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Abstract:Abstract:Abstract:Abstract:    
Using a simple computational model, we study consequences of herding behavior in 
population of agents connected in networks with different topologies: random 
networks, small-world networks and scale-free networks. Agents sequentially 
choose between two technologies using very simple rules based on the previous 
choice of their immediate neighbors. We show that different seeding of technologies 
can lead to very different results in the choice of majority of agents. We mainly 
focus on the situation where one technology is seeded randomly while the other is 
directed to targeted (highly connected) agents. We show that even if the initial 
seeding is positively biased toward the first technology (more agents start with the 
choice of the first technology) the dynamic of the model can result in the majority 
choosing the second technology under the targeted hub approach. Even if the 
change to majority choice is highly improbable targeted seeding can lead to more 
favorable results. The explanation is that targeting hubs enhances the diffusion of 
the firm’s own technology and halts or slows-down the adoption of the concurrent 
one. Comparison of the results for different network topologies also leads to the 
conclusion that the overall results are affected by the distribution of number of 
connections (degree) of individual agents, mainly by its variance.        
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Introduction 
 

In many real life situations our choice is more or less influenced by the choice or opinion of 

other people, whether it be our friends, parents, colleagues, teachers, mentors or hired 

specialists. The list of such situations is very diverse: from everyday life choices such as 

where to dine or what television programs to watch, through voting in elections, having 

children, changing jobs, or deciding how firms should invest. Very often people simply 

choose what majority of others has chosen. This kind of behavior is called herding behavior. 

As posted by Banerjee 1992, herding behavior is when: “... everyone is doing what everyone 

else is doing, even when their private information suggests doing something quite different.” 

In this work we use computational model to study consequences of herding behavior in case 

of technology diffusion if a population of agents is connected through networks with different 

topologies. The topologies considered are random networks (Erdös and Rényi 1959), small-

world networks (Strogatz and Watts 1998) and scale-free networks (Barabási and Albert 

1999). Agents one after another choose between two technologies using very simple rule 

based on the previous choice of their immediate neighbors. We show that different initial 

seeding of technologies can lead to very different results in the final majority choice. We 

mainly focus on the situation where one technology is seeded randomly while seeding of the 

other technology is targeted to highly connected agents – hubs. We show that even if there are 

more agents starting with Technology 2, Technology 1 can be finally chosen by a majority of 

agents if the technology is seeded within targeted hubs.  The explanation is that targeting hubs 

1) enhances the spread of the firm’s own technology and 2) halts or slows-down the adoption 

of the concurrent one. Comparison of the results for different network topologies leads us to 



2 

the conclusion that the overall results are also affected by the distribution of number of 

connections (degree) of individual agents, mainly by its variance. 

  

Related literature 

Our work is connected to two main strands of literature. The first strand focuses on the 

technology adoption. Here authors explain observed regularities like path-dependency and 

lock-in effect through network externalities (Katz and Shapiro 1986), increasing returns 

(Arthur 1989), herding behavior (Banerjee 1992; Dosi, Ermoliev and Kaniovsky 1994), 

informational cascades (Bikhchandani, Hirshleifer and Welch 1992) and information 

contagion (Arthur and Lane 1991). Many authors also describe micro-motives leading to the 

observed phenomena (see for example Banerjee 1992, Arthur and Lane 1991 or Narduzzo and 

Warglien 1996). Vriend 2004 showed that information-contagious behavior can evolve in the 

population of artificial agents through self-organization and emergence. In our work we 

follow Dosi, Ermoliev and Kaniovsky 1994 and assume that agents are govern by simple 

herding behavioral rule based on the information about choice of sample of agents. Contrary 

to Dosi, Ermoliev and Kaniovsky 1994, this sample is not random but includes agents 

connected through social network.   

The second strand of literature connected to the network theory. We are interested mainly in 

the studies focused on the importance of highly connected individuals (hubs) in the diffusion 

processes such as spread of contagious diseases (Moreno, Satorras and Vespignani 2006) and 

computer viruses (Lloyd and May 2001) in complex networks. As showed by Moreno, 

Satorras and Vespignani 2006 hubs with large number of connections are the main cause of 

the absence of the epidemic threshold (below which major epidemic outbreaks are 

impossible) in scale-free networks. Therefore, it is very hard and costly to fight the spread of 

diseases in this type of networks even if the probability of transmission is very low. One way 

to halt epidemics spread in scale-free network is targeting of the treatment or prevention on 

the highly connected individuals. This strategy can restore finite epidemic threshold in scale-

free network and potentially eradicate the virus (Dezso and Barabási 2002).  

Targeting hubs is also used by Alkemade and Castaldi 2005 who showed that more detail 

knowledge of consumer network can improve advertisement strategies. Authors proposed a 

model in which firms can learn directed advertisement strategy that takes into account both 

consumers’ characteristics and topology of the social consumer network. Targeting 
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advertisement to highly connected consumers outperform random advertisement strategies in 

their model.  

In our model network topology and information about number of connections of individual 

agents also play important role. As proposed earlier our main goal is to examine if and how 

initial seeding of technologies – random or targeted to hubs, affects the resulting market 

share. We will argue that in the case of technology adoption targeting hubs 1) enhance the 

spread of the firm’s own technology and 2) halt or slow-down the adoption of the concurrent 

one. We also show that the overall results are also affected by the distribution of number of 

connections (degree) of individual agents, mainly by its variance.  

 

Network topologies 

Following section defines some basic terms connected with the theory of networks that will 

be used to describe three basic types of networks used in this paper are introduced. 

Each network consists of nodes and links. A node is either terminal or an intersection point 

and can represent an agent, a person, a city, a firm, an airport, etc. A link is the connection 

between two nodes and can be either directed (typically represented by an arrow) or bi-

directional. A link can represent an existing relationship between agents, a road between two 

cities, the supplier-demander relationship between firms etc. Nodes that are linked with node i 

are called neighborhood of i. 

A degree (k) of the node is the number of links incident to this node. A degree distribution 

P(k) (sometimes called connectivity) describes statistically the topology of the network.  

A path between two nodes i and j is defined as a sequence of nodes (that are connected with 

links) we must go through to get from i to j. A path between i and j exists if it is possible to 

travel from i to j through uninterrupted sequence of links. The length of a path is the number 

of links in the path. A shortest-path length lij is defined as the minimum path length between 

two nodes. It is set to infinity if no path exists between two nodes. To characterize real 

empirically observed networks an average shortest-path length (ASPL) is often used, defined 

as 2∑ijlij / (N(N-1)), where N is number of nodes in the network. Average shortest-path length 

is sometimes called diameter of the network. 

The clustering coefficient of the network measures the density of the network on the local 

level. It is the probability that two nearest neighbors are also nearest neighbors of one 



4 

another1. The clustering for the node i is defined as Ci = L
act

/L
max

,
 where Lact is number of 

existing links between i´s neighbors and Lmax is maximum possible number of links between 

i´s neighbors. Clustering coefficient for the network is given as the average over all Cis.   

In our paper we analyze technology adoption in three most common types of networks – 

random graphs as defined by Erdös and Rényi (1959; 1960), small-world networks model as 

proposed by Strogatz and Watts 1998 and scale-free networks model of Barabási and Albert 

1999. 

In 1959 Erdös and Rényi2 published model of networks with undirected links with fixed 

number of nodes (N) and probability that two nodes are connected equal to p. This type of 

network characterized by binominal degree distribution is called random graph or random 

network (see figure 2(a)). Random graph network contains on average p(N(N-1)/2) links and 

average degree of the network is p(N-1).  

Small-world networks as defined by Watts and Strogatz 1998 have two characteristics often 

observed in real-world networks – “small” average shortest-path length and “large” clustering 

coefficient. One way to create small-world network proposed by Watts and Strogatz is to 

rewire links in regular lattice network. After creation of regular lattice (with number of 

nearest neighbors 4 and more) all links are in turn taken and with probability π rewired to 

randomly chosen node. For large π, the network is similar to random graph3. Figure 1 depicts 

construction of Watts and Strogatz small-world network through rewiring of links.  

 

 

  

FIGURE 1 Construction of Watts and Strogatz small-world network through rewiring of links 

with probability π = 0 (left), π = 0.2 (middle) and π = 1.0 (right). 

 

                                                           
1 Dorogovtsev, Mendes (2001) 
2 Erdös, Rényi (1959) 
3 Dorogovstev, Mendes (2001), pp.16 
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The last type of the networks used in this paper is scale-free network as modeled by Barabási 

and Albert 1999. Scale-free networks are characterized by power-law form of degree 

distribution, P(k) = k
-γ, where P(k) is the probability that a node in the network is connected 

with k other nodes, γ is called scaling exponent and ranges between 2 and 3 for most real-

world networks. Barabási and Albert’s  network (Barabási and Albert’s 1999)  is 

characterized by two features typical for real world networks that lead to scale-free pattern of 

the network: growth and preferential attachment. The building of the network starts with 

small number of nodes (m0). At every time step a new node with m ≤ m0 links is added. New 

links connect the node to m different nodes already present in the system. The nodes to which 

new links are attached are not chosen randomly, the probability τ that a new link will be 

connected to node i depends on the degree ki of that node, such that τ(ki) = ki / ∑jkj. After t 

time steps we obtain a scale-free network with N = t + m0 nodes, mt links, γ = 3
4 and average 

degree equal to 2m
5. Figure 2 displays examples of random, small-world and scale free 

network. 

 

 

 

 

FIGURE 2 Network topologies used in our work: random (left), small-world (middle), scale-

free (right). All networks were created using Pajek6 software, tool for analysis and 

visualization of complex networks.  

 

 

 

                                                           
4 Barabási, Albert (1999) 
5 Pastor-Satorras, Vespignani (2006), pp.5 
6 http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
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Model 

The model is very simple. There is a population of N agents connected through social 

network. Network can have three different topologies: random network, small-world network 

and scale-free network. Agents sequentially choose between two technologies, Technology 1 

and Technology 2. These two technologies are equal in all attributes, the only difference is 

that they originate from two different sources (firms, financial advisors etc.). In each step one 

agent is randomly chosen and has to decide which technology to choose. The choice of the 

technology made by the agent is ultimate and technology cannot be altered any more. 

 

Initial seeding of technologies 

Before the beginning of the sequential process of decision-making we choose two groups of 

agents that will not have the right to choose the technology. We set the choice of n1 agents to 

Technology 1 and the choice of n2 agents to Technology 2.  

Number of agents in the first group is always fixed and set to 10 whereas number of agents in 

the second group varies, ranging between 10 and 100. 

While agents in the second group (with predefined Technology 2 choice) were always chosen 

randomly, agents in the first group (with predefined Technology 1 choice) were either chosen 

randomly (random seeding) or targeted (targeted seeding). In case of targeted seeding the 

agents with the highest number of links were chosen. 

 

Agents’ behavior 

In number of experiments regarding technology adoption with real (Narduzzo and Warglien 

1996; Chakravarty 2003) and artificial (Vriend 2004) agents, the observed behavior can be 

categorized into four main choice heuristics (Narduzzo and Warglien 1996): 

1. The mean rule – Agents choose the technology with the highest mean value being the 

observed utility of other agents or whatever quantitative measure is used.  

2. The highest minimum rule – Agents choose the technology with the highest minimums 

value. As proposed by Narduzzo and Warglien 1996 it can be seen as a extreme loss 

aversion. 

3. The highest maximum rule – Agents choose the technology with the highest maximum 

value. Contrary to the previous behavior, agents using this rule have tendency to 

believe that they can control or influence outcomes that they in reality cannot control 
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or influence at all. This kind of cognitive bias is called illusion of control (Langer 

1975). 

4. The popularity rule – Agents choose technology that has been chosen by the majority 

of other agents.  

In our study we follow Dosi, Ermoliev and Kaniovsky 1994 and we use popularity rule as a 

choice heuristic for our agents. Detailed description of the rule is as follows: 

1. Agent observes the choice of her neighbors and finds out which technology was 

chosen by the majority. 

2. Based on her observation, agent chooses between the two technologies. The rule is: 

a. If none of her neighbors has experience with any of these technologies she 

chooses randomly. 

b. If there is at least one experienced neighbor and there is majority of neighbors 

that have chosen Technology 1, resp. Technology 2, she chooses Technology 

1, resp. Technology 2. 

c.  If number of neighbors that have chosen Technology 1 equals number of 

neighbors that have chosen Technology 2, she again chooses randomly. 

After that next agent is chosen randomly and the whole process continues until all agents have 

made their decision.  It is important to note, that each agent can observe only the choice of her 

immediate neighbors and the number of neighbors differs for different agents.  

We are interested in the resulting market share (which of the two technologies will be chosen 

by majority of agents). The main question is, given the behavior of agents, the topology of 

network and the initial number of agents with the choice set to Technology 1 resp. 2, how can 

different seeding strategies influence market share of the technology?  

 

Implementation 

To explore the model we use computer simulation implemented in JAVA object-oriented 

language and with the use of Repast7 libraries. Repast libraries contain a lot of useful methods 

and predefined classes that allow researcher to focus more on the studied phenomena than on 

programming process. The pseudo code can be found in the appendix and the computer code 

for the simulation can be obtained from authors upon request.   

 

 

                                                           
7 http://repast.sourceforge.net/ 
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Simulation setup and results 

In all our simulations we fixed the number of agents in the network N to 1000. Each agent 

uses the same herding behavior described in the previous sections. The agents could differ in 

the number of interpersonal contacts, (created as undirected links). The distribution of the 

number of links attached to each agent depends on the network topology used in the 

simulation (exponential for the random and small-world network and power-law for scale free 

network) but the average degree or the average number of links was set to 4 for all the used 

topologies.  

In our experiments we used several different initial seedings of the Technologies 1 and 2. 

First, while we fixed the value n1 to 10 we varied the value n2 from 10 to 100. This means that 

at the beginning the choice of 10 agents was set to Technology 1 while the number of agents 

with the choice set to Technology 2 ranged from 10 to 100 during experiments.  

Second, rather than using only random seeding of technologies, we used both random and 

targeted seeding of Technology 1. In random seeding we randomly choose agents from the list 

with the probability of choosing equal for all agents. In targeted seeding, we sorted the agents 

based on the number of links attached to them and we set the choice of appropriate number of 

highest connected agents to Technology 1 (the seeding of Technology 2 was always random).  

For every parameter setting we run the simulation 1000 times and we averaged the results 

over all these runs8.  

 

Market shares for n1 equal to n2 

We began simulations with equal number of agents with predetermined Technology 1 and 

Technology 2. Using a pie-chart diagram we compare the resulting shares of Technologies 1 

and 2 for different network topologies (from left to right) and for different types of seeding 

(upper and lower part of the picture).  

Figure 3 shows that in case of random seeding both technologies end up with the same market 

share equal to 50%.  

                                                           
8 Detail results from the experiments can be found in the Appendix B. 
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FIGURE 3 The resulting market share for Technology 1 (brighter color) and Technology 2 

(darker color) for different network topologies (from left to right) and different initial seeding 

– random (top) and targeted (bottom). 

 

In case of targeted seeding of Technology 1, final market shares differ significantly between 

different network types. Technology 1 has 52 % of the market for the small-world network, 

56 % of the market for random network and 78 % of the market for scale free network. This is 

caused by a significant impact of hubs on the outcomes in the whole network. Highly 

connected agents with chosen technology influences many other agents in their network thus 

promoting chosen technology among others. The lowest effectiveness of targeted seeding in 

the case of small-world network compared to the random and scale-free network is given by 

lower variance in number of links in a small-world network generated with rewiring 

probability equal to 0.1. To support our explanation we also run simulations for additional 

values of rewiring probability. For the targeted seeding we got following results. Technology 

1 had 54 % of the market share for the small-world network with rewiring probability equal to 

0.3, 55 % for rewiring probability 0.5 and 56 % for rewiring probability 0.7 and 0.9. 
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Market shares for different n1 and n2 

Figures 4 to 6 show simulation results for different types of networks, n1 is always equal to 10 

and n2 ranges from 10 to 100. Horizontal axis shows n2, vertical axis shows final market share 

of Technology 1 (in %). 

For random network final share of Technology 1 does not differ significantly for random and 

targeted seed. In case of targeted seed final market share of Technology 1 is between 3.5% 

and 5% higher than if the seed is random. With rising initial difference between n1 and n2 the 

difference in final shares is rising, but less dramatically. We attribute this to the fact that at the 

beginning of the simulation there are a lot of agents without an experienced neighbor. These 

agents then choose between technologies randomly, which partially offsets initial prevalence 

of one of two technologies.   

 

 

FIGURE 4 Final market share of Technology 1 for random network 

 

In case of a small-world network, targeted seeding brought the lowest improvement in 

Technology 1 final share. Explanation lies again in the low variance over the distribution of 

links in the network with the rewiring probability equal only to 0.1. The group of agents with 

the highest number of links does not differ significantly from others, when comparing them to 

agents with a low or average number of links. As in case when n1 is equal to n2, if we raised 

the rewiring probability results resemble that of a random network. 
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FIGURE 5 Final market share of Technology 1 for small-world network 

 

In a scale-free network, the difference in final shares in case of targeted and non-targeted 

seeding is most significant. The reason is that Technology 1 gets both the worst results in case 

of random seeding and best results in case of targeted seeding (compared to random and 

small-world networks). For example, in case of the greatest initial difference between n1 and 

n2
9

, a scale-free network leads to the highest difference in the final shares of both technologies 

if random seeding is used. Under these circumstances, Technology 1 receives a market share 

of only 20%. Alternatively, under the targeted seeding model, the difference between 

Technology 1 and 2 in final market shares is lowest of all analyzed cases. In the end, 

Technology 1 gains a majority (51%) of the market, despite of being most seriously 

disadvantaged as concerns number of agents with predefined technology.   

These interesting results stem from the following characteristics of hubs. On one hand, hubs 

are influenced by the greatest number of neighbors. This means that if there initially more 

agents with predefined Technology 2, the hubs themselves will display herbing behavior to 

adopt Technology 2 due to either their seeding or neighbor’s influence. Hubs are then very 

effective in influencing other agents´ decisions, which leads to a high Technology 2 market 

share. 

On the other hand, even if initial seeding favors Technology 2 in number of agents (n2), 

Technology 1 can finally prevail in case that it is targeted on hubs. Targeting the seeding of 

Technology 1 to hubs works in two ways. First, it is prevention. Targeting at hubs prevent 

                                                           
9 This means n1 = 1 and  n2 = 100. 
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them from choosing Technology 2 (which would otherwise take place due to herding 

behavior). Second, hubs are best suited for promoting adoption of Technology 1 because of 

large number of agents they influence. 

 

 

FIGURE 6 Final market share of Technology 1 for scale-free network 

 

Furthermore, a scale-free network is characterized by a few highly connected agents, but also 

by a large number of agents with very few or no links. In case of random seeding it is likely 

that some agents with predefined Technology 2 are those with very few or no links. This even 

amplifies the impact of targeted seeding of Technology 1. 

 

Conclusions 

As showed in previous studies, knowledge of the network topology can be very useful both in 

the case of stopping the spread of contagious diseases or computer viruses (Dezso and 

Barabási 2002) and promoting or enhancing the diffusion of new product or technology 

(Alkemade and Castaldi 2005).  

In our paper we present similar results for the case of technology adoption in the population 

of agents governed by the simple herding behavior. We show that firm who is able to 

convince a few highly connected agents (hubs) to choose her technology at the beginning of 

the adoption process could significantly raise the overall number of agents choosing her 

technology. The explanation is that targeting hubs has two functions: 1) it enhances the spread 

of the firm’s own technology and 2) halts or slows-down the adoption of the concurrent one.  
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When comparing the results for the three different network topologies – random, small-world 

and scale-free network, strategy of targeting hubs is most successful in case of scale-free 

network characterized with the highest variance of the degree of individual nodes.  This leads 

us to the conclusion that the overall results are also affected by the distribution of number of 

connections (degree) of individual agents, mainly by its variance. 
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Appendix A – The pseudo code for the model 

Create network of size N; 

Set choice of n2 agents to Technology 2; 

In case of random seeding: 

 Set choice of n1 agents to Technology 1; 

In case of targeted seeding: 

 Sort agents based on their connectivity; 

 Set choice of n1 most connected agents to Technology 1; 

Create random order in which agents make their choice; 

Do until all agents make their choice: 

 Select next agent in the sequence; 

 Let selected agent make her choice; 

Calculate resulting market share of both technologies; 
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Appendix B 
Appendix B-1 – Random network statistics 
Random network – Random seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 49,7808 45,914 42,2504 38,9052 35,5432 32,7164 30,0622 27,8356 25,6827 23,841 

Max 68 64,6 56,5 57,1 49,4 48,9 42,7 39,9 40,2 33,6 

Min 31,1 30,2 26,9 25,3 22,1 21,2 18,4 16,6 16,1 15,3 

TABLE 1 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and random seeding of technology 1. 

 

Random network – Targeted seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 54,6086 50,1013 46,616 43,4745 39,8965 37,1531 34,22 31,8734 29,489 27,466 

Max 72,8 66,7 64,3 56,6 56,8 52,1 47,1 44,4 41,2 37,4 

Min 38,5 34 32,5 29,7 24,8 24,2 20,8 20,4 19,1 17 

TABLE 2 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and targeted seeding of technology 1. 

 

Appendix B-2 – Small-World network statistics 
Small-World network – Random Seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 49,859 46,7288 43,4634 41,0375 38,3842 35,5289 33,3736 31,3115 29,1308 26,9681 

Max 64,3 61,8 54,7 53,1 53,2 47 43,5 44,7 41,1 37,3 

Min 36 31,7 31,9 29,1 26,5 26,1 23,8 20,5 18,9 17,9 

TABLE 2 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and random seeding of technology 1. 

 

Small-World network – Targeted Seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 51,9652 49,0333 45,9221 43,1302 40,8181 38,2361 35,9665 33,8024 31,5408 29,9367 

Max 65,3 62,9 60,7 55,3 56,4 50,3 47 46,2 43 42,7 

Min 38,6 35,6 35,2 30 28,9 26,7 26,3 21,9 22,1 20,5 

TABLE 4 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and targeted seeding of technology 1. 
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Appendix B-3 – Scale-Free network statistics 
Scale-Free network – Targeted Seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 49,9442 44,4289 38,8768 34,581 30,6986 28,5301 25,7993 24,5251 22,4013 20,8954 

Max 74,2 71,1 69,2 64,1 55,1 53,9 47,4 46,3 37,7 35,2 

Min 20,9 22,2 19,8 18,6 18,2 15,4 14,7 14,3 11,1 10,8 

TABLE 5 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and targeted seeding of technology 1. 

 

Scale-Free network – Targeted Seeding 

 10 20 30 40 50 60 70 80 90 100 

Mean 77,6465 74,6427 71,5387 68,3287 65,3993 62,5664 59,6166 56,5114 53,8225 51,2239 

Max 86,6 85,6 82,3 80,7 79,4 73,4 74,5 69,3 68,3 64,1 

Min 57,6 57,8 54,5 55,5 48,2 49,6 43,9 42,6 36,7 36,5 

TABLE 6 Mean, maximum and minimum market share observed for different initial number of agents 

with choice set to 1 and targeted seeding of technology 1. 
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