sample, and does not affect results in

terms of order of magnitude. This also applies to cases ) and ) below.
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P

=+1 
∗

∗
 = 2(1− )

3 +  ·  52 +  ·  32 + 

) For the combination where  follows a  process, while  an (1) process (for the

reverse case simply interchange the  and  subscripts):P

=+1 
∗

∗
 =

©
2(1− ) + 

£
(1− )− 1

2
2
¤ª

 3+(+ ) 52+

(
2)

As expected, deterministic trends dominate asymptotically. These moments represent

the main input for the asymptotic analysis of next section.

3 Asymptotics for long-horizon regressions

In this section we will be concerned with the asymptotic behaviour of the -statistic  for
testing the null hypothesis 0 :  = 0 in the following estimated long horizon regression:

∗ = b + b∗ +b (1)

where ∗ ≡
P

=1∆
hi−+1, for  =  ;  is a mean zero random variable, and∆ represents

the difference operator (∆ ≡ (1 − ) =  − −, where  is the lag operator). The

notation hi refers to the order of integration of , i.e. hi = 1 means that  is integrated of
order one, (1).

In the literature of monetary neutrality for example, equation (1) is the vehicle advocated

by Fisher and Seater (1993) for testing long-run monetary neutrality (for the case of hi = 1)
and superneutrality (for the case of hi = 1, hi = 2).
In the asymptotic analysis of this paper, we allow both the sample size  and the length

of the horizon  to grow, but restrict their ratio to converge to a finite constant, i.e., 

→

 ∈ (0 1) when both  →∞ and  →∞ [this is the approach followed by Richardson and

Stock (1989), Valkanov (2003), and Lee (2007)]. Equation (1) can be written in matrix form

 =  + , with  a  × 1 vector of  data, with
P

=1∆
hi−+1 as its t element, 

a  × 2 matrix comprising a constant term and data on  with
P

=1∆
hi−+1 as its t

element, and  a  × 1 vector of zero mean disturbances.
The vector of  estimators is defined as:

b =
" bb

#
= ( 0)−1 0

where

 0 =

"
 (1− ) Σ

=+1
∗


Σ
=+1

∗
 Σ

=+1
∗2


#
, and  0 =

"
Σ
=+1

∗


Σ
=+1

∗

∗


#
.

6



The -statistic is defined by

 = b £b2( 0)−122
¤−12



where b2 is the estimated regression variance,
b2 = Σ

=+1(
∗
 − b − b∗ )2
 (1− )

and ( 0)−122 denotes the 2
 diagonal element of ( 0)−1. As an illustration on the use

of this framework, the long-run neutrality (LRN) proposition is verified using  via testing
the null hypothesis 0 :  = 0 in (1). Under 0, LRN holds, while rejection of the null

implies failure of monetary neutrality.

We compute the order of magnitude and the asymptotic distribution of  with the aid
of a Mathematica 6.0 code. For each combination of DGPs in the Assumption for  and ,

we use the following steps, which we accompany with some lines from the code (Appendix 2

presents an example of the complete code).

1. We define the (symmetric) 2× 2 matrix  0, with elements

11 =  (1− ),

12 = 21 = Σ
=+1

∗
 ,

22 = Σ
=+1

∗2
 ,

and the 2× 1 vector  0 with elements

1 = Σ
=+1

∗
 ,

2 = Σ
=+1

∗

∗
 .

We also define 1 = Σ
=+1

∗2
 for the calculation of the error variance.

In the case of estimating equation (1) using as DGPs the (1) model: ∆ =  + 

 =  , the matrices in the Mathematica code will include the following objects (see part

c) in Lemma 2):

11 = (1− ) ∗  ;
12 = 21 =  ∗ (1− ) ∗  ∗  2 +  ∗  32;
22 = 2 ∗ (1− ) ∗ 2 ∗  3 + 2 ∗  ∗  ∗  ∗  52 + 2 ∗  2;
1 =  ∗ (1− ) ∗  ∗  2 +  ∗  32;
2 = 2 ∗ (1− ) ∗  ∗  ∗  3 +  ∗ ( ∗  +  ∗ ) ∗  52 +  ∗  2;
1 = 2 ∗ (1− ) ∗ 2 ∗  3 + 2 ∗  ∗  ∗  ∗  52 + 2 ∗  2;

The asymptotic behavior of  and 2, for  =  , and  is presented in

Lemma 1.
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2. We compute the OLS estimators of b and b from the product of ( 0)−1 and  0, and

call them ‘alpha’ and ‘delta’ in the code, as follows:

 =

Ã
11 12

21 22

!
;

 = [];

 = [[[1 1]] ∗ 1 + [[1 2]] ∗ 2];
 = [[[2 1]] ∗ 1 + [[2 2]] ∗ 2];

3. Next, we define the numerator and denominator of alpha and delta, labeled ‘alphanum’,

‘alphaden’, ‘deltanum’, ‘deltaden’, and use Mathematica to find the maximum exponent of

 of the elements of both the numerator and denominator of alpha and delta, which we call

‘expalphanum’, ‘expalphaden’, ‘expdeltanum’ and ‘expdeltaden’. For instance, for the case ofb the code would be:
deltanum=Numerator[delta];

deltaden=Denominator[delta];

expdeltanum=Exponent[deltanum,T ];

expdeltaden=Exponent[deltaden,T ];

4. We then useMathematica to find the limit of the numerator and denominator of alpha and

delta normalized by  to the corresponding maxima powers ‘expalphanum’, ‘expalphaden’,

‘expdeltanum’ and ‘expdeltaden’. We call these limits ‘numalpha’, ‘denalpha’, ‘numdelta’

and ‘dendelta’. In this way, we only preserve the asymptotically non-negligable terms of the

numerator and denominator of the OLS estimators. Again, for the case of b the code would
look like:

numdelta=Limit[Expand[deltanum/T expdeltanum], →∞];
dendelta=Limit[Expand[deltaden/T expdeltaden], →∞];

5. The asymptotic distribution of the OLS estimators is then found by dividing the limits

of the numerator and denominator obtained in the previous step. The order of magnitude is

found by multiplying these ratios by the ratio of the maximum powers of  . For instance,

the order of magnitude for b (and the asymptotic distribution) comes from the following

code line:

deltalim=(numdelta/dendelta)*(T expdeltanum/T expdeltaden);

6. We then follow the same steps for the error variance and the 2 diagonal element of

( 0)−1.

7. From this code, we get the asymptotic behaviour for the three components of the -

statistic, which can be then assembled. For instance, in the example used above with both 

and  following an (1) model, theMathematica output shows that b = (1), b2 = ( ),
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and ( 0)−122 = (
−2), from which we can deduce that: b £−1b2 2( 0)−122

¤−12
=

−12 converges, implying that  diverges at rate
√
 , or in other words, that  =

(
12).

Following this procedure for each combination of  s in the Assumption, it is straight-

forward to prove the following theorem, which collects the main results. In the Theorem,

a combination of  s is indicated by the pair  − , ( = 1 2 3  = 1 2 3 4) indicating

that  is generated by case , while  by case , both defined in the Assumption. Thus, for

instance, the combination 1− 3 corresponds to model (1) where  is  (case 1), while 
is (1) (case 3).

Theorem 1. The order in probability of  in model (1) depends on the combination of
DGPs for  and  in the Assumption, as follows:

a)  = (1) for combination of cases 1−   = 1 2 3 4 and − 1  = 1 2 3;
b)  = (

12) for combination of cases −   = 2 3 and  = 2 3 4;

where  and  are generated independent from each other.

Theorem 1 shows that, even when  and  are generated independently from each other,

the null hypothesis will be (spuriously) rejected in large samples when both variables follow

a  process, or a unit root process. Furthermore, this phenomenon will prevail whenever

a single or double unit root process interacts with a  process. In contrast with results

in Hassler (2000), Kim, et. al. (2004) and Noriega and Ventosa-Santaulària (2007), the

statistic does not diverge when at least one of the variables follows a linear trend.

Table 1 summarizes the above findings. The symmetry of results imply that the order in

probability does not depend on the type of nonstationarity among dependent and explanatory

variables.

Table 1. Orders in probability of 
 

TS BTS I(1) I(2)

TS 1 1 1 1

BTS 1  12  12  12

I(1) 1  12  12  12

Results indicate that, as the sample size grows, it is more likely to spuriously reject

the null when both variables follow some type of permanent shock, either deterministic or
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stochastic. Results also indicate that a spurious rejection is less likely asymptotically when

either  or  (or both) follows a linear trend.
9

Using results from Noriega and Ventosa-Santaulària (2006, 2007), Table 2 presents the

orders in probability of the -statistic in a regression model like (1), but with no horizon,

that is, with  = 1. The DGPs are the same as those in Table 1.

Table 2. Orders in probability of , ( = 1)
 

TS BTS I(1) I(2)

TS  32  12   12

BTS  12  12  12  12

I(1)   12   12

A comparison of Tables 1 and 2 makes clear the effect of using a long-horizon framework:

in seven of the twelve cases, the orders in probability in the long-horizon regression case are

smaller than those corresponding to the regression model with no horizon. Furthermore,

in six cases the statistic does not diverge. To a certain extent, the long-horizon framework

alleviates the problem of asymptotic spurious regression.

In order to verify our large sample results, we simulated both the asymptotic and em-

pirical distributions of the -statistic  . Consider first the asymptotic distribution of the
-statistic  in the long-horizon regression (1) under two cases:10 1) (1) , when  follows a

 process and  an (1) plus drift process, and 2) 
(2) , when  follows a  process and

 an (1) plus drift process.

Corollary 1.


(1) →  (1)( )

£
(1)( )

¤−12
−12(2) → 

(2)( )
£
(2)( )

¤−12
where

 (1)( ) = 

n
(1− )

hR 1

()()−

R 1

()( − )

i
− R 1


1( )1( )

o
9This is not surprising, given that LRN in the Fisher and Seater (1993) test requires the presence of

permanent shocks. This is closely related to the approach of Noriega, et. al. (2008), where, under their

deterministic notion of LRN,  should be long-run neutral when there are structural breaks in  (permanent

deterministic shocks), while  follows a linear deterministic trend (i.e., with no permanent shock, neither

stochastic nor deterministic).
10Here we present 2 cases, but we have made this exercise for all combinations of DGPs in the Assumption,

and obtained qualitatively similar results across combinations.
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(1)( ) = 2(2 − )

∙
(1− )

R 1

 2

1( ) −
³R 1


1( )

´2¸
 (2)( ) =

£
(1− )− 1

2
2
¤ R 1


1( ) − (1− )

×
hR 1


() − 

R 1

() −

R 1
+

() + ( + )
R 1
+

()
i

(2)( ) = 2 

£
(1− )− 1

2
2
¤ R 1


1( ) − 2(1− )

2



−2 £2(1− )− 2(− 1
3
)
¤ hR 1


1( )

i2
+ 2

3
(1− − 3

4
)

3


R 1

 2

1( ),

and,

  ≡
R 1

() − 

R 1

() −

R 1
+

() + ( + )
R 1
+

()

We then simulated these formulae for the two -statistics using 10,000 replications, and

present the resulting density functions as the solid graphs in Figure 2.11 Next, using these

same , we ran regression equation (1) 10,000 times using a (very large) sample size of

 = 10 000 and computed the empirical density functions of each -statistic (note that the

one corresponding to the second case has to be scaled by  12, as indicated in Theorem 1).

The resulting empirical density functions are also depicted in Figure 2. Note that the graphs

of the asymptotic and simulated densities are indistinguishable from each other. Finally, a

standard normal density function is also presented in Figure 2 as the dashed graph. As can

be seen from both panels of Figure 2, the -statistics for these two models have nonstandard

distributions. Therefore, inference using a standard normal distribution could be misleading.

Figure 2

TS vs I(1) BTS vs I(1)

11Note that the asymptotic distributions depend on nuisance parameters. Without loss of generality, we

assume, for 
(1) ,  = 05,  = 02, and  = 10 For the case of 

(2) , we assume  = 05,  = 007 and

 = 020. We approximate the Wiener processes using standard normal variates with a sample size of

10,000.
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From Valkanov (2003), we know that under a near unit root framework for both variables,

it could be feasible to simulate the asymptotic distribution of −12 , in order to carry out
correct inference. Our Monte Carlo experiment reveals, however, that whenever  or  is

generated by a  process, the asymptotic distribution of the -ratio (even when correctly

scaled) is not free of nuisance parameters, thus complicating the simulation exercise. In this

case, the inferential procedure proposed by Valkanov (2003) is no longer feasible.

The phenomenon of spurious regression in a long-horizon regression framework can be

further investigated by analyzing the behaviour of the -statistic in model (1) when  and

 do have a long-run relationship.
12 This will allow us to device an alternative procedure

to test for a linear relationship, under different forms of  for  and . Following the

procedure outlined above, the next Theorem, which presents the asymptotics of this case,

can be easily proved.

Theorem 2. Let  be generated either as:

i) (unit root)  = 0 + +
P

=1 , or

ii) (broken trend)  =  + +  + ,

and  be generated as:

 =  +  + 

with the innovations {}∞1 , for  =  , satisfying the conditions of Lemma 1. Let 

→

 ∈ (0 1) when both  → ∞ and  → ∞. Then, the OLS estimator b from (1) and its

-statistic  have the following asymptotic properties:
a) b → 

b)  = (
32)

Note that under case i) of Theorem 2,  and  are (1) and cointegrated, (1 1), since

 is assumed stationary. Under these circumstances, as part b) of Theorem 2 shows, the

-statistic diverges at the (fast) rate  32, implying that the null hypothesis 0 :  = 0 will

always be rejected asymptotically, leading to the correct conclusion.

This result, together with results form Theorem 1, allow us to construct the following

reasoning: We know from Theorem 1 that the -statistic will either diverge at rate  12 when

there are permanent shocks to the variables, or not diverge, when there are no permanent

shocks in at least one of the variables. On the other hand, when  and  are  (Theorem

2), the -statistic will diverge at rate  32, delivering correct inference.

Based on this background, we propose to scale the -statistic by the sample size,  , and

define  ≡ −1 . The following Corollary formally states these ideas.
12In the context of money and output, this would imply failure of monetary neutrality.
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Corollary 2.

1a)  = (
−12) for all spurious cases (those of Theorem 1 with a permanent shock)

1b)  = (
−1) for all spurious cases (those of Theorem 1 without a permanent shock)

2)  = (
12) for all non-spurious cases (those of Theorem 2)

Therefore, dividing by  will asymptotically guarantee correct inference, whether the

variables have a long-run relationship or not: when the variables are independent, the scaled

-statistic will converge to zero, thus not rejecting the null of no relationship; on the other

hand, when the variables are cointegrated the scaled -statistic will diverge, correctly indi-

cating a long-run relationship. Similar arguments apply to case ii) of Theorem 2, where 

is hit by a permanent deterministic shock, instead of a stochastic one.

4 Simulation Results

In order to assess the usefulness of our asymptotic results in finite samples, we computed

rejection rates for  in model (1), using a 1.96 critical value (5% level) for a standard normal
distribution, based on simulated data, for various sample sizes and combinations of  s

in the Assumption. This is obviously incorrect from our point of view, given that both

the asymptotic and the finite sample distributions of  depend on nuisance parameters,
and might deviate from normality. However, for the wide set of parameters chosen for the

simulations presented below, the finite sample behaviour tends to support the asymptotic

results presented above. Figure 3 presents rejection rates for the 12 possible combinations

in Table 1.

Figure 3
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The left hand panel depicts combinations where at least one of the variables follows a 

process. As can be noted, rejection rates tend to converge to the 5% nominal level as the

sample size grows; i.e., there is no spurious rejection whenever  or  are trend stationary,
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consistent with our asymptotic results. On the other hand, and also in line with the limit

results above, the graphs in the right panel show that rejection rates tend to one as the

sample size grows, when neither  nor  is generated by a  process. As can be seen, for

combinations such as (1)− (1), (1)− (2),  − (1), and  − (2), rejection rates

are above 60% for samples as small as  = 100.

Results in Figure 3 were calculated assuming     , and  +   1. On the

other hand, Figure 4 assumes that     , and  +   1. The similar behaviour of

rejection rates from both Figures implies that results do not depend on whether the breaks

in the variables occur before or after the end of the horizon.13

Figure 4
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Turning to power considerations, Figures 5-9 show how power is related to several para-

meters in the DGPs of Theorem 2, like the size of the horizon, or the size of the break. For

instance, Figure 5 depicts power against , the horizon size, for different sample sizes.

Figure 5

Power and the horizon length

13In particular, we assumed, for results in Figure 3, that :  = 040,  = 025, and  = 050, while

for Figure 4:  = 080,  = 065, and  = 050. For the rest of the parameters we used,  = 009,

 = 006,  =  = 0,  = 007,  = 004,  =  = 1. Finally, for processes with deterministic

trends:  = 020,  = 010, for processes with stochastic trends:  = 009,  = 006. We experimented

with many different combinations of parameter values and obtained qualitatively similar results.
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As in this case the null of no relationship is false, we simulated two possibilities: the

variables cobreak14 (left panel), or cointegrate (right panel). In the case of cobreaking,

power tends to one uniformly in , as the sample grows (with the exception of values of 

close to zero or one). In the case of cointegration, however, power is maximized for values

of  close to 05, as the sample gets large.15

Figure 6 shows power for different values of the linear trend in the explanatory variable

( in Theorem 2). As can be seen, power increases uniformly in .
16

Figure 6

Power and the size of the linear trend

Figure 7 shows how power is increasing in , as expected, since large values of this

parameter are associated to a significant relationship between  and  (at a faster rate for

the case of cobreak). Similar results are obtained for the effect on power of the size of the

break, as depicted in Figure 8. Again, power is increasing in the size of the break.

Figure 7

Power and the strength of the relationship

14We use the term ’cobreak’ to indicate a linear relationship between two non-independent broken-trend-

stationary variables.
15This result can be used as a guide in applied work, if no guidance exists on horizon-length determination.
16Values for  are based on estimated values obtained from the empirical application with international

annual data on money and output presented in the next section.
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Finally, Figure 9 shows that power reaches a maximum when the break date parameter

approaches 05.

Figure 8

Power and the size of the trend-break

Figure 9

Power and the location of the trend-break

Whilst it is true that the above experiments might suggest the presence of low power in

small samples, the main aim of these experiments, however, was to shed some light on the

relationship between some key parameters, sample sizes and power.17

5 Empirical Application: Long-horizon regressions and

monetary neutrality

A central tenet of macroeconomics is the monetary neutrality proposition, which states that

there should be no long-run real effects of an unanticipated, permanent change in the level

of money. One of the main tools for testing this key macro proposition is the non-structural

test devised by Fisher and Seater (1993, FS in what follows). This test depends on the time

series properties of both  and , and uses as the testing vehicle a long-horizon regression:"
X

=1

∆hi−+1

#
=  + 

"
X

=1

∆hi−+1

#
+  (2)

where  and  stand for real output, and (exogenous) money, respectively. Theoretically,

lim→∞  ≡ , gives an estimate of the long-run derivative of real output with respect to a

permanent stochastic exogenous shock in the level of money.

It is common practice to assume that in the long-horizon regression above the potential

nonstationarity in the variables takes the form of a unit root. Typically, in empirical appli-

cations, the time series properties of  and  data are investigated via unit root tests, such

17We have to bear in mind that power is sensitive to the chosen parameter values. The issue of low power

in long-horizon regression is discussed in Coe and Nason (2003, 2004).
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as the Dickey-Fuller, Phillips-Perron, KPSS, or Ng-Perron.18 Noriega (2004), for instance,

presents results on LRN using an international data set while discussing the use of these

tests for uncovering the time series properties of the data. He finds that LRN does not hold

for several countries in his sample. More recently, NSV find that conclusions on monetary

neutrality are sensitive to the presence of structural breaks in the trend function of both 

and .

Given this evidence, we estimate equation (2) by allowing not only hi = 1, but also

hi = 0, in the form of linear trends and linear trends with breaks, and hi = 2. Hence,

the DGP for  =   could be not only an (1) process, as the FS test requires, but also a

combination of linear trends, broken trends and stochastic trends.

The neutrality of money is measured by FS through the long-run elasticity, or Long-Run

Derivative () of  with respect to permanent stochastic exogenous changes in :

 ≡ lim
→∞

+

+

where  is a random variable that represents the shock to . The limit of the ratio measures

the ultimate effect of a (stochastic) monetary disturbance on real output relative to that

disturbance’s ultimate effect on the monetary variable. Theoretically, lim→∞  ≡ , gives

an estimate of the , where  is the coefficient from the OLS regression in (2).

As explained by FS, to carry out a test for Long-Run Neutrality (LRN) the time series

properties of  and  should obey certain restrictions. For instance, the money variable

should contain a permanent shock (identified in the form of a unit root) for LRN to make

sense, otherwise there are no stochastic permanent changes in money that can affect real

output. Under this assumption, and if  is stationary, then LRN holds, since permanent

changes in  cannot be associated to non-existent permanent changes in . On the other

hand, when both  and  follow a unit root process, then LRN is testable, and Fisher and

Seater (1993) propose a very simple test based on the -statistic of the slope parameter in

the long-horizon regression (2),  .
As an application of some of the theoretical results derived in this paper, we utilize

the international data on money and output of NSV, to calculate the -statistic for testing

long-run neutrality of money, using the long-horizon regression model (2), as in FS. The

data consist of annual observations of the logarithms of real GDP and a money aggregate,

for Australia (1870-1997), Argentina (1884-1996), Brazil (1912-1995), Canada (1870-2000),

Italy (1870-1997), Mexico (1932-2000), Sweden (1871-1988) and the UK (1871-2000).19

18See, respectively, Said and Dickey (1984), Phillips and Perron (1988), Kwiatkowski, et. al. (1992) and

Ng and Perron (2001).
19Two other countries, Denmark and the US, are left out of the analysis since money and output for these
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NSV find that for Australia, Sweden and the UK both  and  follow a  model. For

Canada,  follows a  model, while  a  one. For Argentina and Mexico  follows a

 model while  an (1) one. For Brazil  follows a  model while  an (2) one.

Finally, for Italy both variables appear to be (1). Since Canadian output is stationary, LRN

holds by construction, as discussed in NSV. For the rest of countries, the -statistic should

be, according to our results in Theorem 1, normalized by  12, to prevent the statistic from

diverging, and thus asymptotically indicate a spurious rejection of LRN.

Figure 10 shows the behaviour of the -statistic  for testing the null hypothesis 0 :

 = 0 in the Long-horizon regression (2) for values of  = 1 2 
1
2
 .20

Figure 10
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The upper panel in Figure 10 shows the behaviour of the non-normalized statistic, while

the lower panel the behaviour of the normalized statistic. The effect of normalization is

two countries are found to be (0), making LRN not addressable. See Noriega et. al (2008) for details. The

data set is available from the authors upon request.
20Our selection of  = 12 is based on our simulation results, which show that power can be maximized

when the length of the horizon is half the sample size.
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quite clear: for all countries in the sample, monetary neutrality is not rejected. If we had

normalized by  instead of by  12, as discussed above, the sequences of the -statistics would

had all been even closer to zero, indicating a clearer non-rejection of monetary neutrality.

Note however, that critical values used in Figure 10 assume normality and therefore serve

only an illustrative purpose.

In order to carry out inference on monetary neutrality using appropriate critical values,

we use bootstrap methods to simulate the distribution of the -statistic in the LHR (2).21 In

particular, for each country, we simulated  using output and money data generated from
the models identified by NSV, described above in the Assumption (see Section 2).

We use the case of Australia to exemplify the steps involved in the simulations.22 NSV

found that output follows a  model with three level breaks, while money a  model

with two level-and-trend breaks. Hence, for Australia’s output () and money () time

series, we estimate by OLS the following  models:23

∆ =  + +

3X
=1

 + −1 +
4X

=1

∆− + 

∆ =  + +

2X
=1

 +

2X
=1

 + −1 +
1X

=1

∆− + 

We then use the estimated parameters from these models to generate 10,000 samples

of ∆,  = 6   and ∆,  = 3   with randomly selected residuals (with replace-

ment).24 For each generated sample, the long-horizon regression equation (2) is estimated,

and the corresponding 10,000 values of  are used to construct the empirical density func-
tion of this statistic.25 Table 3 report critical values from these distributions, together with

the calculated  12-rescaled -statistic.26

As can be seen, for Australia, Italy and Mexico, the null hypothesis of long-run neutrality

can be rejected at the 10% level, but not at the 5% or lower.

21For an exposition of the bootstrap method see Davidson and G. MacKinnon (2004).
22Table A1 in Appendix 3 sumarizes the models used to simulate the LHR -statistic for each country,

based on the identified models in NSV.
23See Figure 1 for a graphical representation of these series.
24Note that for output, we use the first 5 observations as initial conditions, while for money the first 2

observations as initial conditions.
25The 10,000 estimates of the LHR equation (2) use a value of  = 1

2
 , since this choice seems to maximize

power, as found in our simulation experiments.
26Note that the -statistic for Canada was not rescaled, since for this country output was found to

be trend-stationary. All calculations were carried out in Matlab 7.0. Data and codes available at

http://dl.dropbox.com/u/1307356/Arxius%20en%20la%20web/LHR%20code/Programs.zip
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Table 3. Results of Long-run monetary neutrality tests

Critical Values Calculated

Country 1% 5% 10% 90% 95% 99% -statistic

Argentina -2.009 -1.656 -1.451 1.467 1.605 2.025 -1.061

Australia -0.385 -1.102 0.042 1.652 1.840 2.232 1.689*

Brazil -0.637 -0.472 -0.397 0.388 0.459 0.612 0.293

Canada -0.992 -0.709 -0.586 0.562 0.686 0.938 0.425

Italy -2.015 -1.339 -1.099 1.109 1.392 2.011 1.358*

Mexico -2.840 -2.038 -1.670 1.661 2.005 2.702 -1.723*

Sweden 0.288 0.383 0.429 1.010 1.081 1.219 0.525

U.K. 0.423 0.564 0.637 1.639 1.773 2.006 1.094

*Indicates rejection at the 10% level

Therefore, using a 5% level, it is not possible to reject long-run monetary neutrality for

any of the countries analyzed. As a final remark, note that the same qualitative results are

obtained if the -statistic is scaled by  (as discussed in Section 3) instead of by  12, i.e.,

neutrality results are unaffected.

Conclusions

We show that the presence of spurious long-horizon regression is highly likely when both

 and  are hit by either a deterministic or stochastic permanent shock, both asymptotically

and in finite samples. In other words, when  and  are generated independently from each

other, and follow any combination of broken trends and unit roots, the -statistic for a linear

relationship in a long-horizon regression, will diverge to infinity (at rate  12), indicating a

spurious relationship asymptotically. On the other hand, when one of the variables follows a

trend stationary process, our results indicate that the -statistic does not diverge. Our large

sample results are confirmed by simulations.

We also analyzed the case when  and  are cointegrated. In this case our results indicate

that divergence still occurs, but at a much faster rate ( 32). The difference in divergence

rates allowed us to propose an asymptotically correct inferential procedure, which works

whether the variables have a long-run relationship or not.

As an application of our results, we reanalyzed results of NSV and found that long-run

neutrality seems to hold for all countries in the sample.
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Appendix 1

Proof of Lemma 1.

To prove part ) note that
P

=+1(−−) =
P

=1 −+1−
P

=1 , where
P

=1 −+1 =P

=1  −
P−

=1 .

Hence,
P

=+1( − −) =
P

=1  −
P−

=1  −
P

=1 

The asymptotic behaviour of these sums can be studied by first transforming each of

them as follows [see for instance Phillips (1987)],

−12
P[]

=1  ≡  ()

−12
P[]−[]

=1  ≡  ( − )

−12
P[]

=1  ≡  ()

where   ∈ [0 1]    , [] denotes the integer part of , and then applying a functional

central limit theorem due to Herrndorf (1984),

 ()
→ ()

 ( − )
→ ( − )

 ()
→ ()

where all limits are taken as  → ∞, → signifies convergence in distribution, and 

is a standard Wiener process. For instance, () is normally distributed for every  in

[0 1]; that is () ∼ (0 ). It is assumed that 2 = lim→∞ −1(Σ
=1)

2 exists and

is strictly positive. Hence, 
→ [() −( − ) −()] ≡ 2( ), where

2( ) ≡()−( − )−().

To prove part ) note that −1
P

=+1 
2


→ 2, and −1
P

=+1 
2
−

→ 2, using the

Strong Law of Large Numbers of McLeish (1975), while −1
P

=+1 −
→  (see

Hamilton (1994), p. 506). Hence, 2
→ 2(2 − ).

To prove part ) note that (
P

=+1 ) = 0, and  (
P

=+1 ) = (1− )2
2
 . A

Central Limit Theorem can be used to show that −12
P

=+1 
→ (0 (1− )2

2
).

These same arguments can be applied to the remaining products.

To prove parts ) and ) note that  =
P

=1 −+1 =
P

=1  −
P−

=1 . We

can then apply a similar transformation as the one in part ) above: −12(
P[]

=1  −P[]−[]
=1 )

→  [()−( − )] ≡ 1( ), where 1( ) ≡()−( −
). Finally, using analogous arguments as those of the proof of Lemma 1 in Phillips (1986):

−32
P

=+1 
→ 

R 1

1( )

−2
P

=+1 
2


→ 2
R 1

 2

1( ).

To prove part ) note that, in analogy to Phillips (1986, p.315),

−2
P

=+1(
P

=1 −+1)(
P

=1 −+1)
→ 

R 1

1( )1( ).
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The proof of part ) will assume that the sample moment is computed over the whole sample,

instead of over  =  + 1   . The reason is that computations are much easier, and the

orders of probability are not affected. Hence, note that the first element of the sum,P

=1  =
P

=+1
(−) =

³P

=1  −
P

=1 

´
−

³P

=1  −
P

=1 

´


Now, from Lemma A.1 in Perron (1989),

−32
P

=1 
→ 

n
(1− ) [(1)−()]−

hR 1
0
()−

R 
0
()

io
.

The same arguments can be applied to the remaining elements.

To prove part ), we follow Hamilton (1994, p. 547) to obtain:

−1
³P

=+1  −
P

=+1 −
´

→ 

hR 1

()()−

R 1

()( − )

i
.

To prove part ) note that the first element of the product can be written as:P

=+1  =
P

=1  −
P

=1  Now,P

=1  =
P

=+1
(− ) =

P

=+1
 − 

P

=+1


Using Lemma A.1 in Perron (1989):

−52
P

=+1 
→ 

hR 1

() − 

R 1

()

i
.

The second element of the product can be written as:P

=+1 − =
P

=1 −, since
P

=1 − = 0. Now,P

=1 − =
P

=+1+
( −  − ) =

P

=+1+
 − 

P

=+1+
 −


P

=+1+


Again, using Lemma A.1 in Perron (1989):

−52
P

=+1 −
→ 

hR 1
+

() − (+ )
R 1
+

()
i
.
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Appendix 2

Example of aMathematica 6 code for the case of  ∼ (1),  =  , that is,∆ = +.

1. The code

a11=(1-)* ;

a12=*(1-)**
2+SSUx* 32;

a21=*(1-)**
2+SSUx* 32;

a22=2*(1-)*2*
3+2***SSUx*

52+SSUx2* 2;

b1=*(1-)**
2+SSUy* 32;

b2=2*(1-)***
3+*(*SSUy+*SSUx)*

52+SSUxSUy* 2;

c1=2*(1-)*2*
3+2***SSUy*

52+SSUy2* 2;

A=

"
11 12

21 22

#
;

invA=Inverse[A];

alfa=Factor[invA[[1,1]]*b1+invA[[1,2]]*b2]; delta=Factor[invA[[2,1]]*b1+invA[[2,2]]*b2];

alfanum=Numerator[alfa]; alfaden=Denominator[alfa];

deltanum=Numerator[delta]; deltaden=Denominator[delta];

expalfanum=Exponent[alfanum, ]; expalfaden=Exponent[alfaden, ];

expdeltanum=Exponent[deltanum, ]; expdeltaden=Exponent[deltaden, ];

numalfa=Limit[Expand[alfanum/ expalfanum], →∞];
denalfa=Limit[Expand[alfaden/ expalfaden], →∞];
numdelta=Limit[Expand[deltanum/ expdeltanum], →∞];
dendelta=Limit[Expand[deltaden/ expdeltaden], →∞];
alfalim =(numalfa/denalfa)*( expalfanum/ expalfaden);

deltalim=(numdelta/dendelta)*( expdeltanum/ expdeltaden)

sigmac=Factor[(*(1-))−1*(c1+alfa2**(1-)+delta2*a22-2*alfa*b1-2*delta*b2+

2*alfa*delta*a12)];

s1num=Numerator[sigmac]; s1den=Denominator[sigmac];

exps1num=Exponent[s1num, ]; exps1den=Exponent[s1den, ];

numf=Limit[Expand[s1num/ exps1num], →∞];
denf=Limit[Expand[s1den/ exps1den], →∞];
2=FullSimplify[(numf/denf)]*( exps1num/ exps1den)

numexplist=Exponent[s1num, ,List]; denexplist=Exponent[s1den, ,List];

xx22=Factor[invA[[2,2]]];

xx22num=Numerator[xx22]; xx22den=Denominator[xx22];
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expxx22num=Exponent[xx22num, ]; expxx22den=Exponent[xx22den, ];

numxx22=Limit[Expand[xx22num/ expxx22num], →∞];
denxx22=Limit[Expand[xx22den/ expxx22den], →∞];
x2=(numxx22/denxx22)*( expxx22num/ expxx22den)

2. The output

The previous code yields three items (which correspond to the three lines in the code

not finishing with a semicolon): the asymptotic expressions for the estimated parameter, the

error variance, and the second diagonal element of the inverted moments matrix.

i) b =(SSUx SSUy+SSUxSUy(-1+))/(SSUx2)+SSUx2 (-1+))
ii) b2 =  (2 SSUx SSUxSUy SSUy-SSUx2 SSUy2-SSUx2 (SSUy2+SSUy2 (-1+))+

SSUxSUy2(-1+))/((SSUx2+SSUx2 (-1+))(-1+))

iii) ( 0)−122 =(-1+)/(
2(SSUx2+SSUx2 (-1+)))

From this output, both the order in probability and the asymptotic distribution of the

-statistic can be derived by simple algebra.
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Appendix 3

Although details can be found in NSV, the following table sumarizes the models used to

simulate the LHR -statistic for each country.

Table A1
Summary of models used to bootstrap the

long-horizon regression -statistic

Country/Sample Variable Model Break 1 Break 2 Break 3 Lag length

Argentina Y  1912 (T) 1917 (LT) 1980 (L) 5

1884 - 1996 M2 (1) — — — —

Australia Y  1891 (L) 1914 (L) 1928 (L) 4

1870 - 1997 M2  1941 (LT) 1971 (LT) — 1

Brazil Y  1928 (L) 1970 (LT) — 3

1912 - 1995 M2 (2) — — — —

Canada Y  — — — —

1870 - 2000 M2  1920 (L) — — 1

Italy Y (1) — — — —

1870 - 1997 M2 (1) — — — —

Mexico Y  1953 (T) 1981 (T) 1994 (LT) 5

1932 - 2000 M1 (1) — — — —

Sweden Y  1916 (LT) 1930 (LT) 1975 (LT) 5

1871 - 1988 M2  1912 (LT) 1918 (LT) 1970 (L) 1

U.K. Y  1918 (LT) — — 1

1871 - 2000 M4  1939 (L) 1970 (LT) — 1

L, T and LT stand for level, trend, and level and trend, respectively.
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