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Abstract
We develop and estimate an affine model that characterizes the dynamics of the term struc-
ture of interest rates in Mexico. Moreover, we provide empirical evidence on the relationship
between the term structure factors and macroeconomic variables. First, we show that the
model fits the data remarkably well. Second, we show that the first factor captures move-
ments in the level of the yield curve, while the second factor captures movements in the slope
of the curve. Third, the variance decomposition results show that the level factor accounts
for a substantial part of the variance at the long end of the yield curve at all horizons. At
short horizons, the slope factor accounts for much of the variance at the short end of the
yield curve. Finally, we show that movements in the level of the yield curve are associated
with movements in long-term inflation expectations, while movements in the slope of the
curve are associated with movements in the short-term nominal interest rate.
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Resumen
Se desarrolla y estima un modelo af́ın que caracteriza la dinámica de la estructura tempo-
ral de tasas de interés en México. Adicionalmente, se presenta evidencia emṕırica sobre la
relación entre los factores del modelo af́ın y algunas variables macroeconómicas. Primero,
se demuestra que el modelo se ajusta muy bien a los datos. Segundo, se demuestra que el
primer factor captura movimientos en el nivel de la curva de rendimientos, mientras que el
segundo captura movimientos en la pendiente. Tercero, los resultados de descomposición de
la varianza muestran que el factor de nivel explica gran parte de la varianza en la parte
larga de la curva en todos los horizontes. En horizontes de corto plazo, el factor de pendiente
explica gran parte de la varianza en la parte corta de la curva. Finalmente, se muestra que
los movimientos en el nivel de la curva de rendimientos están asociados a movimientos en las
expectativas de inflación de largo plazo, mientras que los movimientos en la pendiente están
asociados a movimientos en la tasa de interés de corto plazo.
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*The authors are grateful to Ana Maŕıa Aguilar, Arturo Antón, Emilio Fernández-Corugedo and Alberto
Torres for their valuable comments and suggestions.

† Dirección General de Investigación Económica. Email: jfcortes@banxico.org.mx.
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1 Introduction

We develop and estimate an a¢ ne model that characterizes the dynamics of the term struc-

ture of interest rates in Mexico. Moreover, we provide some empirical evidence on the re-

lationship between the term structure factors and macroeconomic variables. Understanding

the term structure of interest rates is important in �nance and macroeconomics for di¤erent

reasons. For monetary economists, the extent to which changes in the short-term policy

rate a¤ect long-term yields is important since it represents a key part of the transmission

mechanism of monetary policy by a¤ecting the spending, saving and investment behavior of

individuals and �rms in the economy. Moreover, the yield curve has been found to be a good

predictor of future real activity and in�ation (see Harvey 1988; Mishkin 1990; and Estrella

an Hardouvelis 1991). The term structure also contains information about future short-term

interest rates and term premiums. Monetary economists have focused on understanding the

relationship between interest rates, monetary policy and macroeconomic variables. They

have typically used the expectations hypothesis to describe bond yield dynamics. The ex-

pectations hypothesis asummes that term premiums are constant. However, there is strong

empirical evidence that suggests that terms premiums are time-varying. Financial econo-

mists, on the other hand, have mainly focused on forecasting and pricing interest rate related

securities. They have developed models on the assumption of absence of arbitrage opportuni-

ties, but typically left unspeci�ed the relationship of the term structure with other economic

variables. This research has found that almost all movements in the yield curve can be cap-

tured in a no-arbitrage framework in which yields are a¢ ne functions of a few unobservable

or latent factors (e.g., Du¢ e and Kan 1996, Litterman and Scheinkman 1991, and Dai and

Singleton 2000). Litterman and Scheinkman (1991) show for the US that only three factors

are needed to explain almost all of the variation in bond yields, and Dai and Singleton (2000),

show that an a¢ ne arbitrage-free three factor moel of thde term structure is successfull in

accounting for features of the data that represent a puzzle for the expectations hypothesis.

We begin our analysis in section 2, where we introduce the a¢ ne no-arbitrage model of

the term structure of interest rates. The model has two latent factors to re�ect the fact

that two factors account for much of the variation on the yield curve in Mexico. In section
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3 we describe the estimation method, and in section 4 we present the results. First, we

show that the model �ts the data remarkably well. Second, we show that the �rst latent

factor captures movements in the general level of interest rates, while the second latent

factor captures movements in the slope of the yield curve. A positive shock to the �rst

latent factor raises the yields of all maturities by a similar amount. This e¤ect induces an

essentially parallel shift in the yield curve, so this factor is called the level factor. A positive

shock to the second latent factor increases short-term yields by much more than the long-

term yields, thus the yield curve becomes less steep after a positive shock to this factor, so

this factor is called the slope factor. Third, the variance decomposition results show that the

level factor accounts for a substantial part of the variance at the long end of the yield curve

at all horizons, and at the short and middle ranges of the yield curve at medium to long

horizons. At short horizons, the slope factor accounts for much of the variance at the short

end of the yield curve. Finally, we show that movements in the level of nominal interest rates

are associated with movements in long-term in�ation expectations, while movements in the

slope of the yield curve are associated with movements in the short-term nominal interest

rate. In Section 5, we present the conclusions.

2 A term structure model with latent factors

To develop a baseline model of the yield curve in Mexico, we estimate an a¢ ne no-arbitrage

term structure model using zero-coupon bond yields. The term structure of interest rates

can be characterized by a¢ ne term structure models.1 These models impose a no-arbitrage

condition that links yields at every maturity of the term structure, thereby increasing the

e¢ ciency of estimation, and allowing us to forecast the entire yield curve as a function

of a few state variables. A¢ ne term structure models start from the assumption of the

absence of arbitrage and, thus, have an explicit economic content that puts restrictions on

the cross-section and time series behavior of bond prices and interest rates. The models

of Vasicek (1977) and Cox, Ingersoll and Ross (1985) are the pioneers of the class of a¢ ne

term structure models. In the simplest versions of such models, the one-factor models, the

1See Piazzesi (2003) for an excellent overview.
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short-term interest rate is the single factor that drives the movements of the term structure.

However, one-factor models have some unrealistic properties. First, they are not able

to generate all the shapes of the yield curve that are observed in practice. Second, one

factor models do not allow for the twist of the yield curve, i.e. yield curve changes where

short-maturity yields move in the opposite direction of long-maturity yields. This is because

all yields are driven by a single factor, meaning that they have to be highly correlated.

Multifactor models are more �exible and are able to generate additional yield curve shapes

and yield curve dynamics. In multifactor models several observed or unobserved risk factors

govern the dynamics of the term structure.

The standard a¢ ne no-arbitrage term structure model contains three basic equations.

The �rst is the transition equation for the state vector relevant for pricing bonds. We assume

that the state vector has two latent factors Xt = (X1t; X2t)
0. We choose two latent factors,

because they appear to be su¢ cient to account for most of the variation in the yield curve

in Mexico during the sample period considered. In particular, we conducted a principal-

components analysis to identify the common factors that drive the dynamics of the Mexican

term-structure of interest rates.2 We found that the �rst principal component captures

79 percent of the variation in yields, and that the �rst and second principal components

together capture 95 percent of such variation. That is, just two components can account for

essentially all of the movements in the yield curve. We assume that the latent factors follow

a VAR(1) process:

Xt = �Xt�1 + �"t (1)

where "t are the shocks to the unobservable factors. We assume that the shocks are IID

N (0; I2), that � is diagonal, and that � is a 2x2 lower triangular matrix. The second

equation de�nes the one-period short-rate to be an a¢ ne function of the state variables:

it = �0 + �
0
1Xt (2)

We work with montly data, so we use the one-month yield y1t as the short-term interest

2Cortés, Ramos-Francia and Torres (2008) also �nd that two factors explain 95% of the variation in the
yield curve.
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rate it. We assume that there is no-arbitrage in the bond market, implying that a positive

stochastic discount factor or pricing kernel determines the values of all �xed-income securi-

ties. The main result from modern asset pricing states that in an arbitrage-free environment

there exists a positive stochastic discount factorM that gives the price at date t of any traded

�nancial asset providing nominal cash-�ows P as its discounted future pay-o¤. Speci�cally,

the value of an asset at time t equals Et [Mt+1Dt+1] ; where Mt+1 is the stochastic discount

factor, and Dt+1is the asset�s value in t + 1 including any dividend or coupon payed by

the asset. Because we will be considering zero-coupon bonds, the payout from the bonds is

simply their value in the following period, so that the following recursive relationship holds:

P nt = Et
�
Mt+1P

n�1
t+1

�
(3)

where P nt represents the price of an n-period zero-coupon bond, and the terminal value of

the bond P 0t+n is normalized to 1.

M is also known as the pricing kernel, given that it is the determining variable of P .

Solving forward the pricing equation (3) by the law of iterated expectations and noting that

the bond pays exactly one unit at maturity (P 0t+n = 1) yields:

P nt = Et [Mt+1::::Mt+n] = Et[
nQ
i=1

Mt+i] (4)

so that a model of bond prices could also be expressed as a model of the evolution of the

pricing kernel. It follows that we can model P nt by modeling the stochastic process of Mt+i.

The bond prices are a function of those state variables that are relevant for forecasting

the process of the pricing kernel. Arbitrage free models are equilibrium models, i.e. only

equilibrium prices of �nancial assets are determined. This means that a market that allows

for arbitrage is not in equilibrium. Hence, we can exploit no-arbitrage conditions when

solving for equilibrium prices.

We can also employ the pricing equation (3) to characterize the compensation for risk

that an investor demands for holding a risky bond. If we denote the nominal gross return of

4



an asset (P n�1t+1 =P
n
t ) as

�
1 + irt+1

�
we can rewrite (3) and get:

1 = Et
�
Mt+1

�
1 + irt+1

��
= Et

�
Mt+1]Et[

�
1 + irt+1

��
+ Covt

�
irt+1;Mt+1

�
(5)

It follows that:

Et
��
1 + irt+1

��
=

1

Et [Mt+1]
(1� Covt [it+1;Mt+1]) (6)

Since the covariance term has to be zero for a risk-free asset, its rate of return has to

satisfy:3

1 + it =
1

Et [Mt+1]
(7)

Thus, the excess return of any asset over a risk-free asset, measured as the di¤erence

between (6) and (7) is:

Et
�
irt+1

�
� it = � (1 + it)Covt [it+1;Mt+1] (8)

Equation (8) illustrates a basic result in �nance theory: the excess return of any asset

over the risk-free asset depends on the covariance of its rate of return with the pricing

kernel. Thus an asset whose pay-o¤ has a negative correlation with the pricing kernel pays a

risk premium. In consumption-based equilibrium models, the pricing kernel is equal to the

marginal utility of consumption. When consumption growth is high the marginal utility of

consumption is low. Therefore if returns are negatively correlated with the pricing kernel,

low returns are associated with states of low consumption. A risk premium must be paid for

investors to hold such assets because they fail to provide wealth when it is more valuable for

the investor.

Following Ang and Piazzesi (2003), we assume that the pricing kernel is conditionally

log-normal, as follows:

Mt+1 = exp

�
�it �

1

2
�0t�t � �0t"t+1

�
(9)

3The risk free rate is often referred to as the short rate.
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where �t are the market prices of risk associated with the innovations of the state variables.

In addition, we make the standard assumption of a¢ ne models of the term structure, that

the prices of risk are a¢ ne functions of the state variables. With this assumption, the entire

yield curve can be priced from the factor estimates.

�t = �0 + �1Xt (10)

Equations (9) and (10) relate shocks in the underlying state variables to the pricing kernel

and therefore determine how factor shocks a¤ect all yields. This model belongs to the a¢ ne

class of term structure models (Brown and Schaefer, 1994; Du¢ e and Kan, 1996). The a¢ ne

prices of risk speci�cation in equation (10) has been used by, among others, Constantinides

(1992), Fisher (1998), Du¤e (2002) and Dai and Singleton (2002) in continuous time and by

Ang and Piazzesi (2003), Ang, Piazzesi, and Wei (2005), and Dai and Philippon (2005) in

discrete time. As Dai and Singleton (2002) show, the �exible a¢ ne price of risk speci�cation

is able to capture patterns of expected holding period returns on bonds that we observe in

the data.

We take equation (9) to be a nominal pricing kernel which prices all nominal assets in the

economy. This means that the total gross return process Rt+1 of any nominal asset satis�es:

Et [Mt+1Rt+1] = 1

The state dynamics of Xt (equation 1), the dynamics of the short rate it (equation 2)

together with the pricing kernel (equation 9) and the market prices of risk (equation 10)

form a discrete-time Gaussian 2-factor model. Since this model falls within the a¢ ne class

of term structure models, we can show that bond prices are exponential a¢ ne functions of

the state variables. More precisely, bond prices are given by:

P nt = exp
�
An +B

0
nXt

�
(11)
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where the coe¢ cients An and Bn follow the di¤erence equations:

An+1 = An �B
0
n��0 +

1

2
B
0
n��

0Bn + A1 (12)

B
0
n+1 = B

0
n (�� ��1) +B1 (13)

n=1,2,....N, with A1 = ��0 and B1 = ��1. These di¤erence equations can be derived by

induction using equation (3). The contimously compunded yield ynt on an n-period zero

coupon bond is given by:

ynt = �
pnt
n
= An +B

0
nXt (14)

where pnt = logP
n
t , An = �An

n
, and Bn = �Bn

n
: The yields are a¢ ne functions of the state,

so that equation (14) can be interpreted as being the observation equation of a state space

system.

Let Yt represents the vector containing the zero-coupon bond yields. Then,

Yt = Ay +ByXt (15)

The holding-period return on an n-period zero coupon bond for � periods, in excess of

the return on a � period zero coupon bond, is given by:

rxnt+� = p
n��
t+� � pnt � �yTt = An�� +B

0
n��Xt+� + A� +B

0
�Xt � An �B

0
nXt

so that the expected excess return is given by:

Et
�
rxnt+�

�
= A�xn +B

0�x
n Xt (16)

where A�xn = An�� +A� �An; and B0�xn = B
0
n���

� +B
0
� �B

0
n: Using the recursive equations

for B
0
n; the slope coe¢ cients can be computed explicitly and are given by:

B0�xn = B
0
n�� [�

� � (�� ��1)� ] (17)
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Consequently, the one-period expected excess return can be computed using:

Et
�
rxnt+�

�
= Axn +B

0x
n Xt (18)

where Axn = B
0
n�1��0 � 1

2
B
0
n�1��

0Bn�1, and B0xn = B
0
n�1��1:

From equation (18), we can see directly that the expected excess return comprises

three terms: (i) a Jensen�s inequality term �1
2
B
0
n�1��

0Bn�1, (ii) a constant risk premium

B
0
n�1��0, and (iii) a time-varying risk premium B

0
n�1��1. The time variation is governed

by the parameters in the matrix �1. This relation basically says that the expected excess

log return is the sum of two risk premium terms and a Jensen�s inequality term. The term

premium is governed by the vector �. A negative sign leads to a positive bond risk pre-

mium. This can be reasoned as follows. Consider a positive shock "t+1 which increases a

state variable. According to (11), (12) and (13) this lowers all bond prices and drives down

bond returns. When � is positive, the shock also drives down the log value of the pricing

kernel (9), which means that bond returns are positively correlated with the pricing kernel.

As explained above, this correlation has a hedge value, so that risk premia on bonds are

negative. The same reason applies to the case when � is negative, which leads to a positive

risk premia.

Since both bond yields and the expected holding period returns of bonds are a¢ ne

functions of Xt; we can easily compute variance decompositions following standard methods.

The dynamics of the term structure depend on the risk premia parameters �0 and �1. A

non-zero vector �0 a¤ects the long-run mean of yields because this parameter a¤ects the

constant term in the yield equation (14). A non-zero matrix �1 a¤ects the time-variation of

risk-premia, since it a¤ects the slope coe¢ cients in the yield equation (14). A model with

a non-zero �0 and zero matrix �1, allows the average yield curve to be upward sloping, but

does not allow risk premia to be time-varying.

If investors ar risk neutral, �0 = 0 and �1 = 0. This case is usually called the Expec-

tations Hypothesis. Macro models, such as Fuhrer and Moore (1995), usually impose the

Expectation Hypothesis to infer long term yield dynamics from short rates.

In general, the yields on zero coupon bonds are determined by two components: (1) the
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expected future path of one-period interest rates and (2) the excess returns that investors

demand as compensation for the risk of holding longer-term instruments.

3 Estimation method

For a given set of observed yields, the likelihood function of this model can be calculated, and

the model can be estimated by maximum likelihood. The yields themselves are analytical

functions of the state variables Xt, which will allows us to infer the unobservable factors from

the yields. To do this, we follow Chen and Scott (1993) and assume that as many yields

as unobservable factors are measured without error, and the remaining yields are measured

with error. We estimate this model using monthly data from January 2001 to June 2007 on

�ve zero-coupon yields that have maturities of 1, 12, 36, 60 and 120 months. Since there are

two latent factors but �ve observable yields, we assume that the 12, 36 and 60 month yields

are measured with error, as in Ang and Piazzesi (2003) :

3.1 Innovations Representation

Constructing an innovations representation is a key step for evaluating the likelihood func-

tion. The state-space of the model is the following:

eXt+1 = A eXt +B"t+1 (19)

Yt = C eXt + wt (20)

wt = Dwt�1 + �t (21)

where eXt = [X1t; X2t; 1]
0, Yt = [y1t ; y

12
t ; y

36
t ; y

60
t ; y

120
t ]

0
; and

A =

24 � 02�1

01�2 1

35

B =

24 �

01�2

35
9



C =

26666666664

B01 A1

B012 A12

B036 A36

B060 A60

B0120 A120

37777777775

The elements of D are the parameters governing serial correlation of the measurement

error. We assume that Et�t�
0
t = R, and Et�t�0s = 0 for all periods t and s. We de�ne the

quasi-di¤erenced process as:

Y t = Yt+1 �DYt (22)

Then we can rewrite the system as:

eXt+1 = A eXt +B"t+1 (23)

Y t = C eXt + CB"t+1 + �t+1 (24)

where C = CA�DC: The innovation vector ut and its covariance 
t are de�ned as follows:

ut = Y t � E
h
Y t j Y t�1; Y t�2; ::::; Y 0; bX0

i
= Yt+1 � E

h
Yt+1 j Yt; Yt�1; ::::; Y0; bX0

i
= Yt+1 �DYt � C bXt

which depends on the predicted state bXt:

bXt = E
h eXt j Yt; Yt�1; ::::; Y0; bX0

i

t = Eutu

0
t = C�tC

0
+R + CBB0C 0

The predicted state evolves according to:

bXt+1 = A bXt +Ktut

10



where Kt, and �t are the Kalman gain and state covariance associated with the Kalman

�lter

Kt = (BB0C 0 + A�tC
0
)
�1t

�t+1 = A�tA
0 +BB0 � (BB0C 0 + A�tC

0
)
�1t

�
C�tA

0 + CBB0
�

Then an innovations representations for the system is:

bXt+1 = A bXt +Ktut (25)

Y t = C bXt + ut (26)

Initial conditions for the system are bX0 and �0. We can use this innovations represen-

tation recursively to compute the innovation series, and then calculate the log-likelihood

function.

lnL (�) = �T
2
ln (2�)� 1

2

T�1X
t=0

ln j 
t j �
1

2

T�1X
t=0

u0t

�1
t ut

where the parameters to be estimated are stacked in the vector �, the innovation vector is

ut, and its covariance matrix is 
t: The parameters that are estimated are the elements of

�;�; �0; �1; �0; �1; and R:

4 Results

As noted earlier, related models, such as those of Ang and Piazzesi (2003) and Rudebusch

and Wu (2005) ; explain some important features of the term-structure of interest rates in

the U.S. by using latent factors. Moreover, these models have found that a few latent factors

drive most of the dynamics of the yield curve in the U.S. Before examining the dynamic

properties of the model, it is useful to analyze how well the model �ts the data. Figures 1

and 2 compare the �tted and actual time series for the, 6 month, 2-year, 3-year and 7-year

yields. As we can see from these �gures, the model predicts yields on zero coupon bonds

reasonably well.
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Figure 1
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The parameter estimates of the model are reported in Table 1. As is typically found

in empirical estimates, the latent factors di¤er somewhat in their time-series properties as

shown by the estimated �. The �rst latent factor is very persistent, while the second latent

factor is mean-reverting. There is also small but signi�cant cross-correlation between these

factors. The prices of risk �0 and �1, appear signi�cantly as well. Negative parameters in �0

induce long yields to be on average higher than short yields. Time-variation in risk premia

is driven by �1. Thus, negative values of �1 induce long yields to increase relative to short

yields in response to positive shocks to the state variables.

Table 1
Parameter estimates with Standard Errors
�11 �21 �22 �0 �11 �22
0:992
(0:00014)

0:053
(0:0013)

0:828
(0:0039)

6:61
(0:02)

0:271
(0:0098)

0:443
(0:0077)

�0;1 �0;2 �1;11 �1;21 �1;12 �1;22
�6
(0:04)

�0:04
(0:0011)

�0:02
(0:0013)

�0:04
(0:0014)

�0:06
(0:0016)

�0:09
(0:0008)
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Figure 2
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From equation (13) ; the e¤ect of each factor on the yield curve is determined by the

weights Bn that the term structure model assigns on each yield of maturity n, these weights

Bn are also called factor loadings. These loadings show the initial response of yields of

various maturities to a one standard deviation increase in each factor. Figure 3 plots these

weights as a function of yield maturity. A positive shock to the �rst latent factor raises the

yields of all maturities by a similar amount. This e¤ect induces an essentially parallel shift

in the yield curve, so this factor is called the level factor. A positive shock to the second

latent factor increases short-term yields by much more than the long-term yields, thus the

yield curve becomes less steep after a positive shock to this factor, so this factor is called the

slope factor.

Litterman and Scheinkman (1991) label these latent factors level and slope respectively

because of the e¤ects of these factors on the yield curve. To show these e¤ects, Figure 4

plots the �rst latent factor and a "level " transformation of the yield curve. We measure

13



Figure 3
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the level as the equally weighted average of the 1 month rate, 1 year and 10 year yields

(y1t + y
12
t + y

120
t ) =3: The correlation coe¢ cient between the �rst factor and the level trans-

formation is 92.5%. Figure 4 also plots the second latent factor and the slope of the yield

curve, de�ned as the 10 year spread (y120t � y1t ) ; the correlation coe¢ cient between the second

factor and the slope of the yield cure is 98.5%.

To determine the relative contributions of the latent factors to forecast variances we con-

struct variance decompositions. These show the proportion of the forecast variance attribut-

able to each factor. Table 2 reports the variance decomposition for the 1-month, 12-month,

3-year, 5-year and 10-year yields at di¤erent forecast horizons. The level factor accounts for

a substantial part of the variance at the long end of the yield curve at all horizons and at the

short and middle ranges of the yield curve at medium to long horizons. At short horizons,

the slope factor accounts for much of the variance at the short end of the yield curve. The

level factor dominates the variance decompositions at long horizons across the yield curve.
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Table 2
Variance Decomposition

Forecast-Horizon Level Slope
1-month yield

1 month 10.92 89.08
12 months 49.70 50.30
36 months 89.73 10.27
60 months 96.29 3.71
120 months 99.15 0.85

12-month yield
1 month 13.47 86.53
12 months 56.64 45.36
36 months 91.30 8.70
60 months 96.88 3.12
120 months 99.28 0.72

36-month yield
1 month 70.70 29.30
12 months 93.33 6.67
36 months 99.09 0.91
60 months 99.68 0.32
120 months 99.93 0.07

60-month yield
1 month 80.56 19.44
12 months 95.94 4.06
36 months 99.45 0.55
60 months 99.81 0.19
120 months 99.93 0.04

120-month yield
1 month 89.41 40.59
12 months 97.93 2.07
36 months 99.72 0.28
60 months 99.90 0.10
120 months 99.98 0.02
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Figure 4
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The correlation coe¢ cient between the �rst factor and the level is 0.925
The correlation coe¢ cient between the second factor and the slope is 0.985

We have shown that the �rst latent factor captures movements in the general level of

nominal interest rates, while the second latent factor captures movements in the slope of the

nominal yield curve. Rudebusch and Wu (2004) identify movements in the level factor with

changes in long-term in�ation expectations. They also relate movements in the slope factor

with the business cycle In particular, they claim that the slope factor varies as the central

bank moves the short end of the yield curve up and down during expansions and recesions

respectively. To analyze if these relationships hold in the Mexican yield curve as well, �gure

5 displays the level factor, and a measure of long-run in�ation compensation or long-term

in�ation expectations, which is measured as the spread between 10-year nominal and indexed

debt.4 Figure 5 shows that the estimated level factor appears to be closely linked to long-

4This indicator also includes an in�ation risk premium.
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Figure 5
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The correlation coe¢ cient is 0.81

term in�ation expectations, the correlation coe¢ cient between these time series is 81%.

Thus, this �gure suggests that movements in the general level of nominal interest rates are

associated with movements in long-term in�ation expectations. This evidence is consistent

with previous studies in the literature, for example, Barr and Campbell (1997) conclude

that almost 80% of the movement in log-term nominal rates appears to be due to changes

in expected long-term in�ation. Figure 6 displays the slope factor and the overnight rate,

the correlation coe¢ cient between these series is -65%. This empirical evidence is consistent

with Rudebusch and Wu (2004), who �nd a negative correlation between the policy rate and

the slope factor in the US.

5 Conclusions

We have developed and estimated an a¢ ne model that characterizes the dynamics of the term

structure of interest rates in Mexico. Moreover, we have provided some empirical evidence
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Figure 6
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The correlation coe¢ cient is -0.65

on the relationship between the term structure factors and macroeconomic variables. We

�nd that the a¢ ne model with two latent factors �ts the data remarkably well. Moreover,

our estimation results, based on Mexican zero-coupon bond yields, show that the �rst latent

factor captures movements in the general level of interest rates, while the second latent

factor captures movements in the slope of the yield curve. A positive shock to the �rst

latent factor raises the yields of all maturities by a similar amount. This e¤ect induces an

essentially parallel shift in the yield curve, so this factor is called the level factor. A positive

shock to the second latent factor increases short-term yields by much more than the long-

term yields, thus the yield curve becomes less steep after a positive shock to this factor,

so this factor is called the slope factor. The variance decomposition results show that the

level factor accounts for a substantial part of the variance at the long end of the yield curve

at all horizons, and at the short and middle ranges of the yield curve at medium to long

horizons. At short horizons, the slope factor accounts for much of the variance at the short

end of the yield curve. We also show that movements in the level of nominal interest rates
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are associated with movements in long-term in�ation expectations, while movements in the

slope of the yield curve are associated with movements in the short-term nominal interest

rate.
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