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The paper proposes a new method to estimate correlation of account level Basle II 
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of portfolio level LGD in the context of a copula model which is used to stress the 
LGD parameter as well as to estimate the LGD discount rate and other parameters. 
Given historical LGD observations we apply the maximum likelihood method to 
estimate the best correlation parameter. The method is applied and analyzed on a 
real large data set of unsecured retail account level LGDs and the corresponding 
monthly series of the average LGDs. The correlation estimate comes relatively close 
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1 Introduction 

 
The Basle II regulatory formula (see Basle, 2006) aims to provide a sufficiently robust 

estimate of unexpected losses on banking credit exposures that should be covered by the 

capital. The capital requirement (C) is set equal to the difference between the unexpected 

(UL) and expected credit loss (EL), calculated for each receivable as C = UL-EL = (UDR-

PD)⋅LGD⋅EAD, where PD is the expected default rate, UDR=UDR(PD) a specific regulatory 

function estimating unexpected default rate from the PD parameter, LGD the expected 

percentage loss conditional upon default, and EAD the expected exposure of the receivable at 

default. 

 

The regulatory approach (BCBS, 2006 or CRD,2006) is very specific regarding unexpected 

default rate applying the Vasicek (1987) formula that is generally considered to be sufficiently 

robust. On the other hand, the LGD parameter is specified very vaguely by the regulation to 

reflect downturn economic conditions but may be also calculated just as a long term default 

weighted average under relatively normal circumstances. This deficiency has been criticized 

by many practitioners and researchers (see Altman, 2004).  

 

The importance of stressing all the Basel II parameters is underlined by the 2007 economic 

crisis. The Committee on Banking Supervision has already issued several proposals, 
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revisions, and enhancement of the Basel II regulation reacting to the crisis. In order to 

strengthen banks’ stress testing practices, as well as improve supervision of those practices, in 

May 2009 the Committee published Principles for sound stress testing practices and 

supervision. The regulatory package issued in July 2009 covers also risk management 

principles, securitized assets, market risk, and the trading activities. 

 

It has been empirically shown in a series of papers by Altman et al. (2004), Gupton et al. 

(2000), Frye (2000b, 2003), Acharya et al. (2007), etc. that there is not only a significant 

systemic variation of recovery rates but moreover a negative correlation between frequencies 

of default and recovery rates, or equivalently a positive correlation between frequencies of 

default and losses given default. Consequently the regulatory formula may significantly 

underestimate the unexpected loss on the targeted confidence probability level (99.9%) and in 

the considered time horizon (one year). Some authors (see e.g. Frye, 2000ab, Dullmann and 

Trapp, 2004, Pykhtin, 2003, Tasche, 2004, or Witzany, 2009ab) have proposed alternative 

unexpected loss formulas incorporating the impact of recovery risk variation. The unexpected 

recovery risk is also important for determination of the recovery cash flows discount rate in 

line with the regulatory requirements. Witzany (2009c) proposes a methodology to estimate 

the discount rate and the unexpected recovery risk but the empirical study uses just an 

expertly set correlation at the level of 10% corresponding to an average Basel II regulatory 

PD correlation.  

 

The aim of this paper is to propose and test on real banking data an estimation methodology 

for the LGD correlation. Section 2 outlines the LGD asymptotic model and the corresponding 

LGD correlation estimation methodology. The empirical results are then described in    

Section 3. 

 

 

2 The LGD Model and the Estimation Method 
 

The model proposed in Witzany (2009bc) can be summarized as follows: We assume that 

account level identically distributed loss given default rate jLGD are normalized (see also 

Gupton, 2005 or Kim, 2006) to 1( ( ))jjY N Q LGD−= where Q is the account level LGD 
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cumulative distribution function (cdf) and N denotes the standardized normal cdf. We use the 

one-factor copula model for jY and jLGD  

 

(1) 
1

1 ,

( ( 1 ))

 i.e.

j

j j

jLGD

Y S W

Q N S W

ρ ρ

ρ ρ−

= ⋅ + − ⋅

= ⋅ + − ⋅
 

 

with independent standardized normal systematic factor S and account-specific idiosyncratic 

factor jW . For a large portfolio of receivables that defaulted at the same time t  and have been 

recovered during the same period the systematic factor could be kept fixed at S  but the 

idiosyncratic factor varies over all possible values according to its distribution. Hence the 

asymptotic average portfolio loss rate conditional upon S can be approximated by 

(2) 1 1( ) ( ( 1 )) | ( ( 1 )) () w dLGD H S E Q N S W S Q w wN Sρ ρ ρ ρ φ
∞

−

−∞

−⎡ ⎤= = + − ⋅ = + − ⋅⎣ ⎦ ∫  

where φ is the standardized normal pdf. Once we know the distribution function Q and the 

correlation ρ we also know the transformation function H and so the distribution of 

LGD transforming (0,1)S N�  by H . Note that the function H is increasing with positive 

first derivative for regular distributionsQ . 

 

We will use the Gaussian copula model to estimate the correlation ρ given a data set of 

observed defaulted accounts A . We assume that for each a A∈ we are given the month of 

default (alternatively quarter, year, or another time unit) as an ordinal 0 0 1( ) , ,{ 1,... }t a tt t+∈  

and the realized loss given default ( )lgd a calculated as 1 minus the discounted recovery cash 

flows (see Witzany, 2009c). The realized values are expected to be distributed in the interval 

[0,1] but we admit also values less than 0 and larger than 1. Moreover we assume that there is 

an unobserved time series of the systematic factors ( )s t for 0 0 1, 1,... }{ ,ttt t+∈ and the 

independent idiosyncratic factors ( )w a corresponding to (1) for every a A∈ . Both ( )s t and  

( )w a are assumed to have standardized normal distribution. We admit certain autocorrelation 

in the time series ( )s t , which would not be surprising, but we assume that the series is weakly 

independent, i.e. that ( )s t  and ( )s t h+  are almost independent for any sufficiently large h . 

This assumption holds for the models like AR(1) or AR(n) that will be used. Consequently we 

may apply the law of large numbers, in particular we may assume that the empirical 
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distribution of { 1 ( ) | }( ( ))s t a w a a Aρ ρ− ∈+ approximates well the standardized normal 

distribution for a large enough dataset A . 

 

The first task is to estimate the cdf Q for the account level LGDs. Based on the assumptions 

above the empirical distribution { ( ) | }lgd a a A∈ approximates well the theoretical 

distributionQ . We will get Q  in two ways: 

a. As a fitted parametric Beta distribution. 

b. As a normal kernel smoothed distribution obtained from the empirical distribution. 

The beta distribution determined by its minimum A , maximum B  (normally 0 and 1), and 

coefficients α and β is recommended by many authors (see e.g. Schuermann, 2004 or Gupton, 

2005). If all the observations were in the interval (0,1) then α and β could be fitted using the 

maximum likelihood method. However as we will see in Section 3 there could be outliers 

with very low (negative) and very high (above 1) LGDs. If we set the Beta distribution 

parameters A and B approximately at the observed minimal and maximal value then the fitted 

distribution may appear unrealistically flat. On the other hand, we cannot use maximum 

likelihood if any of the observed values falls outside of the interval ( , )A B . Hence we will set 

A and B at appropriate quantiles of the empirical distribution (e.g.1% and 99%) and fit the 

parameters α and β to the first two moments, i.e. to the sample mean μ and standard deviation 

σ: 

( )2 2

(1 ) (1 )1 , 1 1μ μ μ μα μ β μ
σ σ
− −⎛ ⎞ ⎛ ⎞= − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

% % % %
% %

% %
, where , .A

B A B A
μ σμ σ−

= =
− −

% %  

 

Once we specify the account level LGD distribution Q we may proceed to estimation of ρ 

based on (2) and the maximum likelihood method. In addition we need to assume that the 

observed vintages |( }) ){ (A t aA t a t∈= = are sufficiently large so that the observed average 

values 
( )

1( ) ( )
| ( ) | a A t

lgd t lgd a
A t ∈

= ∑ follow (approximately) the asymptotic distribution 

determined by (2).  

 

To express the likelihood function let us start with the first observed vintage level loss given 

default 0 0( )l lgd t= . The likelihood of the observation is given by the corresponding density 

function value of the random variable ( )LGD H S= with (0,1)S N� . Let 1
0 0 )(s H l−= then 
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using the chain rule the likelihood of the single observation is 0

0
0 )

)
)

(
((
'
sL l

H s
φ

= . The same holds 

for the second month observation 1 0( 1)l lgd t= + but for the joint likelihood calculation we 

have to take a possible autocorrelation into account. Let us assume that the systematic factors 
1

0), ( )(i i ils H l lgd t i−= = +  follow the AR(1) process, i.e. 1 1 2· ·i i iss uc c−= + where 

(0,1)iu N� are iid and 2 2
1 2 1c c+ = . The coefficient 1c may be estimated as the time series 

autocorrelation and 2
2 11c c= − . To express 0 1 0 1 0, ) ( (( · | ))l L l L lL ll = we need to use 

2

1
1

1
0( | )

'(
(

· )
)uL l l

c H s
φ

= again applying the chain rule on 0 2 11· ·( )H cs Uc +  where 1 (0,1)U N� and 

0s is fixed. Since 0 1 1,..., |( | ) ( )i i i ilL l L l ll − −= we may continue for 1 01,...,i n t t= = −  to get  

(3) ( ) 0 1 1
0 1 1 1

0
0

2 2

( ) ( )· · where
)

( ) ( | ) ,
'( ' )(

n n i i
i i i i i i

n i
i

i

s c sL l L l L l l u
H s c

s
H u c

uφ φ −
== = −

−
Π= =Π= . 

The log-likelihood function ( )0
log i

n

i
L l

=
 now may be maximized with respect to the 

correlation parameter ρ that enters Q . Since we admit an arbitrary (smoothed) empirical 

distribution Q  the integral (2) and the inverse function must be evaluated empirically and we 

need to use a numerically efficient maximization algorithm (implemented e.g. in Matlab). To 

get a standard error estimation of the parameter ρ̂ we can use the bootstrapping technique on 

the dataset A making sure that size of the bootstrapped vintages remains unchanged. 

 

The remaining theoretical question is how to use the correlation to estimate one-year horizon 

unexpected LGD in case the estimation is based on shorter time interval, e.g. monthly series. 

The random variable we want to model can be in that case expressed as 

(4) 
12

1
1

1 ( )
12Y n i

i
LGD H S +

=

= ∑  

provided the number of defaults in individual months is stable and 1 12,...,n nS S+ + are the next 

twelve months unknown systematic factors. One conservative approach is to set all the factors 

equal to a quantile 1( )N x− , e.g.  1(0.95)N − , but the resulting stressed LGD is clearly larger  

than the 95% quantile of (4) since we are disregarding the partial independence of n iS + . A 

fully precise approach would be to estimate the quantile empirically (e.g. using Monte Carlo 

simulation) based on the relationship 1 1 2n i n in iS c S c U+ + − += + with iid (0,1)n iU N+ � and 

1,...,12i = . We will see that the function H is “almost” linear for reasonable values of the 
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systematic factor. Consequently a practical approach standing in terms of precision 

somewhere in between the two approaches described above would be to take the function 

H out of the sum on the right hand side of (4) and calculate the desired quantile of  

(5) 
12 12 12

12 2
1 1

1 1

1 ,
12 12

 where k i
n i n n i

i
i

i k i
i

cS c S d U cd −
+ +

= = =

= + =∑ ∑ ∑ . 

The standard deviation 1Yσ of the sum on the right hand side (5) can be easily calculated as 

12
2

1
1

Y i
i

dσ
=

= ∑ , since n iU + are independent (0,1)N . To calculate the quantile the first term on 

the right hand side can be neglected and in fact it should be set equal to 0 as the forward 

looking LGD estimations need to be based on a long term LGD average, i.e. zero systematic 

factor. Consequently we may estimate the unexpected LGD on the probability level x simply 

as 1 1
1 ·( ( ))YH xNσ− − .  

 

 

3 Empirical Results 
 

We have obtained an LGD data set of 4 000 defaulted unsecured retail loans from a large 

Czech retail bank. The loans defaulted in a recent period (preceding the year 2008) of 57 

months ( 0 1t =  and 1 57t = ). The data set contains account level information on net discounted 

monthly recovery cash flows as well as some basic application and behavior explanatory 

variables. Ultimate recovery is achieved by a sale of receivable, write-off or after 36 months. 

Since the data have been observed shortly after the end of the observation period many of the 

recoveries remain uncompleted, for accounts defaulting in month t there are in fact at most 

58 t− monthly recoveries. This is a typical situation which needs to be resolved somehow in 

practice. Banks first of all do not have sufficiently long historical data; secondly the recent yet 

incomplete data contain important information regarding recent trends. The possible 

extrapolation techniques including survival time analysis methods are studied in Rychnovsky 

(2009). For the sake of our study we will use logistic regression based extrapolation of the 

ultimate recovery rates 36( )rr a  and work with ( ) 1 36( )lgd a rr a= − . The recoveries and 

LGDs are relative to the exposures at default and the averages are default (not exposure) 

weighted. At the end of the section we will also discuss some alternatives to this approach. 

The histogram of the observed LGDs is shown on Figure 1 and the descriptive statistics in 

Table 1. 
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Figure 1. The histogram of observed LGDs, fitted beta, and kernel smoothed 

distributions. 

 

Num 4000 

Max 1.2726 

Min -2.0301 

Mean 0.4173 

Median 0.4467 

Range 3.3028 

Std 0.3609 

 

Table 1. Descriptive statistics of the LGD data set 

 

The histogram shows that the real data rather deviate from our expectation of the LGD 

distribution, i.e. a beta distribution on the interval [0,1] . The high values (up to 127%) 

correspond to situations when there are relatively significant recovery costs but no actual 

recovery amounts collected.  On the other hand, the negative observed LGDs (down to -

203%) are realized when the debtors decide to pay all the obligation including late fees and 

sanction interest with discounted total significantly exceeding the initial exposure at default. 

To fit the beta distribution we have used the 1% empirical quantile 0.26A = − and the 99% 

quantile 1.046B = . The quantile has been chosen to get the interval [ , ]A B closer to the 
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standard LGD range [0,1] eliminating the outlier observations. The calculations have been 

however done with other probability levels (to eliminate the outliers) like 0.1% or 0.5% with 

results close to the one chosen. The beta distribution bQ  fitted to the first two moments 

with 11.12α = and 3.88β = is shown in Figure 1. It appears that better result could be 

obtained with the normal kernel smoothed empirical distribution kQ calculated in the Matlab 

application using the ksdensity function (see Figure 2). 

 

Next we need to analyze the time series of the average monthly ( )lgd t shown on Figure 2. The 

figure as well as the descriptive statistics (Table 2) shows that the variation of monthly 

portfolio level LGDs is much smaller than the variation of account level LGDs. The number 

of accounts in monthly vintages ranges from 39 to 108 which is not optimal but can be still 

considered as sufficient with respect to the asymptotic model. 

 

 
 

 Figure 2. The vintage LGD time series. 

 

 

 

 

 

 

 



 9

Num 57 

Max 0.5963 

Min 0.3065 

Mean 0.4209 

Median 0.4211 

Range 0.2898 

Std 0.0567 

 

Table 2. Descriptive statistics of the vintage LGD time series  

 

Given the account level distributions we may for any given correlation ρ  evaluate the 

transformation function H according to (2). Figure 3 shows the function for different 

correlation values, alternatively for the beta and the empirical distribution. 

 

  
 

Figure 3. The H  transformation for the beta and the empirical distribution and 

different correlation values 

 

Note that since the function ( )H S is “almost” linear, at least for systematic factor S values in 

the interval[ 2, 2]− , and as S  is standardized normal the variable ( )H S  is also “almost” 

normal. This appears to be surprisingly even more true for the kernel smoothed empirical 

distribution kQ . Since the standard deviation of ( )H S equals approximately to the slope of 

H we are essentially seeking the correlation ρ such that the slope of the corresponding 

transformation H Hρ= equals approximately to the observed standard deviation of the 
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observed monthly LGDs. Of course this not exactly how the maximum likelihood runs but we 

may check the relationship for consistency when the calculation is done. 

 

Before we run the maximum likelihood estimation we may look on autocorrelation of the 

LGD time series (see Figure 3). The autocorrelation for lags larger than 1 do not appear 

significant, hence we will use the AR(1) model for the systematic factors as described in 

Section 2. 

 

 
 

Figure 3. Autocorrelation of the monthly vintage LGD time series 

 

Finally we ran the maximum likelihood estimation and bootstrap the sample 100 times for 

both types of distributions. We get the estimations 4 48%ˆ .bρ = with s.e.=0.65% based on the 

beta distribution and ˆ 3.9%kρ =  with s.e.=0.8%. To apply the consistency check mentioned 

above we may estimate the slope of Hρ e.g. in the case of the empirical distribution by 

' (0) 6.3%Hρ =  which is indeed close to the standard deviation of the LGD time series (Table 

2). Finally we conclude that the estimation technique is relatively stable even without 

significant dependence on the shape of the account level LGD distribution. 

 

Let us calculate the 95% probability level stressed one-year average LGD based on the model 

and empirical distribution based correlation ˆ 3.9%kρ = . The simplest approach is to set 

1 (1.65) 53.76%ULGD H= = which is 12% more compared to the long term LGD average 
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(41.73%). Secondly let us use the formula (5) to calculate the standard deviation 1Yσ of the 

average forward looking twelve months systematic factor. The lag 1 autocorrelation of the 

historical systematic factors turns out to be 1 0.2353c = . Using (5)we get that 1 0.3583Yσ =  

and the second estimate 2 (0.35831.65) 45.83· %ULGD H= = turns out to be much lower than 

the first estimate. Finally we have simulated possible 1YLGD values based on (4) and obtained 

a third estimate of the 95% quantile 3 45.7%ULGD =  that is as expected very close to the 

second simulation based estimate. 

 

Remark: We have pointed out at the beginning of this section that the ultimate LGDs have 

been extrapolated from incomplete data. If we look only on accounts with completed 36 

months recovery rates, i.e. on accounts that defaulted in month 1 to 21=57-36, then we obtain 

a slightly different distribution (see Figure 4). 

 

 
 

Figure 4. The histogram of completed LGDs after 36 months 

 

Notice that the distribution differs from the one on Figure 1 where there is a significant hump 

in the middle. This is probably caused by the logistic regression based extrapolation which 

tends to the average values. The reason why we did not limit ourselves only to those data is 

that the time series becomes too short (only 21 months with 1651 accounts) and the estimation 

becomes unreliable. However running the beta distribution density based estimation we 

obtained ˆ 4.12%ρ = with s.e.=1%. We have also investigate the possibility using just partial, 
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e.g. 12 month, but realized recoveries. The correlation estimate came out slightly higher but 

the basic account level distribution appears to have a significantly different shape (Figure 5). 

It seems that large repayments causing LGD to be close to zero happen mostly in later phases 

of the recovery process. Consequently we also had to reject this alternative approach. 

 

 
 

Figure 5. Distribution of LGD based on 12 months recoveries , i.e. 1 12rr−  

 

 

4 Conclusions 

 
The proposed LGD correlation methodology applied to a relatively large sample of defaulted 

unsecured retail loans led to a relatively stable correlation estimates at about ˆ 3.9%ρ = . The 

result is surprisingly close to the regulatory correlation (see BCBS, 2006) entering the 

unexpected probability of default formula that is 3% for revolving loans and  
35 35 35

35 35

10.03 0.16
1 1

p p

reg
e

e
ee

e
ρ

− − −

− −

−−
= +

− −
 

for “other” retail loans (other than mortgages and revolving loans) where p  is the probability 

of default. Disregarding the peculiarity of the formula if we use the default probability of 4% 

indicated by the bank we get 6.21%regρ = .  

 

We have also proposed a simplified yet efficient estimation of the stressed 1 year LGD based 

on monthly LGD series correlation. It can be used to verify that the slightly higher regulatory 
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correlation compared to our estimate ˆ 3.9%ρ = nevertheless leads to a significantly higher 

modeled unexpected LGD.  

 

The correlation estimation procedure should be ideally applied to ultimate realized recoveries. 

This is in practice almost impossible as the recoveries of recent defaults usually remain 

uncompleted. Further research should be made regarding the impact of various extrapolation 

methods. Last but not least a research on PD x LGD correlation in the context of the proposed 

methodology should follow. 

 

It should be also noted that the data used cover the pre-crisis period. The crisis has probably 

changed the correlation patters significantly and so the estimation procedure should be 

applied to new data in order to obtain a correlation estimate applicable to the actual situation. 
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