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leaving out one observation at a time from the sample. The paper outlines a procedure to obtain
jackknife estimates for several inequality indices with only a few passes through the data. The
number of passes is independent of the number of observations. Hence, the method provides an
efficient way to obtain standard errors of the estimators even if sample size is large. We apply our

method using micro data on individual incomes for Germany and the US.
Key words: Jackknife; Resampling; Sampling Variability; Inequality

JEL: C81, C87, D3

* Christian Albrechts University of Kiel, Department of Economics. Phone: +49 (0)431 8801772. Email:
carsten.schroeder@bwl.uni-kiel.de. We would like to thank Stephen Jenkins for his most helpful comments. Further,
we would like to thank Friedrich Bergmann and Jan Krause for research assistance.

1



1 Introduction

When examining time-series changes in inequality or cross country differences in inequality, the
measured changes are sometimes small. To estimate the precision of a statistic from a sample and
to test the statistical significance of changes or cross country differences of the same statistic, the
jackknife has been suggested.! The jackknife is a resampling method that uses subsets of the
original database by leaving out one observation at a time from the sample. So, there are as many
subsets as there are observations in the sample, and for each subset the jackknife statistic needs to
be computed. This means that the jackknife can become a time intensive procedure when the

sample size is large.

Karagiannis and Kovacevic (2000) and Yitzhaki (1991), however, show that jackknifing the Gini
coefficient requires only a few passes through the data.? We complement these two works on the
Gini coefficient by providing efficient jackknife procedures for several frequently applied
inequality indices: the coefficient of variation, the variance of the logarithms, the mean log
deviation, the Theil index, and the Atkinson index.® We show that, after having computed some
basic statistics from the overall sample, it takes a single run through the data to derive all the
jackknife values of an index from all the subsets. We apply the outlined jackknife procedure to

micro data from the Luxembourg Income Study.

Section 2 explains the procedures. Section 3 provides the results from the empirical application.
Section 4 concludes. Derivations of all the formulas and STATA codes are provided in an

Appendix.

2 Efficient jackknife procedures for inequality indices

The jackknife offers a conceptually simple way to estimate the precision of a statistic (see the
pioneering works of Tukey, 1958; Efron, 1982; Efron and Gong, 1983; Wolter, 1985). In the

context of inequality measurement, we have a random sample of N observations on income,

! For the theoretical justification for the jackknife and other related resampling techniques see Efron (1982).
2 Ogwang (2000) shows that it is also possible to obtain standard errors for the Gini index from OLS regression.
Giles (2004) extends the regression-based approach to test hypotheses regarding the sensitivity of the Gini
coefficient to changes in the data using seemingly unrelated regressions.
% Karoly (1989) also derives jackknife procedures for calculating the between- and within-group inequality
components of the variance of the logarithms, the mean log deviation, and the Theil index.
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y = (¥1,¥2, ..., ¥y) and sampling weights, w,, w,, ..., wy. Let 8 = 6(y) denote our measure of

inequality. Let 6,y = (Y1, Y2, ) Vi1, Yi+1, - Yn) denote the jackknife estimate of the same

measure of inequality for the subset where the ith observation has been deleted.

Following Wolter (1985), the jackknife estimate of the standard error of 9 is,

0.5

N
N — 1" w; 2
1 55:—5—‘9-—9 ,
(D 0 (N o VW ])

i=1

with = %Z’i":l w;.* Computing the jackknife standard error estimate relies on the N values of

6, one jackknife statistic per subset. For large samples the computational burden to derive
equation (1) seems to be large. However, as we will outline below, for standard inequality indices

deriving the N values of 6;) requires just a few passes through the data. Hereby, the number of

passes is independent of the number of sample observations, N.

The procedure is detailed below by means of the Theil index, and the variance of logarithms. The
general idea of the procedure is to write the jackknife estimates 61y 6(y) as a function of
statistics from the overall sample (i.e., as a function of 8, N, arithmetic or geometric mean) and a
subset-specific correction factor that can be derived with a single run through the data. The
procedure can be adapted to other inequality indices including indices of the generalized entropy

class, and indices based on the variance or social-welfare functions (e.g. the Atkinson index).

We will make use of the following notation and definitions:

= . Accordingly, ¥, w; = N.
N&i=1 wi

1. w; denotes the normalized weight, w; =

2. y denotes the arithmetic mean of income, y = %2?21 w;y;.
3. y* denotes the geometric mean of income, y* = exp (% N w; ln(yi)). The natural

logarithm of the geometric mean is denoted x = In(y*) = %Z?’ﬂ w;x; with x; = In(y;).

* An alternative method is to compute the squared differences between the jackknife statistics and their mean (see,
for example, Yitzhaki, 1991).



2.1 Efficient jackknife procedure for the Theil index
The Theil index from the sample is,

N
2) 6r= A%(Z Wi 1n()’i)> — In(¥).
i=1

The Theil index for the subset where the ith observation has been deleted is,

1
) Or = (N —w)y

Z wiy; In(;) | = In(Fw),

JES
with ¥;y denoting the arithmetic mean of income from the subset,

Ny —w;y;

4) Yo = N
l

The first step is to write 87; in terms of 6. Initially, from (3):

N
1 wp Y _
(5) Orw = (N——w)y()(Z Wiy ln(yi)) - m%ln(yi) —In(7)).
L l i=1 l

l
Rewriting equation (2) gives,

6) XLiwyy;In(y) =[6r + In(3)IN,

and substituting (6) and (4) into (5) gives,

Ny

7 bre = Ny —w;y;

0 +In(y)) — —=
(0r+In() Ny — w;y;

wiyiIn(y) In (N)_’ — Wi
N — Wi

)

Equation (7) reveals that 67 can be expressed as a function of three statistics from the full

sample, N, ¥, and 6, and characteristics of the observation that is left out, w; and y;. Thus, after

having calculated N,y,and 64 for the full sample, to compute all the jackknife statistics

Or(1) - Or(vy takes asingle pass through the data.



2.2 Efficient jackknife procedure for the variance of logarithms
Applying Bessel’s correction®, the variance of the logarithms from the sample is,

L i L
®) by =gy—7 lei In (3/_’1*) =N_1 lei(xi - x)?
L= 1=

The variance of the logarithms for the subset where the ith observation has been deleted is,

1 _
9 Ovp = N—32 Z Wiy (X — X))

VES!

with X = ——[NX — x;w;], and with w; i) =

s denoting re-weighted normalized

j
(N-wy)/(N-1)
weights. By means of the re-weighting the average of wj(;, over the subset where the ith
observation has been deleted equals unity. So, the analogue of the term E in (8) in (9) is E'

Substituting the definition of w;(; in (9) gives:

(N-1) _
(10) Oy = N =N —w) Z w; (X — X1))?
JE
Initially, from (8):
A1) 6y =3 ij (g — 27 + s Wil — 7%
j#i

Substituting ¥ = %[(N — W)Xy + x;w; ] in (11) gives:

2

1~ 1 i 1 .
(12) HVL = m Z Wj (Xj - N[(N - Wi)x(i) + xiwi] ) + mwi(xi - x)

J#i

Wi _ Wi 1 —\2
_1 z i X(l)‘l' NX(i)—WXi + mwi(xi—x)
J#i B

Equation (12) can be rewritten as:

® Bessel’s correction, the division in the variance formula by N — 1 instead of by N, secures unbiasdness.



N N
(13) QVL = ﬁ Z Wj(x]- — f(i))z + (szl)z Wj ((xj — f(i)) (%) (f(i) - Xi))

J#i J#i
c D
N
n 1 Z w; _ w; 2+ 1 —\2
N—-1 - IAWY; (l)j Nt N—1 i (X )
J#L
E

(N=2)(N-w

The C -term on the right handside of (12) can be rewritten as = 6y,; N-1)? ) The D -term

is zero since

2w Ny 2w _
a9 D=g—y Z w; (o = %) (= x) = gy (o — ) Z wi(% = %) = 0

JE] J#i

=0

The E —term after some algebra becomes,

1 iz
(15) E=—— 1(N‘fwi)2 ij(f— %)

JE

1 Wi2 1 Wiz
- N—-—w)x— x)2 = —
NI —wyz N W= 2" =g 5=y

- (% — x;)?

Substituting (14-15) in (13), the variance of the logarithms for the sample becomes,

(N - 2)(N - Wi) 1 Wiz

(16) Oy, = Oy (N —1)?2 N—1N—w, (x— x)*+ N_ll(xl-—x)z.
After some algebra, (16) becomes,
_ (N - 2)(N - Wi) NWi _ P

Solving (17) with respect to 8y, ;) gives the desired expression for the jackknife estimator of the

variance of the logarithms:

o o o (N — 1)2 Nw;(N — 1)
1) O =00 =y —w ~ W —wP W =)

(x — x;)°



Equation (18) is the analogue of the jackknife estimator of the Theil index in equation (7): 6y,
can be expressed as a function of statistics from the full sample (N,x, and 6,;) and the
characteristics of the observation that is left out, w; and x;. Thus, after having calculated
N,x,and 6y, for the full sample, computing 6y,1), ..., OyLv) takes a single pass through the

data.

2.3 Efficient jackknife procedure for other inequality indices
Similar derivations as those explained in Sections 2.1 and 2.2 can be made for other inequality

indices. Formulas for an efficient computation of the Atkinson index, 6,, (with inequality
aversion parameter e =1 and ¢ = 2), the mean log deviation, 6,5, and the coefficient of

variation, 6., are as follow:

N * 1“(}’1) Wi
exp N =, "0~ Fow,

(19) 04,0 =1-

Ny —wyy;
N—Wi
N—Wi

20) Ou = 1-—-= 7
(20) 04,0 Ny—wy; N wi(Ny —wyy)

YN =w)1—-106,, Yi(N —w;)

Buso — In)] + Sy (N2 2000

(21) HMLD(L') =

N—wi N —w; N —w;
(22) Oy = W =2)(v - Wi) (N —w)*(N—-2)

W —wy [Ny = yiwy)]

Derivations of the formulas can be found in the Appendix. Again, after having calculated some
basic statistics from the full sample, computing all the jackknife indices takes only a single pass
through the data.



3 Empirical application

We have calculated the above inequality indices and their associated jackknife confidence
intervals for distributions of disposable household incomes in the US and in Germany from the
Luxembourg Income Study (LIS) database. For 40 countries and several years, the LIS provides

representative micro-level information on private households’ incomes and their demographics.

Our computations rely on the LIS household-level datasets. Household disposable income is our
income concept. Household disposable income is harmonized across countries, covers labor
earnings, property income, and government transfers in cash minus income and payroll taxes. To
adjust household incomes for differences in needs, we have deflated household disposable
income by means of the square root equivalence scale. The square root equivalence scale is the
number of household members to the power of 0.5. This gives the needs-adjusted equivalent
income of the household. Household units are weighted by the frequency weights (as provided in
the data) and the number of household members. Our weighting procedure accommodates the
principle of normative individualism that considers any person as important as any other. The so
derived distribution depicts differences in living standards, captured by differences in equivalent

incomes, among individuals (Bonke and Schrdder, 2012).

We have removed household observations with missing information or with negative values of
disposable income. Moreover, to avoid outlier-driven biases of inequality estimates, we use
trimmed data with the one percent observations with the highest and with the lowest incomes

being discarded.

It has taken a few seconds to obtain all the results presented in Table 1. The Table is split in two
panels. The upper panel provides the results for the US, the lower panel provides the results for
Germany. In the US, the results cover the period 1991-2010; in Germany, the results cover the
period 1994-2010. For every country-period combination, the Table provides the point estimates
of the inequality indices along with their upper and lower bounds of 95 percent confidence

intervals, CI5> and CI;", derived from the jackknife statistics.

We comment on the US first. An examination of the statistics shows a significant rise of
inequality over the observation period: the point estimate of the Theil index increases from 0.161
in 1991 to 0.192 in 2010, and the confidence intervals are clearly distinct: [0.158;0.165] vs.



[0.189;0.196]. However, some inter-temporal changes in inequality for this sample are not
statistically significant (e.g. 1997-2000; 2000-2004; 2004-2007).

For Germany, we also see a significant rise of inequality over the observation period. This is due
to a prominent rise of inequality between 2000 and 2004. The inter-temporal comparisons before
the rise (1994-2000) and after the rise (2004-2007 and 2007-2010) indicate no significant

changes in inequality.

Comparing inequality levels in the US and Germany there is significantly more inequality in the

US. The result holds for all six inequality indices and all the observed points in time.°

4 Conclusion

This paper has outlined a procedure to obtain jackknife estimates for several inequality indices
with only a few passes through the data. The number of passes is independent of the number of
observations: After having computed some statistics from the overall sample, computing all the
jackknife indices takes only a single pass through the data. Hence, the method provides an

efficient way to get standard errors of the estimators even if sample size is large.

We have applied our method using data from the Luxembourg Income Study to evaluate the
statistical significance of inter-temporal inequality in Germany and the US, and also to evaluate

cross country differences in inequality levels.

® We have executed our empirical analysis using the alternative formulation of the standard error introduced in
footnote 4. It did not change our conclusions since confidence intervals changed very tittle.
9



References
Bonke, T., and C. Schroder (2012): Country Inequality Rankings and Conversion Schemes,

Economics, 6, 2012-28.

Efron, B. (1982): The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics, Philadelphia PA.

Efron, B., and G. Gong (1983): A Leisurely Look at the Bootstrap, the Jackknife, and Cross-
Validation, The American Statistician, 37, 36-48.

Giles, D. (2004): Calculating a Standard Error for the Gini Coefficient: Some Further Results,
Oxford Bulletin of Economics and Statistics, 66, 425-433.

Karagiannis, E., and M. Kovacevic (2000): Practitioners Corner - A Method to Calculate the
Jackknife Variance Estimator for the Gini Coefficient, Oxford Bulletin of Economics and
Statistics, 62, 199-122.

Karoly, L.A. (1988): Computing Standard Errors for Measures of Inequality using the Jackknife,

unpublished manuscript.

Karoly, L.A. (1992): Changes in the Distribution of Individual Earnings in the United States:
1967-1986, The Review of Economics and Statistics, 74, 107-115.

Ogwang, T. (2000): A Convenient Method of Computing the Gini Index and its Standard Error,
Oxford Bulletin of Economics and Statistics, 62, 123-29.

Tukey, J. W. (1958): Bias and confidence in not quite large samples. Annals of Mathematical
Statisics, 29, 614.

Wolter, K. (1985): Introduction to Variance Estimation, Springer, New York.

Yitzhaki, S. (1991): Calculating Jackknife Variance Estimators for Parameters of the Gini

Method, Journal of Business and Economic Statistics, 9, 235-239.

10



Appendix
A.1 Derivation of jackknife formulas

Mean log deviation (Entropy 0)

1MLy g —1ZN 1(’_’)— LN G + )
MLD = i=1Win v; =N i=1Winyi nly

@12) Buipy =~ wjIn(y) + ()
MLD (D) N—w; Lujy l

From (2MLD):

1] n(y:)
(BMP) Oumipay = — N —w; _Zj;:iwj In(y;) +w; ln(yl-)] rl

In(¥))

1 n()
[, O]+ e+ )

(4MP) OmLp(y =

Substituting —N[8y.p — In(¥)] = XX, w; In(y;) from (1MLD) gives:

1 _ In(y;)
T [N B ~ @] + s +n()

(SMLD) GMLD(L') ==

Substituting ;) by & gives:

1 iln(y; Ny-yiwi
&MY Omipy = New —In(p)] + L2 n‘iz)+ln( 4 y‘:v)

N-w;
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Atkinson Index

1
s\1—&71-¢
The general form of the Atkinson index is, 6, =1 — [%Z?’ﬂ w; (yll) ]1 . Below we derive

the jackknife formulas for two prominent case of the inequality aversion parameter, &.
Inequality aversion parameter € = 1

1
exp [N XL Wi ln(}’i)]
y

y*
%) 6, =1-% = 1

1
exp [m Yz W ln(y]')]
Y

(%) 04y =1-

In(yow; _ In(yp)w;

Expansion of the term in brackets in the numerator with
N—-w; N—-w;

, and substitution of

Ny-yiw;

o, JIVes:

Y@ by

N 1 In(y;) w;
exp [N —w; (N Lwi ln(yi)) - —N(&)Wil]

Ny —wy;
N—Wi

(B4) Oa=1-

Substitution of the term %2?21 w; In(y;) (log of the geometric mean of income from the full

sample) by In(y™*) gives:

. In(y;) w;
@) O =1- Ny —w;y;
N — Wi

Inequality aversion parameter € = 2

4 N
(1%) 64, =1-——=
N .Y
=17y,
N —w;
(2%2) Oy, =1 ——3—;.
N . 2@
J#FL] y]
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and rewriting the sum gives:

Expansion of the denominator with w; 22 j : ly;” Y
N —w;
(3%2) Oa,=1- 7 —— -
(&_l)z wy)+wy(_)l—w-&_1)l
y “iF Ny, YUY Y
N — w;
(442) G, =1——= —
Az (1) (yL_l)ZN Wl) _ WyL_l)l
y “=t Ty Y v
- 1 - — - N le
From 6,, =1 o it follows that ;= v T Ty

Yi

denominator gives:

(542) G, = 1-— N = wi
A2(0) Yo N (Wi}_’(i))

Y 1—04 Vi

Finally, substitution of ¥;, by M gives:
N —w;
642) O = 1——= —
(6% Oa0 Ny —wy; N wi(Ny —wiy)
YN =—w)1—-06,, YVi(N —w;)

and replacement of the sum in the
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Variance and Coefficient of Variation
N
%4 1 =\ 2
1) oy = mzlwi()’i =)
=

(N-1)

@) byyy =

Rewriting of 6, gives:

1 _ 1 _
3" oy = mz wi (v — ¥)? + w—wilyi — yI?

N-1

JE

(N—=2)(N—w;) Z w; (¥ = V)?
JE

Substituting y = l[(N — W)y t+ YiWi] and reorganizing in analogy to the variance of the

N

logarithms gives:

1
(4V) GV =C+D+FE+ mwi(yi—}_/)z

(N-2)(N-w;)

1 _
GB") c= mz w;(V; — ¥)? = v

JES!

2w _ _
(6Y) D= —ﬁl 2 w; (Vi — Y)Y — Vi)

N-1 -
j#i
2 Wi _ _
= m()’(o =i Z wi(yj = Yw) =0
J#i

=0
1 Wi 2 _
(7") E= N—1 (ﬁ) ZWj()’(i) —y)?
J#i
Analogously to 8,,,we can rewrite (7") as:

1 w;?
8) E=—"—

& - y)?

Substituting (57), (6"), and (8Y) in (4V) gives:
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(N —-2)(N —w;) N 1 w;? w
(N —1)2 N—1N —w,

(9V) Oy = 9V(i) N

Analogously to 8, we can rewrite (9V) as:

(N —2)(N —w;) Nw;
(N-1)? (N -1 —wy)

(9V) Oy = 9V(i) & - )’i)z

Solving (9V) for 8y ;) gives:

(N — 1)2 Nw;(N — 1)

Q0 o =8 W —wy W - wP W -

& —y)?

The coefficient of variation is defined as,

9 0.5
(1CV) Ocy = ( V—)
Hence,
0.5
(v»))
QYY) Oy = ———
Ccv (i) Y

(N-1)*  Nw;i(N-1)
“2)(N-w;y))  (N-wp?(N-2)

Substitution of 6y = 6y ™
ywp]in (2°)  gives,

(N — 1)2 Nw;(N — 1) 0

BV By = (GV (N=-2)(N—-w;) (N—-w)2(N-2) ¥ - )’i)z)
cv() — 1 -
W —wyy LV = yiwi)]

G~ ¥+ 55 0 = )

¥ —y)? and of yu) =

[(Ny -
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A.2 STATA code for Luxembourg Income Study

#delimit ;

***loop over countries;
foreach file in $us91h $us97h $us00h $us04h $us07h $us10h $de94h $de00h $de04h $de07h $de10h {;
* Variables of interest;
local vars "dname did hwgt dhi nhhmem";
* open data;
use ‘vars' using ‘file', clear;

)

* Data preparation and auxiliary statistics *;

qui rename hwgt w;

qui rename dhi y;

* drop negative or zero yomes (because of log);

qui drop if y==. | y<=0;

* trimming top bottom 1percent of unweighted observations;
xtile centiles=y, nq(100);

drop if centiles ==1 | centiles==100;

* drop missings;

qui drop if nhhmems==. | w==;

* weight by frequency weights and number of household members;
qui replace w=w*nhhmem;

* compute equivalent yome using square root scale;
qui replace y=y/(nhhmem)”(0.5);

qui gen logy=log(y);

* Normalization of the weights;

qui sum w;

qui replace w=w/r(mean);

* Arithmetic mean (weighted);

qui sumy [w=w];

qui scalar sc_mu=r(mean);

* geometric mean yome (weighted);

qui gen help=logy*w;

qui sum help;

qui scalar sc_gmu=exp(r(mean));

qui drop help;

* Sample size (weighted);

qui scalar sc_N=r(N);

’

*** Inequality indices from overall sample **;

*Atkinson Index 1: stored in scalar sc_A1 ***;
qui gen summand=w*In(y);

qui sum summand;

qui scalar sc_gmu=exp(r(sum)/sc_N);

qui scalar sc_Al=1-sc_gmu/sc_mu;

qui drop summand;

*Atkinson Index 2: stored in scalar sc_A2 ***;
qui gen summand=w*(y/sc_mu)”"(1-2);

qui sum summand;

qui scalar sc_A2=1-(r(sum)/sc_N)"(1/(1-2));
qui drop summand;

*Mean log deviation: stored in scalar sc_ZMLD*;
qui gen summand=w*In(y);

qui sum summand;

qui scalar sc_ MLD=-r(sum)/(sc_N)+In(sc_mu);
qui drop summand;

*Theil index: stored in scalar sc_T*;

16



qui gen summand=y/sc_mu*In(y)*w;

qui sum summand;

qui scalar sc_T=r(mean)-In(sc_mu);

qui drop summand;

*Variance of log yomes: stored in scalar sc_V*;
qui gen summands=(logy-log(sc_gmu))*2*w;
qui sum summands;

qui scalar sc_VL=r(sum)/(sc_N-1);

qui drop summands;

*Variance and coeff of var: stored in scalar sc_V and sc_CV*;
qui gen summands=(y-sc_mu)”2*w;

qui sum summands;

qui scalar sc_V=[r(sum)/(sc_N-1)];

qui scalar sc_CV=sc_V”*(0.5)/sc_mu;

qui drop summands;

)

**** Inequality indices from JK samples *****;

*Atkinson Index 1: stored in variable jk_A1 ***;

qui gen jk_Al=1-exp(sc_N/(sc_N-w)*In(sc_gmu)-In(y)*w/(sc_N-w))/((sc_N*sc_mu-w*y)/(sc_N-w));

*Atkinson Index 2: stored in variable jk_A2 ***;

qui gen jk_A2=1-(sc_N-w)/[(sc_N*sc_mu-w*y)/(sc_mu*(sc_N-w))*sc_N/(1-sc_A2)-w*(sc_N*sc_mu-

w*y)/(y*(sc_N-w))];

*Mean log deviation: stored in variable jk_MLD ***;

qui gen jk_MLD=sc_N/((sc_N-w))*(sc_MLD-In(sc_mu))+w*In(y)/(sc_N-w)+In((sc_N*sc_mu-y*w)/(sc_N-w));
*Theil index: stored in variable jk_T ***;

qui gen jk_T=(sc_N*sc_mu)/((sc_N*sc_mu-w*y))*(sc_T+In(sc_mu))-(w*y*In(y))/((sc_N*sc_mu-w*y))-

In((sc_N*sc_mu-w*y)/(sc_N-w));

logy)"2;

b

skkskokkok,
)

*Variance of logs: stored in variable jk_VL ***;
qui gen jk VL=(sc_N-1)"2/((sc_N-2)*(sc_N-w))*sc_VL-sc_N*w*(sc_N-1)/((sc_N-w)"2*(sc_N-2))*(log(sc_gmu)-

*Variance: stored in variable jk_V ***;

qui gen jk_V=(sc_N-1)"2/((sc_N-2)*(sc_N-w))*sc_V-sc_N*w*(sc_N-1) /[(sc_N-2)*(sc_N-w)"2]*(y-sc_mu)"2;
*Coefficient of var: stored in variable jk_V ***;

qui gen jk_CV=(jk_V)*(0.5)/((sc_N*sc_mu-y*w)/(sc_N-w));

eckoril* 95% normal confidence interval *x#ksekaoek,
¥ using normalized weights as in WOLTER (1985) to compute variance;
local vars "A1 A2 MLD T VL CV";
*loop over inequality indices;
foreach var of local vars {;
qui gen jk_V_'var'=((sc_N-1)/(sc_N)*w*(sc_'var'-jk_'var')"2);
qui sum jk_V_'var’;
qui scalar sc_V_'var'=r(sum);
qui scalar sc_SD_'var'=sc_V_'var'*(0.5);
qui scalar sc_lo_‘var' =sc_'var'-1.96*sc_SD_'var’;
qui scalar sc_hi_'var' =sc_'var'+1.96*sc_SD_'var’;

disp dname " “var' " " lower_bound " sc_lo_'var' " Point estimate " sc_'var' " upper_bound " sc_hi_'var';
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Table 1. Inequality indices

Year

Clg’,,

Atkinson

e=1

Clg,,

Clg’,,

Atkinson
€=2

QAZ

Clhi

04,

Mean log deviation

CIlO

OMLD

Opp CIH

OmLD

Theil index

Iy

Or

Iyt

Variance of logs

CIlO

OvL

BVL

clg:

%)

Coeff. of variation

CI(Q"CV

HCV

cIi

US 1991

1997

2000

2004

2007

2010

DE 1994

2000

2004

2007

2010

0.162

0.177

0.173

0.179

0.185

0.193

0.088

0.088

0.098

0.102

0.103

0.166

0.181

0.177

0.183

0.188

0.197

0.095

0.093

0.106

0.111

0.110

0.169

0.185

0.180

0.186

0.191

0.201

0.102

0.098

0.114

0.120

0.117

0.329

0.348

0.340

0.361

0.363

0.402

0.175

0.174

0.184

0.193

0.198

0.337

0.357

0.348

0.371

0.370

0.411

0.188

0.185

0.203

0.210

0.212

0.345

0.366

0.356

0.380

0.377

0.421

0.200

0.196

0.222

0.226

0.225

0.177

0.195

0.190

0.197

0.204

0.215

0.093

0.092

0.103

0.107

0.109

0.181

0.199

0.194

0.202

0.208

0.219

0.100

0.098

0.112

0.117

0.116

0.186

0.204

0.199

0.206

0.212

0.224

0.107

0.103

0.121

0.127

0.124

0.158

0.180

0.177

0.178

0.188

0.189

0.090

0.090

0.103

0.108

0.107

0.161

0.184

0.181

0.182

0.192

0.192

0.097

0.095

0.111

0.118

0.114

0.165

0.189

0.185

0.185

0.196

0.196

0.104

0.099

0.119

0.129

0.122

0.396

0.422

0.410

0.439

0.445

0.494

0.191

0.190

0.204

0.213

0.221

0.408

0.435

0.421

0.452

0.456

0.508

0.207

0.203

0.226

0.234

0.238

0.419

0.447

0.432

0.464

0.466

0.522

0.222

0.216

0.248

0.254

0.254

0.574

0.637

0.633

0.625

0.653

0.639

0.437

0.439

0.480

0.493

0.482

0.581

0.646

0.643

0.633

0.661

0.646

0.456

0.451

0.500

0.522

0.504

0.587

0.654

0.653

0.640

0.669

0.652

0.475

0.463

0.519

0.551

0.525

Note. Data from Luxembourg Income Study.



