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Cascades in real interbank markets

Fariba Karimi · Matthias Raddant

Abstract We analyze cascades of defaults in an interbank loan market. The novel feature of this
study is that the network structure and the size distribution of banks are derived from empirical
data. We find that the ability of a defaulted institution to start a cascade depends on an interplay of
shock size and connectivity. Further results indicate that the ability to limit default risk by spreading
the lending to many counterparts decreased with the financial crisis. To evaluate the influence of
the network structure on market stability, we compare the simulated cascades from the empirical
network with results from different randomized network models. The results show that the empirical
network has non-random features, which cannot be captured by rewired networks. The analysis also
reveals that simulations assuming homogeneity for size of banks and loan contracts dramatically
overestimates the fragility of the interbank market.

Keywords interbank loan network · systemic risk · cascades · null models

1 Introduction

In this paper we investigate the likelihood of cascades of defaults in an interbank loan market. The
novel feature of this investigation is that we use empirical data to calibrate our model. This also
allows us to make a statement about the accuracy of the existing literature on cascades in financial
markets. We find that stylized random network models are very likely to overestimate cascade effects
after a shock to the system.

Overnight loans are a financial instrument to redistribute liquidity between banks in the short
term. These loans are settled in two different ways. Most of them are settled as over-the-counter
(OTC) agreements, about which data is not systematically collected. Studies on interbank loan mar-
kets therefor often rely on data that is reconstructed from the observation of payments between banks
(see, e.g., Arciero et al. , 2013). The data that we analyze here is not from OTC transactions. It comes
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from the Italian trading platform E-mid. In principle every bank could join this platform, and in fact
roughly one third of the users are foreign banks. Banks can trade loans with different maturities and
different currencies. In our study we focus on the euro-denominated (unsecured) overnight loans,
which constitute by far the largest share of all transactions. Earlier studies have shown that the Ital-
ian market can be regarded as representative for the Euro money market, as the relative order flow
to this market was relatively stable (see, e.g., Beaupain and Durré, 2011).

There is an increase of research on linkages between banks since the 2008 financial crisis. Some
European markets have been analyzed for example by Iori et al. (2008), Furfine (2003), Hartmann
et al. (2001), and Cocco et al. (2009). The U.S. money market system, Fed-wire, has been analyzed
for example by Ashcraft and Duffie (2007) and Soramäki et al. (2007). The interest in these markets
has risen for two reasons: the partial collapse of the interbank markets itself and the increasing need
for risk assessment in the bank network in general. The contagious effects that played a big role in
the events after the Lehman default showed that a micro-prudential analysis of banks’ exposures
to counterparts does not capture the systemic risks that the default of a bank can pose (see, e.g.,
Haldane and May , 2011; Lux, 2011).

Some earlier studies in the E-mid market exist. We know that no pronounced clusters of banks
exist in the Italian market from the analysis of conditional trading volume (see Fricke and Lux, 2012).
The development of spreads and lending relationships has been analyzed by Raddant (2012), who
found that banks try hard to avoid large exposures since 2008. The structure of the market can at best
be described as a core-periphery structure, similar to the findings by Craig and von Peter (2010) for
the German market. Several studies have tried to analyze systemic risk in interbank loan networks,
for example, by simulating knock-on effects in the case of a default. From relatively simple models,
e.g., Nier et al. (2007), the research has evolved to more fine-tuned models like Arinaminpathy et
al. (2012). Nier et al. (2007) study cascade effects in a Bernoulli random graph. Although highly
innovative, empirical findings have by now pointed at several shortcomings of these kind of studies.
Empirical studies like Boss et al. (2006) have shown that the network structure between banks is
somewhat close to a scale-free graph, and that loan and bank size distributions can be approximated
by a power law.

Cascade models certainly do not reflect all aspects of real financial markets. For the case of fi-
nancial institutions, one problem is that we do not have (and probably never will have) data on the
activity of banks for all financial products through which networks between then exist. The second
problem is that we cannot model how the interbank market would continue on the days and weeks
after a default, since in this kind of cascade simulations the start of the cascade is defined by the
(hypothetical) removal of one node (bank) from the network. In this respect, the cascade simulations
that we discuss here differ from studies in the physics literature (see, e.g., Holme and Saramäki ,
2012; Karimi and Holme , 2013). In these studies cascades are simulated in temporal networks that
do not change when a cascade happens. Nevertheless, we think that cascade simulations are a useful
tool to evaluate the fragility of financial networks, since they take account of the complex dependen-
cies in the market. These dependencies can unfold rapidly and with very limited chance for human
intervention, which is the reason why even the analysis of static networks is useful.

The contribution of this paper lies in giving a more realistic scenario for the simulation of cas-
cades in financial markets. For this reason, we set up an interbank network that is derived from
empirical data on the Italian interbank loan market (Emid). Specifically, we use daily snapshots of
loan contracts in this markets and derive a network of netted daily exposures. We randomly choose
a bank to default and analyze knock-on effects to other market participants, based on the network
given by interbank loans. The remaining balance sheet items of the banks are hypothetical, but they
are generated to be consistent with their interbank behavior, i.e., we obtain a network with a reason-
able size distribution of banks, where all banks have the same a-priori ability (relative to their size)
to absorb a shock. We believe that these network properties are comparably realistic, since they are
derived from empirical data.
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<nodes> <links> <degree> <lending>
2006 128 ±9 355 ± 48 5.5 ± 0.5 20,953 ± 4,240
2011 70 ±8 161 ± 29 4.5 ± 0.5 4,261 ± 1,001

Table 1 Network properties

The table shows the properties of the 257 daily networks for 2006 and 2011. We report the average number of links,
the average degree, and the average lending volume together with their standard deviation. The lending volume is
measured in millions in euro.

The remainder of the paper goes like this: In Section 2 we explain the data set, how we derive
the bank’s balance sheets, and how we simulate cascade effects. In Section 3 we discuss the simula-
tion results. In Section 4 we compare the simulation results with those of null models from random
network. Section 5 concludes the paper.

2 Material and Methods

2.1 Loan data and bank balance sheets

For our investigation we use tick data from the interbank loan trading platform E-mid. In this data set
the names of the banks have been replaced with an identifier, which allows us to infer the nationality
of the bank, but not its name. For each transaction we observe the time, the traded amount, the
interest rate, the identifier of the counterparts, and who was the initiator of a transaction. For our
analysis we aggregate and net the loan contracts between all pairs of banks (nodes) and derive a
directed weighted networks for each day (see also Table 1). The weights of the links are given by
the net amount of borrowing between the banks. The trading volume in the interbank market has
changed considerably as a result of the financial crisis of 2008. Hence, for our investigation we choose
two years in which the general characteristics of the network are comparably stable, the first one
before and the second one after the outbreak of the crisis, 2006 and 2011.

In our assessment of the fragility of this network, we repeatedly choose one bank as the initial
defaulter. We assume that this bank will not repay any of its interbank loans. Whether banks that lent
to a defaulted counterpart default themselves, depends on the amount of capital (equity) of a bank,
thus, the ability to write off lost interbank lending. We assume that no other balance sheet operations
can be made to prevent a default.

Hence, while the amount of interbank loans are known exactly, we have to approximate the
remaining items on the banks’ balance sheets. The balance sheet contains external assets A, interbank
lending L, capital C, deposits D, and interbank borrowing B (see Table 2). We approximate the total
assets for each bank by the total trading volume TV of the last 10 days in which the bank was active

Assets Liabilities
Assets A Capital C

Deposits D
Lending L Borrowing B

Table 2 Stylized bank balance sheet

The interbank market activity of the bank shows as lending L and borrowing B in the balance sheet. In our simulation
the remaining assets A are exogenous. The amount of capital is always in a fixed proportion to total assets. Customer
deposits D conclude the liabilities side of the balance sheet.
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in the market.1 Similar to Nier et al. (2007), we assume that the value of all balance sheet items are
constant fractions of the total assets TA. The ratio of interbank lending L to total assets TA is set to
θ = 0.2 for each bank. Hence, the total assets TA can be written as

TA =
TV
2θ

. (1)

This already determines the asset side of the balance sheet, since the external assets are then given
by A = TA− L. The balance sheet identity implies that for each bank

TA = A + L = C + D + B. (2)

The ratio of capital to total assets is set to γ = 0.05, hence C = γTA. Since B is given by the data, this
determines the liabilities side of the balance sheet:

D = (1− γ)TA− B. (3)

2.2 The Model

For each day of our sample, we simulate the default of each bank that is active as a borrower. We
think it is important to simulate the default of all banks, since focusing on only larger banks would
bias the results towards the local properties of large banks. We assume that the initial default is
triggered by an external cause, which is not in the scope of our paper. As the consequence of this
default, the bank will not meet its payment obligations on the interbank loan markets. Hence, all
banks which are net lenders to this one will suffer losses to the position L. Assuming that the share
of a bank’s exposure to the defaulting institution is φ, the position L will be reduced to (1− φ)L.
This loss has to be compensated by other positions of the banks balance sheet. Since we consider
the short-run effects directly after a default, losses can only be absorbed by the capital position C.
Summing up, this means that a bank survives a shock as long as

(1− φ)L + A− B− D > 0. (4)

To check the solvency condition, we calculate the remaining amount of capital (equity) for each
bank after the shock to the system. The simulation of defaults in this system takes place in several
rounds. After the initial default of one bank, only other banks with an exposure to this bank (net
lenders) will be effected. We have to recalculate the balance sheets of all these banks, and determine,
if they could absorb the initial shock. Eventually some of them default themselves. In this case, we
have to calculate the 2nd round effects on all banks that are net lenders to this institution. From
this point on, also banks that were not connected to the initially defaulted bank can be effected. The
re-calculation of balance sheets is iteratively repeated until no further bank is found to default.

On the level of the individual bank we have to consider the shock that it might receive from a
loan that is not repaid. Assume that bank i is default, because it has received a shock S→i. It passes
a residual shock to all its lenders ki (k = in-degree). The residual shock is given by the difference
between i‘s shock and its capital, S→i − Ci. Let us assume that Lji represents the amount that bank j
lent to bank i. Bi represents the amount that i borrowed from the set of banks ki. In case that banks
i’s residual shock is larger than his total borrowing, bank j will receive a shock equal to the loaned
amount Lji. Otherwise bank i will repay a fraction of the loan:

1 We choose this specification to ensure that bank’s capital is always consistent with interbank market exposures and
does not fluctuate wildly. We obtained qualitatively similar simulation results by estimating TA only from the current
day’s activity, and for estimating TA only from interbank lending. However, the results are more noisy, and, in the latter
case, lead to an indeterminacy for banks that are only borrowing.
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Fig. 1 Distribution of degree and capital
Left: The distributions for in- and out-degree differ slightly. For both years the distribution is wider for the out-degree
(lending) than for the in-degree (borrowing). The distributions have a tail and remind of a power-law with cutoff. Right:
The (estimated) capital (in million euro) of banks is also very unevenly distributed. We show the CDF for the empirical
distribution of capital for 2006 and 2011 together with a fitted Normal distribution. For 2006 we also show a fitted
exponential and generalized Pareto distribution. (For this illustration we plot the capital for all banks and all trading
days.)

Sij = Lji if S→i − Ci > Bi

Sij =
(S→i − Ci)Lji

∑k Lki
if S→i − Ci < Bi

(5)

Put differently, this means that we assume some recovery for defaults in the successive rounds of
bank failures. Banks will use their capital to repay interbank liabilities, but they will not use any of
the deposits. The exact design of this recovery might be debatable. We think that the assumption of
recovery is more realistic than the assumption of no recovery at all, which is implicitly assumed in
some other studies.

3 Simulation Results

3.1 General Results

For the simulation we use the daily empirical loan networks. We simulated the cascade by iteratively
choosing each bank as the possible source of the cascade, and we repeat this process for each day in
the data set. For each single run we calculate if a cascade occurred, how many banks are affected,
and how large the aggregated loss is. We can then related the magnitude of the cascade to the id-
iosyncratic properties of the banks, i.e., we can analyze in how far the size of the initial shock, the
capital buffer, or the network structure influence the outcome.

The simulation with empirical data has some features that set it apart from simulations with
random graphs. One feature is that the activity of the banks varies over time. In 2011 for example, the
average number of banks that are active on one day is 70, but the minimum is 38 and the maximum
is 89 (2006 average: 128, min: 77, max: 144). The reason are mainly the bank holidays, which are not
synchronized between countries. The average degree is more stable, for 2011 its fluctuations mostly
stay in the band between 4 and 5. The degree distribution is somewhat close to a power law, the
number of nodes is of course too small for a precise classification. Figure 1 shows that the maximum
of the out-degree (borrowing) is slightly larger than the in-degree (lending). This is caused by the fact
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that some larger banks serve as a kind of hub for the provision of liquidity, which leads to a slight
asymmetry in the market.

Another feature of the data is that we can have more than one component. This means that parts
of the network can be separated from the giant component. This can happen, when for example
one small bank is borrowing from only one other bank, which itself has no other connections. This
feature arises naturally from the strong heterogeneity in the size of banks. We checked that the large
majority of banks are in one large component. In 2006 (2011) the average number of components was
1.7 (2.3).

3.2 Influence of the size of the shock on the cascade

Whether the initial default of a bank leads to significant losses to the entire system depends heavily
on the size of the initial shock. For 2006 we analyze 25,914 defaults, in 13,206 cases this leads to the
default of at least one other bank (50.1 %). In 2011 the number of transactions and also banks is much
lower, thus we investigate only 13,614 cases of default, 8,385 of which lead to at least one knock-on
default of another bank (61.6 %). The first impression of these numbers is that the interbank market
has become more fragile in 2011. This conclusion however, would be too general. The reason is, that
we assume that the ratio of interbank market activity to capital of the banks is constant. The overall
decrease of interbank market activity although suggests that this ratio has decreases over time. Still,
we can conclude that the network structure of the interbank market in 2011 is more prone to cascade
effects than in 2006, eventhough it might be backed by more capital. One possible reason for this is
that risks are shared with fewer counterparts (see also Raddant , 2012).

Figure 2 shows the knock-on effects in our simulation, dependent on the shock size from the
initial defaulter. In network science often a threshold is defined after which knock-on effects are
regarded as a cascade, e.g., when more than 5% of the nodes are affected. If such a measure is used in
2006 (2011) we have 904 (1782) cases, 3.5% (13.1%), in which a cascade happens. The pure number of
affected nodes is not necessarily the best measure to quantify the cascade, because the banks which
they represent can be of very different size. Hence, the right panel shows the cascade size measured
by the fraction of total lending losses. The difference is that now cases in which high initial shocks
lead to the default of only few but probably big counterparts are more accurately displayed, the same
holds for small initial defaults that only trigger further small banks. When we apply the same 5%
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Fig. 2 Influence of shock on cascade size
In these scatter plots of simulation results, the shock size is measured by the amount of failed loans of the bank that ini-
tially defaults. The left panel shows the resulting cascade measured by the share of banks that default as a consequence
of this shock. In the right panel the cascade is measured by the share of interbank loans that fail as a consequence of the
initial default.
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Left: A reduction in the ratio of capital to total assets γ has a strong non-linear effect on the average cascade size. The
non-linear effect is caused by the failure of any bank to absorb larger shocks. Right: Increasing the ratio of interbank
assets θ leads to an almost linear increase of the average cascade size. Since the transmission of shocks to other banks is
limited to the amount of interbank lending, depositors bear additional losses when θ is increased.

threshold to this measure, we find that the difference between the years appears smaller, since in
2006 4.2% of initial defaults result in a cascade compared to 8.5% in 2011.2

3.3 Sensitivity to Parameters

While the interbank links in our simulation are derived from empirical data, and can thus be re-
garded as representative for the interbank assets, the remainder of the bank’s characteristics are only
approximated. The absolute numbers of certain balance sheet items are in fact not important for the
results that we obtain. The parameters θ and γ, which describe the share of interbank assets and the
ratio of capital to total assets, are however very important. Figure 3 shows their influence on the av-
erage cascade size. The important difference is that the cascade size shows almost linear dependency
from θ, while lowering γ leads to a critical point after that defaults sky-rock. Although these results
are qualitatively similar to those of Nier et al. (2007) for the Bernoulli random graph, heterogeneity
of banks and a real network structure lead to more realistic results. Different from Nier et al. (2007)
we observe dependency from θ for a wider range of values, and a continuous increase in the cascade
size for γ (as a result of the network structure and the larger number of banks).

3.4 Influence of node connectivity on the cascade

In the following we analyze what influence the characteristics of individual nodes have for cascades
and on the survival after a shock. We start with an analysis of the initially defaulting bank.

We have already seen that the cascade size depends on the size of the initial shock. However,
besides the pure size of the shock the connectivity of a bank and the network structure play a role
(see also Battiston et al. , 2012). The left panel of Figure 4 shows the average cascade size dependent
on the in- and out degree of the bank that we choose to default. Interestingly, we observe only few
banks that have large in- and out-degree. The cascade size increases with the in-degree (borrowing of
the defaulted bank), as can be expected. More interesting is to disentangle the influence of in-degree

2 The change in the cascade size between 2006 and 2011 is not caused by a sudden change. We simulated the cascade
size for all remaining years, and found that the average cascade size gradually increases, while the average degree of
the network steadily decreases throughout the years.
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The heat maps show the average cascade when a bank with a specific degree defaults in 2006. The left panel shows that
the cascade size increases with the in-degree (borrowing) of the defaulted bank. The right panel shows the relationship
of in-degree and the shock size, i.e. the amount of loans that are not re-payed by the defaulted bank. We observe that
large shocks do not necessarily lead to the largest cascades; medium sized shocks among well connected banks can
affect even more banks.

and shock size. The right panel shows that even medium sized shocks can cause large cascades,
if banks are well connected. It has to be noted that some of the larger shocks in our data set stem
from large international banks, which connections to other global players outside the Italian E-mid
platform cannot be accounted for in this simulation. However, the analysis clearly shows that for
any given shock size greater connectivity leads to larger cascades, i.e., a larger number of defaulted
banks.

We analyze the question of the connectivity in a bit more detail. Not only the number of links,
but also where these links lead to is likely to have an impact on the cascade size. The betweenness
score is a measure that accounts for just this. It measures the fraction of all shortest paths between
all nodes that lead through a node. Hence, the betweenness score of a node is high if it is central.
The left panel of Figure 5 shows that the (few) nodes with an above average betweenness also cause
much larger cascades on average if they default.

A related measure is the core number of a node. A k-core is defined as the largest subgraph
which nodes have at least k connections (see Goltsev et al., 2006). Hence, if a node has a high core
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Fig. 6 Degree, closeness, core number and conditional default probability
Left panel: The conditional probability of a bank to default as part of a chain reaction decreases with the in-degree
(borrowing). For the out-degree (lending) we observe a hump-shaped relationship. Middle panel: Banks with an in-
termediate closeness are the ones most prone to default in our simulation. Right panel: Also for the core number we
observe a hump-shaped relationship with the probability to default.

number, this shows that it has not only a high degree, but that it is also connected to nodes with
a similar high degree. The right panel shows that in fact the cascade size also increases with the
core number, although this increase is not as pronounced as for betweenness. Previous studies on
disease spreading models have also shown this effect of coreness on the disease outbreak size (see,
e.g., Kitsak at al., 2010).

After analyzing which bank is the most “dangerous” when it defaults, we can now turn to the
analysis of the vulnerability of banks to this default. Hence, we look at measures of node centrality
to determine which characteristics (besides the shock size) determine the probability of a bank to
default at any stage of a cascade process. We start with the degree, which is reported in the left
panel of Figure 6. For both years, 2006 and 2011, the conditional probability to default is decreasing
with the in-degree (borrowing), because banks that borrow a lot are less vulnerable (and mostly
lend less than they borrow). The result for the out-degree are more interesting. In general, we would
expect that the default probability decreases with degree, since shocks are wider distributed among
banks. However, for 2006 we observe a hump-shaped curve, the probability to default increases for a
degree of up to 7, before it slowly decreases for banks with more links. For 2011, where the network
is smaller, we barely reach the point where the probability decreases (the results for degree > 15 are
noisy due to the small sample). We can infer that this sample contains a lot of banks that in terms of
risk sharing are too small. Many of these might in fact be part of an affiliate group of banks.

The analysis of some centrality measures helps us to understand these patterns. The node close-
ness describes how easily a node can be reached from any other one in the network (see, e.g., Free-
man , 1979). The middle panel of Figure 6 shows that nodes (banks) that have low closeness, and
are thus difficult to reach for a shock, have a low probability to default. The probability increases
for values of up to 0.26 and then decreases for nodes with a higher closeness. Put differently, for the
connectivity of banks there is a threshold after which the likelihood to be hit by a shock is out-weight
by the benefits from spreading exposures.3 We obtain similar results from an analysis of the default
probability dependent on the core number. The probability to default is highest for banks with a core
number of 4-5, and decreases for values higher than this.

3 We found that betweenness, while being a good measure for the impact of the initial default, is not a good measure
for the vulnerability of banks. The probability of default depends on being close to the bank that initially defaults, for
this closeness is a less noisy measure than betweenness.
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Fig. 7 Cascade size for different null models
The box-plots show the average daily cascade size for the empirical model (left) compared to the null models described
in this section for 2011. The rewired and random null model lead to a slightly higher cascade size. The null models that
randomize both, size distribution and links, lead to much larger cascades than the empirical model.

The strong non-linearities in the just discussed measures of degree and centrality hint at the
fact that the behavior of the banks in this network is not well described by models that assume
pure chance for describing banks’ interconnections. We observe differences between weakly and
strongly connected banks and their ability to withstand shocks. These, together with the obvious
heterogeneity in the size of banks demand further investigation.

4 Null models

The interbank network has several interesting structural features that are likely to have a significant
impact on its stability. Among those are the heterogeneity in the bank size, the directionality and
assortativity of links, and the heterogeneity in the link weights. In order to investigate the role of
each of these features we need to derive a benchmark; this means that we have to derive the aver-
age cascade size in a network where these features are excluded or randomized. Such a benchmark
network is called a null model. Null models are an established tool to separate “natural” network ef-
fects from influences that are caused by the actual degree sequence of a network, i.e., behavior that is
likely to be strategic and planned, or the outcome of the environment. Null models have been stud-
ied in ecological networks (see, e.g., Vázquez and Aizen, 2003), protein networks (see, e.g., Maslov
and Sneppen, 2002), commmunication networks (see, e.g., Karsai et al., 2011), face-to-face interaction
networks (see, e.g., Isella et al., 2011) and recently in trade networks (see Fagiolo et al., 2013).

Hence, we investigate the topological and structural properties of the empirical network of the
interbank market by comparing its stability with those of different null models. In all cases we pre-
serve the number of nodes, the number of links, and directionality of the network. We generate the
following null models:

In the rewired null model we preserve the degree of each nodes, and the weight of each link
(loan size). The algorithm randomly selects pairs of links with similar size and rewires (switches)
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the counterparts of these links, if the rewired links do not yet exist. If the rewired links are already
present in the network, the algorithm picks another pair with similar weights. The banks’ balance
sheets are adjusted to be consistent with the slight changes in the bank’s interbank market activity.
This null model is similar to one proposed by Maslov and Sneppen (2002). The model should show
in how far the non-randomness of connectivity influences the stability of the network, given the very
heterogeneous link weights.

In the random (Erdös-Rényi) null model we start out with the empirical set of loan contracts and
generate random links between the banks using the empirical loan contract weights. This null model
destroys the topological structure of the network, but preserves the daily interbank volume. The size
of the banks, their capital, and their degree are also randomized. The banks’ balance sheets are again
adjusted to be consistent with interbank market activity.

The fixed weight null model preserves the number of links for all banks, but assigns constant
weights to all of them. For each day, the constant weight is calculated by dividing the total lending
by the number of contracts on that day. Hence, this null model preserves the degree distribution, but
makes the link weights homogenous. Accordingly, the size of banks (and their capital) is proportional
to the degree.

Finally, we assume a random network with fixed weights. In this null model the link weights are
constant, as described in the previous model. Moreover, we randomize the connectivity of the nodes
like in the random model. This model has the least similarity with the empirical network; it also has
the largest deviation in the resulting average cascade size.

Figure 7 illustrates the size of the cascade in different null models compared to the empirical net-
work. In the rewired model the average cascade size is 1.4 times larger than in the empirical network.
The random null model, which destroys the degree connectivity but keep the weights, results in a 1.7
times higher cascade size. The fixed weighted model leads to an even 2.3 times higher average cas-
cade. The random fixed weighted model results in 3.1 times more defaults than the empirical model.
The analysis of the null models reveals that simulating bank networks assuming homogeneity in the
bank and loan size dramatically overestimates its fragility. In fact also the rewired model with the
correct degree and size distribution results in a significantly higher cascade size than the empirical
network. In comparison however, the “error” from ignoring the size distributions of loans and banks
seems to be much greater than assuming a wrong distribution of links and degree.

5 Conclusions

In this paper we analyzed the likelihood of cascades in an empirical interbank loan market. The
novel aspect of the paper is that we assume heterogeneity in the size of banks and loans, derived
directly and indirectly from empirical data. Our results indicate that the cascade size depends not
only on the size of the initial shock, but also on the in-degree of the defaulter. Moreover, the position
of the initial defaulter within the network, e.g. its centrality and coreness, plays an important role for
its ability to start a cascade.

We found that the fragility of this market, given our model, has increased significantly from 2006
until 2011. Our analysis of the vulnerability of banks shows that for 2006, in line with theoretical
results on risk sharing, the probability to default decreases with the out-degree. For 2011 however,
we do not observe the same pattern, instead there is strong positive correlation between the centrality
and vulnerability of banks. It seems likely that the increase in vulnerability is linked to a change in
lending behavior, caused by the lost trust in many borrowers, and that this change feeds back as a
negative influence on overall system stability.

To analyze specific aspects of the network structure on the cascade process, we made use of
different null models. The results show that the empirical network has non-random features, which
cannot be captured from rewired models with identical network properties. Furthermore, we show



12 Fariba Karimi, Matthias Raddant

that assuming homogeneity for bank size and link weights highly overestimates the fragility of the
system.

We believe that this study is an attempt to model more realistic financial networks. Further re-
search should focus on the influence of dynamic aspects of the interbank network on cascades of
defaults. Another research direction can be modeling multiplex networks that incorporate different
financial products and markets.
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