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The Working Papers series of Banco de México disseminates preliminary results of economic
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Abstract
Systematic sampling is a commonly used technique due to its simplicity and ease of imple-
mentation. The drawback of this simplicity is that it is not possible to estimate the design
variance without bias. There are several ways to circumvent this problem. One method is
to suppose that the variable of interest has a random order in the population, so the sam-
ple variance of simple random sampling without replacement is used. By means of a mixed
random - systematic sample, an unbiased estimator of the population variance for simple
random sample is proposed without model assumptions. Some examples are given.
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order.
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Resumen
El muestreo sistemático es un método ampliamente usado en la práctica debido a su sencillez.
Empero, tal sencillez tiene un costo, no es posible estimar insesgadamente la varianza de
dicho diseño muestral. Hay varias formas de tratar este problema. Una de ellas consiste en
suponer que la variable de interés tiene un orden aleatorio en la población, con lo cual puede
emplearse el estimador de la varianza bajo muestreo aleatorio simple. En el presente trabajo
se propone un estimador insesgado para la varianza poblacional del muestreo aleatorio simple
sin suponer modelo alguno, empleando un muestreo mixto aleatorio-sistemático. Se ilustra
el método con algunos ejemplos.
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Orden aleatorio.
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1. Introduction 

Systematic sampling is a commonly used technique due to its simplicity and 

operational convenience. The main disadvantage is the non-existence of a design 

unbiased variance estimate of the sample mean with a single systematic sample. Several 

approaches have been proposed to overcome this difficulty. One of them treats the 

systematic sample as if it were drawn from a population in random order, so the 

formula of the variance estimator of the mean under simple random sampling without 

replacement, hereinafter srswor,  applies, Cochran (1986). In another approach, a model 

is used for the variable of interest and, consequently, a specific formula for the 

estimator of the model variance has to be obtained. From the design perspective of a 

survey, one can also apply a random permutation to the elements of the population 

before the sample is drawn. With this method the variance estimator )ˆ(ˆ yvsrswor  is used, 

although this procedure is not feasible in many surveys. Another class of methods 

supplements the systematic sample with another systematic sample or a simple random 

sample. For a thorough discussion of these strategies see Wolter (1985) or Chaudhuri & 

Stenger (2005). In one of these methods a simple random sample is selected first, and in 

the remaining population a systematic sample is extracted, Leu & Tsui (1996) and 

Huang (2004). Other systematic sampling methods, called ‘Markov sampling’,  have 

been proposed, see Sampath & Uthayakumaran (1998) and the references cited therein. 

Unfortunately, these methods cannot be applied to a population containing a large 

number of elements and the population size has to be a multiple of the sample size. In 

Sampath & Uthayakumaran (1998), for example, the sample size must be even. These 

are very stringent conditions in large surveys and have not been used extensively in 

applied work. All the methods above mentioned and its merits have been examined in 

detail in the literature and shall not be reviewed here.  

A mixed random-systematic sampling method is proposed in which the population 

mean and variance of the mean, under srswor, are unbiasedly estimated by the sample 

1 
 



mean and a simple expression for the variance1. This last expression can be used 

without assuming that the sample was drawn from a population in random order or a 

random permutation has been applied to the population before the sample was 

extracted, preventing people to fall in PISE, an acronym coined by Valliant (2007), 

which stands for ‘pretend it’s something else’. It is worth mentioning that, compared to 

systematic sampling and similar methods, no gain in efficiency is expected with the 

proposed method, since it coincides with the population mean and variance of a srswor. 

A fair comparison of the proposed method is with the estimator of the variance between 

elements used under the random order approach in systematic sampling.  

The article is organized as follows. Definitions, notation and a brief overview of 

finite population sampling are given in Section 2. Standard practices regarding the 

estimation of the design variance under systematic sampling are reviewed in Section 3. 

In this section, expressions for the bias and relative bias of the estimator of the variance 

between elements of the random order approach are given. To the author´s best 

knowledge, these expressions have not appeared previously in the literature. Section 4 

contains the sampling procedure and an example. The estimators for the population 

mean and variance )ˆ(yvsrswor are presented in Section 5. Finally, the method is illustrated 

with numerical examples. 

 

2. Finite population sampling 

There are two types of surveys, descriptive or analytical. The former refers to the 

estimation of quantities such as totals, means, proportions and ratios, while the latter to 

the use of models based on the results of a survey. The formulas developed in this paper 

are of the descriptive type. 

                                                            
1 This is an extended version of an article presented by the author in Puebla, Padilla (2009).  
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In this article it is assumed that all variability stems from sampling error, so any 

errors caused by faulty measurement, non-response and other nonsampling sources are 

ignored. It is also supposed that the design is noninformative. An informative design is 

one in which the probability of selection of the elements in the sample depends 

explicitly on the values of the study variables. As a matter of fact, the latter is an 

assumption made in almost all practical survey work not usually mentioned in books or 

articles. 

It is also assumed that a frame exists from which a sample will be drawn. 

2.1 Notation, population and sample 

Let U denote a finite population of N elements labeled k=1,…,N, 1<N. It is 

customary to represent the finite population by its label k as: U={1,2,…,k,…,N}. 

Moreover, there is a one to one correspondence between the labels of U and the labels 

of the frame.  

The variable under study will be represented by  and  will be the value of  

for the kth population element, 

y ky y

Uk  .  

The sample will be denoted by s, a subset of U of size 1<n<N, and will be 

represented by a column vector . In this case, IN
Nk IIII }1,0{),...,,...,( 1  k is an 

indicator random variable and it is equal to 1 if the kth element is in the sample and 0 

otherwise. It is worth mentioning that this indicator variable is the random element in 

finite population sampling and  is a number. So, the density function induced by the 

design is discrete. This approach is also known in the literature as design-based 

sampling. 

ky

 

 

3 
 



2.2 Estimation 

The objective is to estimate a function t that depends on the yk, 

. For example, a total is written as ),...,,...,( 1 Nk yyytt   


N

k kU yy
1

. Since we are 

interested in estimating a total, from the design-based approach, it is customary to use 

the Horvitz-Thompson estimator, HTE, Horvitz & Thompson (1952). This estimator has 

the following expression: .0 with k ,ˆ
11

 



n

k k

k
N

k k

kk
U

yyIy  In this formula, 

)1(  kk IP  is the first-order inclusion probability. For variance computation and 

estimation it is also necessary to determine the second-order inclusion probabilities, 

)1(  lkkl IIP . 

The variance of a HTE is, 

  
U lklkklU lklkU yyyyIIcyv ˆˆ)(ˆˆ),()ˆ(  . 

An unbiased estimator of this variance is, provided that 0kl : 

l

l

k

k

s
kl

lkkl

s lklkU

yy
yyIIcyv


 

 ˆˆ),(ˆ)ˆ(ˆ  

In these expressions, denote the population and estimated 

covariances respectively, between the sample indicator variables. 

),(ˆ and ),( lklk IIcIIc

Remark 2.2.1: It is worth mentioning that in finite population sampling, the first two 

moments are well defined for designs used in practice, so there is no need to include 

this fact in the rest of the article. 

Remark 2.2.2: Estimation in finite populations can also be made under a different 

approach known in the literature as model-based design in which it is supposed that the 

finite population is drawn from an infinite population (superpopulation), see Valliant et 
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al. (2000). The design and model based methods can be used together in what is 

denominated combined sampling, see Brewer (2002). 

 

3. Standard practices in systematic sampling 

As it was mentioned in the introduction, there is no design unbiased variance 

estimates of the variance of the sample mean with a single systematic sample, so in 

practice the following strategies, among others, are used.  

3.1 During the design stage of a survey 

D1) Supplement the systematic sample with another sample.  

D2) Apply a random permutation to the elements of the population before the 

sample is extracted, so under all possible permutations of the population, the 

expectation of the design variance is the same as the variance under srswor. This 

result is due to Madow & Madow (1944).  

Remark 3.1.1: A comparison of the efficiency of some designs of the D1 type, can 

be found in Zinger (1980), Cochran (1986) and Wolter (1985). 

3.2 Model for the structure of the variable of interest 

Postulate a model for the structure of the variable under study before extracting the 

systematic sample and construct the variance estimator under this model. In this case, 

two models are routinely employed: 

Msc) Serial correlation:  in some settings, there is evidence of similarities between 

neighboring elements in the population with respect to the variable of interest and 

this similarity diminishes as two elements are far apart from each other.  
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Mro) Random order model in an infinite population: the finite population is 

considered as a random sample from an infinite population (superpopulation). If the 

variates Niyi ,...,1 ,  , are drawn from a superpopulation in which )( iM yE , 

 and 22) i ( iM yE  jiyyE jiM   ,0))((  , it is known as a population in 

random order. In these expressions, EM refers to expectation under the assumed 

model. The result of this is, see Cochran (1986), that ))ˆ(ˆ( yvsrsworM))ˆ(ˆ( EyvE sysM  , 

where sys refers to systematic sampling. Under this model, it is assumed that there 

is no relationship between the variable under study and the order of the elements in 

the frame, so one treats a systematic sample from a list, sorted in a specific order, as 

if the list were randomly ordered. 

Remark 3.2.1: A comparison of the efficiency of models Msc and Mro, can be found 

in Wolter (1985) and Chaudhuri & Stenger (2005). 

3.3 Bias of the random order approach (Mro) 

Under the Mro approach, the estimator of the variance of the mean under simple 

random sampling, )1(ˆ)1()ˆ(ˆ 2  nsNnyv syssrswor , is used. In this expression,  

stands for the variance between elements of the systematic sample. This is a reasonable 

strategy whenever there is information about the random order of the elements in the 

population. The problem is that it is easy to fall in PISE and work with a biased 

estimator of the variance or to routinely apply the simple random estimator without 

having enough information about the ordering of the elements in the population. To 

assess this approach, in the following theorem the bias and relative bias of the variance 

estimator are obtained. Suppose that 

2ˆsyss

nNk   is an integer and 

 


n

j iijisys nyys
1

22
, )1()ˆ(ˆ , nyy

n

j iji  


1
ˆ , )1()(

1

22   
NyyS

N

j UjU ,  

Nyy
N

j jU  


1
 and 2

1

1

1

)1)(1())((2 U

k

l

n

i

n

ij
UljUli SNnyyyy  





 

 , where   is 

the intraclass correlation coefficient, Cochran (1986).  
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Theorem 1: Under systematic sampling the expected value of the estimator 
 
is 2

,ˆ isyss

2)1(
1

US
N

N 
. 

Corollary 1.1: The relative bias of the estimator  is 2
,ˆ isyss 1)1(

1


 
N

N
. 

Corollary 1.2: is a linear decreasing function of ρ, which achieves its 

maximum at 

)ˆ( 2
,isyssE

)1(1  n , its minimum at 1  and  whenever 22
, )ˆ( Uisys SsE 

)1(1  N . The maximum and minimum values of are),isysˆ( 2sE
N

N

n

n
SU

1

1
2 


 and 

cero respectively. 

Corollary 1.3: The expected value and relative bias of the estimator  can also be 

expressed as  and , where 

2
,ˆ isyss

2)1( US    is the measure of homogeneity proposed by 

Särndal et al. (1992). 

Proof: see the Appendix. 

Remark 3.3.1: It can be seen from corollary 1.2 that  overestimates 
 
for )ˆ( 2

,isyssE 2
US

) 
1

1
,

1-n

1-
 [





N

 . 
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4. Design 

4.1 Definition of mixed random-systematic sampling 

Following the design based approach, we consider a population U, with N elements, 

. From this population a sample of size n, 1<n<N, is drawn by means of a 

mixed random-systematic sample, mrss. That is, a srsrwor of size 1 is first selected 

from the elements of U and then m elements, m≥2,  are drawn from the N-1 remaining 

elements of U using circular systematic sampling, Murty & Rao (1988). For brevity, 

this method shall be denoted by mrss(1,m). The number of samples under this design is 

. 

Nkyk ,...,1 , 

)1( NN

Remark 4.1.1: When mN )1(  is an integer, circular and linear systematic sampling 

coincide, Murty & Rao (1988), so the systematic sample can also be extracted by the 

latter method. In this case there are repeated circular systematic samples; nonetheless, 

the point estimators of the mean and element variance, which are built in the next 

section, continue to be unbiased after suppressing information. 

Remark 4.1.2: The number of samples under a mrss(1,m) design, after eliminating 

repeated systematic samples, is mNN )1(  if mN )1(   is an integer and  in 

other case. For further details see Murthy & Rao (1988).  

)1( NN

4.2 Circular systematic sampling 

In order to obtain a circular systematic sample, css, of size 1<m<M from a 

population with M elements, one proceeds as follows: 

Step 1: compute mNkm )1(  ; if  is not an integer, round it to the nearest integer, mk

Step 2: select a random integer between 1 and M, say r, this is the first element in the 

css, 
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Step 3: determine the next numbers in the css, mjkr  , for . If 

consider the list as circular and assign the numbers until the sample size is 

achieved. 

}1,...,1{  mj

Mjkr m 

Remark 4.2.1: this procedure can be easily implemented in a spreadsheet or in the R 

system. 

Example 1: let U be a population of size N=7 and suppose a sample of size n=3 is to 

be drawn using a mrss(1,2). In this case m=2 and there are 7(7-1)=42 samples. The 

indices for the possible samples are: 

 

Table 1 

1 2 5 2 1 5 3 1 5 4 1 5 5 1 4 6 1 4 7 1 4 

1 3 6 2 3 6 3 2 6 4 2 6 5 2 6 6 2 5 7 2 5 

1 4 7 2 4 7 3 4 7 4 3 7 5 3 7 6 3 7 7 3 6 

1 5 2 2 5 1 3 5 1 4 5 1 5 4 1 6 4 1 7 4 1 

1 6 3 2 6 3 3 6 2 4 6 2 5 6 2 6 5 2 7 5 2 

1 7 4 2 7 4 3 7 4 4 7 3 5 7 3 6 7 3 7 6 3 

 

The first number in each entry refers to the srswor selection and the following two 

correspond to the systematic sample.  
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5. Point estimators 

As it was noted by Huang (2004), in mixed random systematic sampling the HTE  

0  ,1ˆ
1

   k

n

k kkyNy 
 
can be used to estimate the population mean, provided that 

N is known. To compute this estimator, we only need to determine the first-order 

inclusion probabilities. 

Theorem 2: Under mrss(1,m), the first-order inclusion probabilities, πk, are equal to 

Nn , for all . Nk ,...,1

Proof: see the Appendix. 

Corollary: For an mrss(1,m) design, the HTE is the usual sample mean. 

Proof: it follows immediately by substituting Nnk   in the expression of the HTE of 

the mean. 

Remark 5.1: The mrss(1,m) estimator of the mean can also be written as a weighted 

sum, srsr yyy ˆˆ ,   , with nmn     ,1 . The first term of the sum refers to the 

value of y  obtained by srswor, while the second one is the sample mean of the 

systematic sample. This is also known as a Zinger estimator, Ruiz-Espejo (1997). 

Remark 5.2: The mrss(1,m) estimator of the mean is unbiased because it is a HTE. 

The most important result of this article is expressed in the next theorem. 

Theorem 3: Under mrss(1,m), an unbiased estimator of the population variance 

between elements, )1()(
1

22  
Nyys

N

k UkU , is: 

m

yy
s

m

k ksr

sr 2

)(
ˆ 1

2
,2

,

 


 , 
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where is the value of the variable selected by srswor,  are the values of the 

elements selected by the circular systematic sample and 

ry ksy ,

Uy  is the population mean. 

Proof: see the Appendix. 

Corollary: Under mrss(1,m), an unbiased estimator or the variance of the mean of 

srswor, )ˆ(yvsrswot , is given by the following expression, 

2
,, ˆ

)1(
)ˆ(ˆ srsrsrswor s

n

Nn
yv


 . 

Proof: immediate from the property of expectations, )()( XcEcXE  , where 

nNnc )1(  . 

Remark 5.3: There is no assumption about random order in the population and there 

was no need for applying a permutation before the sample was drawn. To put this 

briefly, the mrss(1,m) design provides a simple expression for the variance estimation 

without pretending it is something else, Valliant (2007). 

Remark 5.4: In the expression )ˆ(ˆ ,srsrswor yv one can use a sample size m to estimate 

it.  

Remark 5.5: Zinger (1980) proposed an unbiased estimator of the variance between 

elements using partially systematic sampling in which one first selects a systematic 

sample and then a srswor from the remaining population. Unfortunately, the formula 

proposed by Zinger is quite complex. 
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6. Numerical example 

Example 2: let U be the population of example 3.4.2, pages 80-82, Särndal et al. 

(1992). This population has N=100 elements and the variable y takes the values 1, 

2,…,100. Using systematic sampling with n=10 there are N/n=10 samples and the 

population mean Uy  and variance between elements  are 50.5 and 841.67 

respectively. As simple random sampling does not take into account the ordering of the 

population, the variance of the mean estimator under this design is 

2
US

75.75)1()ˆ( 2  nSNnyv Usrswor
. In Tables 2 to 5 there are four orderings of the same 

population which have different values of the intraclass correlation coefficient. For each 

ordering and for all samples under systematic sampling, we present the values of the 

sample mean, sysŷ , the estimator of the variance between elements, , and the 

estimator of the variance of the sample mean under the random order assumption, 

2ˆsyss

)ˆ(ˆ sysro yv . Under the random order assumption, the estimators for every systematic 

sample  and  were computed using the following expressions: 2ˆsyss rov̂

  22
,

2
, )110()ˆˆ isyskisys ys



10

1
(

k
y and 10ˆ)100 s101()ˆ(ˆ 2

,, jsysjsysro yv  . The labels s-1, 

s-2,…,s-10 correspond to the results of sample 1 to sample 10. The last column has the 

expected values of the sample means and variances, )ˆ( sysyE ,  and  

respectively.  

)ˆ( 2
syssE )ˆ( rovE

Table 2 

Population A: perfect linear trend in the values yk , roh= -0.10. 

 s-1 s-2 s-3 s-4 s-5 s-6 s-7 s-8 s-9 s-10  

sysŷ  46.0 47.0 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 50.5 

2ˆsyss  
916.7 916.7 916.7 916.7 916.7 916.7 916.7 916.7 916.7 916.7 916.7 

rov̂
 

82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 

 

12 
 



Table 3 

Population B: a minimal variance ordering for systematic sampling, roh= -0.11. 

 s-1 s-2 s-3 s-4 s-5 s-6 s-7 s-8 s-9 s-10  

sysŷ  50.5 50.5 50.5 50.5 50.0 50.5 50.5 50.5 50.50 50.50 50.5 

2ˆsyss  
989.2 969.2 951.4 935.8 922.5 911.4 902.5 895.8 891.4 889.2 925.8 

rov̂
 

89.0 87.2 85.6 84.2 83.0 82.0 81.2 80.6 80.2 80.0 83.3 

 

Table 4 

Population C: a large positive roh value, roh= 0.989. 

 s-1 s-2 s-3 s-4 s-5 s-6 s-7 s-8 s-9 s-10  

sysŷ  5.5 15.5 25.5 35.5 45.5 55.5 65.5 75.5 85.5 95.5 50.5 

2ˆsyss  
9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 

rov̂
 

0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

 

Table 5 

Population D: a random ordering, roh= -0.015. 

 s-1 s-2 s-3 s-4 s-5 s-6 s-7 s-8 s-9 s-10  

sysŷ  44.3 34.8 40.7 61.2 48.8 59.5 47.6 58.7 58.4 51.0 50.5 

2ˆsyss  
720.9 420.0 1014.7 948.2 494.4 948.7 1222.5 522.7 780.5 1388.4 846.1 

rov̂
 

64.9 37.8 91.3 85.3 44.5 85.4 110.0 47.0 70.2 125.0 76.1 

 

In order to make a comparison between the strategy of estimating the variance 

between elements assuming random ordering of the population in systematic sampling 

and mixed random-systematic sampling, for populations A to D, a mrss(1,9) was used. 
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In this case, there are 100(100-1)=9,900 possible samples under mixed random-

systematic sampling. For each population, the 9,900 samples were generated and the 

coefficient of variation of the variance between elements, , was computed to assess 

the performance of the estimator of the variance.  

2
,ˆ srs

 

Table 6 

 A B C D 

Population mean Uy = 50.5 50.5 50.5 50.5 
2
US  = 841.7 841.7 841.7 841.7 
)ˆ(yvsrswor  = 75.75 75.75 75.75 75.75 

Systematic sampling:     
Intraclass correlation= -0.10 -0.11 0.989 -0.015 

Random order estimator  =2ˆ
sysS 916.7 925.8 9.2 846.1 

Relative bias ( )=2ˆ
sysS 8.9% 10.0% 98.9% 0.5% 

Variance estimator )ˆ(ˆ sysro yv  = 82.5 83.3 0.83 76.1 
Coefficient of variation ( sysŷ )= 6.0% 0% 60.0% 17.7% 
Coefficient of variation ( )=2ˆsyss 0% 3.7% 0% 37.7% 

Mixed random-systematic sampling:     
Variance estimator )ˆ(ˆ ,srsrswor yv  = 75.75 75.75 75.75 75.75 

Coefficient of variation ( sry ,ˆ )= 7.7% 7.7% 7.7% 21.3% 

Coefficient of variation ( )=2
,ˆ srs 46.0% 46.3% 46.6% 60.9% 

 

 In Table 6, the letters at the top of each column correspond to populations from 

Tables 2 to 5. Comparing the variance estimators )ˆ(ˆ sysro yv , )ˆ(ˆ ,srsrswor yv  and the 

coefficients of variation of the estimators of the population mean and variance between 

elements for both designs, we can see that the estimators under the random order 

assumption used in systematic sampling, behave erratically and depend heavily on the 

order of the population. Mixed random-systematic sampling performs well for 

populations A through C; nevertheless, for population D the sampling distributions of 

14 
 



sry ,ˆ  and  have more variation than their counterpart in systematic sampling. This is 

due to the presence of influential observations in the distribution of the . 

2
,ˆ srs

2
,ˆ srs

  

7. Summary 

By means of a mixed random-systematic sample, an unbiased estimator of the population 

variance for simple random sampling without replacement has been proposed. It was shown 

that there is no need to suppose random ordering of the population or to apply a 

permutation before a systematic sample is drawn in order to use the proposed estimator of 

the population variance between elements.  It was also shown that the bias and relative bias 

of the estimator of the variance between elements under systematic sampling with the 

assumption of random ordering of the population depend on the intraclass correlation 

coefficient.
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Appendix 

Proof of Theorem 1: 

Suppose that , and k and n are integers. nkN  Nn 1

Note that the variation between elements in the population can be decomposed as: 

    


N

i

k

i Ui

k

i

n

j iijUi yykyyyy
1 1

2

1 1

22 )()()( . 

This is the decomposition of the total variation into the variation within systematic samples 

and the variation between systematic samples, as it is done in the standard one-way analysis 

of variance and can be expressed as: 

SSBSSWSST   

Here, SS represents sums of squares; T, total; W, within and B, between. The proof consists 

in computing the expectation of the sample variance between elements of the systematic 

sample, )1()ˆ(
1

22
,   

nyys
n

j iijisys . 

)1(

ˆ

)1(

ˆˆ
)ˆ( 1

2

1

2
1

2

1 1

2

1

2
,2

, 







    

nk

yny

nk

yny

k

s
sE

k

i i

N

i i

k

i i

k

i

n

j ij
k

i isys

isys

 

We add UU yknyN   in the last expression and noting that kNnk  )1( , 

)(
11

)ˆ(
11

)ˆ( 2

1

222
, SSWSST

kN
S

kN

N
yyk

kN
S

kN

N
sE U

k

i UiUisys 













  
 

Recalling that , we have 2)1( USNSST 
kN

SSW
sE isys 

)ˆ( 2
, . 
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This is the intra-sample variance proposed by Särndal et al. (1992, p. 79). This authors also 

showed that
SST

SSW

n

n

1
1


 . Solving this equation for SSW, substituting into  

and using the fact that , the result follows. 

)ˆ( 2
,isyssE

Nkn 

Proof of Corollary 1. 1: 

It follows immediately by simplifying 
2

22
, )ˆ(

U

Uisys

S

SsE 
, provided that . 0US 2

Proof of Corollary 1. 2:  

Recall that in the design based approach, N and  are constants, so the expression 

 is linear in ρ.  

2
US

)ˆ( 2
,isyssE

As it has been shown elsewhere, see for example Kish (1965), the minimum value of ρ is 

)1(1  n  and the maximum is 1. Substitute this values in  to obtain the maximum 

and minimum values. On the other hand, solving , for ρ implies that 

)ˆ( 2
,isyssE

)ˆ( 2
, isyss 0E

)1(1  N .  

Proof of Corollary 1. 3: 

Särndal et al. (1992, p. 79) showed that 
SST

SSW

kN

N





1

1 . Solving this equation for SSW 

we have that . Substituting this expression into the formula for the 

intra-sample variance, the result follows from the expected value of . 

2)1)(( USkNSSW 

)ˆ( 2
,isyssE

The formula for the relative bias in terms of the measure of homogeneity is obtained by 

computing 
2

22
, )ˆ(

U

Uisys

S

SsE 
in terms of  . 
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Proof of Theorem 2: 

Case 1: If mN )1(   is an integer. 

The first element in the sample is selected with probability N1  and an element is included 

in the circular systematic sample with probability )1()1(  NNmN . The factor 

NN )1(  corresponds to those elements of the population not selected in the srswor of size 

1, and )1( Nm is the probability of inclusion of an element under css, see Murty & Rao 

(1988). It follows that for , Nk ,...,1

N

n

N

n

NN

m

N

N

Nk 








11

1

11 . 

Case 2: If mN )1(   is not integer. 

The proof is equal, since the first-order inclusion probability of an element under css is 

 and the result follows.  )1/( Nm

Proof of Theorem 3: 

Case 1: N-1 even and eliminating duplicated systematic samples. 

Let ns denote the number of possible samples under an mrss(1,m) design. 

m

yy

NN

m
sE

ns

j

m

k jksjr

sr 2

)(

)1(
)ˆ( 1 1

2
,,,2

,

  





 

Note that for every random selection between 1 and N, say k, there are N(N-1)/m systematic 

samples and all elements of population U, except the k-th random number, appear once (for 

brevity, this N(N-1)/m possible samples will be denominated as a kth-block). After doing 

some algebra, a kth-block has the following form: 
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m

yyyyyyyymy
N

ki ik
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i ikNkkk

2

22......
1

1

1

22
1

2
1

2
1

2  



 
. 

The sum of the kth-blocks from 1 to N is equal to: 

 

 


 1

1

22
1

22
1 4)...)(1()...(

1 N

I

N

ij jiNN yyyyNyym
m

N
 

We substitute this value in the expectation of the sample element variance: 

)1(

2)1(
)ˆ(

1

11

2

2
, 




  
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NN

yyyN
sE

N

i

N

ij ji

N

k k

sr  

Using the identity,   

 


1

11

22

1
2)(

N

i

N

ij ji

N

k k

N

k k yyyy , the last expression turns out to 

be: 

1)1(

)()1(
)ˆ(

2

1

2

1

22

11

2

2
, 







  

N

yNy

NN

yyyN
sE

U

N

k k

N

k k

N

k k

N

k k

sr , which completes the 

proof. 

Case 2: N-1 odd. 

Note that for every random selection between 1 and N, say k, there are (N-1) systematic 

samples and all elements of population U, except random number k, appear m times (for 

brevity, this (N-1) possible samples will be denominated as a kth-block). After doing some 

algebra, a kth-block has the following form: 

m

ymyymyyyyymmyN
N

ki ik

k

i ikNkkk
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1

1

1

22
1

2
1

2
1

2  



 
 

The sum of the kth-blocks from 1 to N is equal to: 

 

 


1

1

22
1

22
1 4)...()1()...()1(

N
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N

ij jiNN yymyymNyymN
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Using the same identity for the square of a sum as in the previous case and replacing this 

value in the expectation of the sample element variance the result follows. 

Case 3: N-1 even and without eliminating duplicated systematic samples. 

Same proof as case 2. 
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