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Abstract: 
The paper argues that it would be natural to replace the standard normal 
distribution function by the logistic function in the regulatory Basel II (Vasicek’s)  
formula. Such a model would be in fact consistent with the standard logistic 
regression PD modeling approach. An empirical study based on US commercial 
bank’s loan historical delinquency rates re-estimates the default correlations and 
unexpected losses for the normal and logistic distribution models. The results 
indicate that the capital requirements could be up to 100% higher if the normal 
Vasicek’s model was replaced by the logistic one. 
 
Keywords: credit risk, Basel II regulation, default rates 
JEL: G20, G28, C51 
 
Acknowledgements: 
This research has been supported by the Czech Science Foundation Grant 
P402/12/G097 “Dynamical Models in Economics” 
 

mailto:jiri.witzany@vse.cz�


 1 

 

1 Introduction 
The aim of this paper is to revisit the key Basel II formula (BCBS, 2006) that is based on the 
seminal paper of Vasicek (1987). The stability of the global financial system depends on a 
good performance of this particular formula, which has been put into question in the context 
of the global financial crisis.  

The recently approved Basel III (BCBS, 2010) regulatory package tries to learn from the 
crisis. It aims to improve quality of the regulatory capital, to deal with the pro-cyclicality 
issue, to extend the risk coverage in the area trading book products, to set global liquidity 
standards, etc. However, it does not change at all the key formula which is used to calculate 
the unexpected losses, i.e. the required capital. Our analysis shows that the formula does not 
have to cover extreme losses sufficiently well and a stronger capital base could be achieved 
by its simple modification that is in fact consistent with bank credit risk modeling standards.  

The capital requirement of a bank in the Internal Rating Based (IRB) approach is calculated as 
the unexpected loss (UL) less the expected loss (EL)  

 ( )    C UL EL UDR PD LGD EAD= − = − × ×  (1) 
decomposed into the unexpected default rate (UDR), probability of default (PD), loss given 
default (LGD), and the exposure at default (EAD) on the level of each individual exposure. 
The portfolio invariant capital requirements (see Gordy, 2003) are summed up across the 
bank’s portfolio. The probability of default parameter is an output of the internal rating 
model. The loss given default and exposure at default parameters are set by the regulator in 
the Foundation (IRBF) approach, or estimated by an internal model of the bank in the 
Advanced (IRBA) approach. Our main focus is the unexpected default rate (UDR) that is 
calculated as a regulatory function of PD, asset correlation ρ (set by the regulation depending 
on the asset class and PD), and the probability level α (set at 0.999): 

 
1 1( ( ))

1
PDUDRα

ρ
ρ

α− −Φ Φ + ⋅
=   − 
Φ  (2) 

The formula, in detail explained in Section 2, is based on the assumption that the event of 
default is driven by a normally distributed variable. Moreover, the account level risk driving 
factor iY  is decomposed into a single normally distributed systematic factor and an 
independent normally distributed idiosyncratic factor  

 1i iY Xρ ρζ+ −=  (3) 
Since the idiosyncratic factors diversify away in a large and sufficiently granular portfolio, the 
unexpected losses are driven only by the systematic factor (Gordy, 2003). The choice of the 
normal distribution is certainly natural. In addition, its technical advantage is that the sum of 
two independent normal variables in (3) is again normally distributed. The model in fact 
means that the correlation between defaults of different receivables is captured by a Gaussian 
copula (see e.g. Cherubini et al, 2004). 
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On the other hand, the banking industry standard approach to internal ratings uses the 
technique of logistic regression based on the assumption that the event of default is driven by 
a logistically distributed variable. The logistic (or logit) regression can be compared to the 
probit binary choice regression where the events are driven by a normal variable. It is, 
however, recognized that in case of probability of default modeling the logistic regression 
performs better, in terms of estimation results and in particular because of fatter tails of the 
logistic distribution. It is surprising that, according to our knowledge, an analogy of the 
Vasicek formula has not been considered and compared to the normal distribution based 
formula (2). We argue that it is possible to replace simply the cumulative distribution function 

( )xΦ in (2) by the logistic function  

1( )
1 xx

e−Λ =
+

 

The only technical complication is that the weighted sum of two independent logistically 
distributed variables is not exactly logistically distributed, but we will show that the empirical 
difference is negligible. The choice of the logistic distribution means that the correlation of 
defaults is captured in a way that should perform better in extreme situations. It is not just 
another, single systematic factor copula model, but in our view the most natural model 
consistent with the industry standard of probability of default modeling. 

In order to compare performance of the two formulas one could simply compare the outputs 
of (2) with the normal and logistic distributions for different segments and PD values given 
the regulatory correlation and probability level. However, the correlation has been presumably 
calibrated with respect to the normal distribution and in order to compare meaningfully the 
two formulas we should recalibrate the correlation for the logistic distribution model in a way 
similar to the regulatory approach. Unfortunately, there is no public document that would 
disclose exactly the calculations underlying the regulatory asset correlation values. BCBS 
(2005) only indicates that the correlations have been chosen in order to fit historical default 
rate series.  Nagpal, Bahar (2001) have used a non-parametric approach suggested by Lucas 
(1995) to estimate the correlation of US corporate defaults. Calem and Follain (2003) in a 
Federal Reserve System study on the asset correlation for the class of single-family mortgages 
propose to apply advanced portfolio unexpected loss models and “reverse-engineer” the asset 
correlation in (2). Many other studies like Hamerle et al (2003), Witzany (2011), or Crook, 
Belloti (2012) use a maximum likelihood estimation based on historical default data as 
outlined by BCBS (2005). Section 3 presents an empirical study on the US Federal Reserve 
statistical dataset  of delinquency rates at commercial banks. We will use a simplified MLE 
estimation in order to calibrate the Vasicek model with the normal and logistic distributions. 
The formulas, average PDs, and the estimated correlations will be used to calculate the 
unexpected default rates and compare the two outcomes of the two models. Section 4 
concludes and summarizes the results. 
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2 Vasicek’s Model with the Normal and Logistic Distribution 
The Vasicek’s formula (2) is obtained from a simple Merton-like structural model. The model 
assumes that there is a credit quality variable ty developing over time and triggering default if 
it drops at or below certain level b. In case of corporate debtors the variable is interpreted as 
the asset value (or its relative change) and b as the indebtedness level. In case of private 
individuals the variable can be rather interpreted as a credit score capturing general repayment 
capacity of the debtor and b as a critical level where the debtor is not able to pay back his/her 
obligations any more. In both cases ty is a latent, i.e. unobserved variable. In order to model 

the event of default at time 1t = we just need to model the probability distribution of 1Y y= . 
By definition, default happens, if and only if Y b≤ . Since Y  and b can be rescaled, we may 
assume without loss of generality that the mean of Y is 0 and that its variance is 1 (or another 
given constant). Moreover, we will assume that Y has a particular known distribution. For 
example, if Y has the standard normal distribution, and if we know that the probability of 
default is PD, then Pr[ ] ( )PD Y b b≤ = Φ= , and so 1( )b PD−= Φ .  

The classical Vasicek’s model works with the normal distribution. Its goal is to find the 
distribution of future default rates (e.g. at 1t = ) on a large (theoretically infinite) portfolio of 
receivables where the events of default might be partially correlated. It captures default 
correlation by decomposing the credit quality variable for each individual debtor i into a 
systematic part and an idiosyncratic part 1i iY Vρ ρζ= + − , where V and all iζ are 
mutually independent variables with the standard normal distribution, and where (0,1)ρ ∈  is 
a constant. Since the idiosyncratic factors iζ  are independent and diversify away in a large 
(asymptotic) portfolio, the future default rate depends only on the systematic factor V: 

  

 

1

1 1

| ] Pr 1

Pr
1 1

( ) Pr[ ( ) |

( ) ( )| .

i i

i

DR V Y V PD Vb V

PD V PD VV

ρ ρζ

ρ ρ
ζ

ρ ρ

−

− −

 ≤ = − ≤ Φ = 
 Φ Φ

= ≤ = Φ 
− −

= +

 − −
  
  

 (4) 

As the default rate increases with decreasing V, we can determine its quantiles simply 
plugging in the corresponding quantiles of V. The critical default rate that can be realized on a 
probability level 1 α− , e.g. for 0.999α = , is simply given by  

1 1) )(1 (V α α− −= Φ = −Φ−  

yielding the Vasicek’s formula (2). 

The probability of default PD is one of the key inputs of the Vasicek’s formula. In a standard 
banking credit rating model it is based on a credit scoring (regression) function that uses a 
vector of known explanatory variables x . The scoring model can be formulated in the same 
framework as the Vasicek’s model: the event of default (at 1t = ) is modeled by a latent 
variable iY that is decomposed into a known (or explained part) and an unknown part 

(reflecting an error and a future change of the credit quality variable), 'i i iY = +β x  . In this 
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case, we can assume without loss of generality that 0b =  since the default threshold can be 
incorporated into the constant term of ' iβ x . Consequently the probability of default is: 

 [ ] [ ] ( )Pr[ 0] Pr ' 0 Pr ' 'i i i i i iY F≤ = + ≤ = ≤ − = −β x β x β x   (5) 
where F is the distribution function of i . If F is a known distribution function independent on 
i then the coefficients β can be estimated maximizing the likelihood. I.e., given a set of 
historical observed default indicators {0,1}id ∈ , for 1,..,i n=  (where 1id =  codes the event of 

default), and corresponding vectors ix of explanatory variables, we maximize the likelihood 
function: 

( ) ( )( )
1

1
1' ' ii

i

n
d

i
i

d
L F F

−

=

− −= −∏ β x β x . 

If F = Φ is the normal cdf, then the model is known as the probit binary-response model 
(Greene, 2003). However, in case of credit scoring, researchers as well as practitioners prefer 
the logit model where F = Λ  is the logistic distribution. The model is considered to be more 
efficient, better analytically tractable, and compatible with the useful concepts of log-odds 
score and the Weight of Evidence (see e.g. Witzany, 2010). 

The standard logistic distribution is defined by the cumulative distribution function 

1( )
1 xx

e−Λ =
+

, 

known as the logistic function, and equivalently by the probability density function 

( )2( ) ( )
1

x

x

ex x
e

λ
−

−
′= Λ =

+
  . 

The mean of a variable with the logistic distribution is 0 and its variance is 2 3π . Note that 
the inverse of the logistic function assigning quantiles to given probabilities is the logit 
function: 

1( ) ln
1

pp
p

− 
−

Λ


=  
 

. 

The general logistic distribution with mean µ and variance 2 2 3s π can be defined by the 
following cdf: 

( )/

1( ; , )
1 x sx s

e µµ − −Λ =
+

. 

If the first two moments of a normal distribution, logistic distribution, and a t-distribution are 
matched, then it is easy to verify that the logistic and normal distributions diverge for 
quantiles beyond two standard deviations from the mean, with the t-distribution being much 
closer to the logistic one. Therefore, the logistic distribution has heavier tails and is more 
robust to inaccuracies in the underlying model or to errors in the data. 
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Now, let us revisit the Vasicek’s model. Since the latent credit variable iY  is assumed to be 
logistically distributed in the standard PD estimation approaches, we should also keep this 
assumption consistently in the Vasicek’s model whose aim is to estimate unexpected default 
rate. However, the technical disadvantage of the logistic distribution is that if we assume 

1i iY Vρ ρζ= + −  is a weighted sum of two independent logistically distributed variables 

V and iζ , then the result is not exactly logistically distributed variable. The cumulative 

distribution function of iY  can be written as the double integral 

 
( ) ( )2 2

1 1

( ( )
1

) ) (
1

v z

v z
v z x v z x

ev z dvdz dvdz
e e

xρ
ρ ρ ρ ρ

λ λ
− −

− −
+ − ≤ + − ≤

Λ =
+ +

= ∫∫ ∫∫  (6) 

which unfortunately does not yield the logistic function again. However, Figure 1 indicates 
that the differences are almost negligible. 

Figure 1: Comparison of the logistic and mixed logistic distributions ( 0.1ρ = ) 
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Table 1 lists 95%, 99%, and 99.9% quantiles of the normal, logistic, and mixed logistic 
distributions (6) for several sample correlations. The differences between the logistic and 
mixed logistic distributions are more significant only for 99.9%α = and for higher correlation 
values, yet still not large when compared to the difference between the normal and logistic 
distributions. 

Table 1: Comparison of normal, logistic, and mixed logistic distribution quantiles 
α Normal Logistic Mixed log.,   

ρ = 0.05 
Mixed log.,  
ρ = 0.10 

Mixed log.,  
ρ = 0.15 

Mixed log.,   
ρ = 0.20 

Mixed log.,   
ρ = 0.30 

 0.95 2.983 2.943 2.943 2.944 2.945 2.951 2.956 
0.99 4.219 4.600 4.554 4.519 4.495 4.471 4.441 
0.999 5.605 6.933 6.842 6.759 6.678 6.594 6.500 

Therefore, let us assume that the credit variable 1i iY Vρ ρζ= + − is decomposed into a 

systematic and idiosyncratic part where V and all iζ are mutually independent variables with 

the logistic distribution and (0,1)ρ ∈  a constant. Consequently, iY  has the “almost-logistic” 
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distribution given by (6). Repeating the argument (4) we obtain the following formula for the 
default rate on the probability level α : 

1 1 1

1 1 1 1

| (1 )] Pr 1 (1 )

( ) ( )
Pr

Pr[ ( )

1 1

|

( ) ( )
.

i i

i

DR Y V PD

PD

b V V

PD

α ρ

ρ ρ

α ρ ρζ α

ρ α ρ α
ζ

ρ ρ

− − −

− − − −

= +

 +

 

+

≤ = Λ − = − ≤ Λ = Λ − = 
 Λ Λ Λ Λ

= ≤ = Λ   −   − 


 

Since 1 1( ) ( )PD PDρ
− −Λ Λ , we propose to use the formula 

 
1 1( ) ( )

1
PDUDRα

ρ α
ρ

− − +
  


Λ
=

− 

Λ
Λ  (7) 

as an alternative to the Vasicek’s formula (2). We will call the formula “logistic Vasicek”. 

We have argued that the logistic Vasicek formula is compatible with the logistic regression 
widely used to estimate and model probabilities of defaults. In order to compare the impact of 
the two formulas we can as a first approximation use the regulatory correlations and calculate 
the differences. Figure 2 and Table 2 compare the unexpected default rates calculated 
according to the normal and logistic Vasicek formulas with  0.1ρ =  and 0.999α = . The 
logistic UDR estimate is clearly much more conservative than the normal Vasicek UDR 
calculation.  

Figure 2: Comparison of the normal and logistic Vasicek unexpected default rate (UDR) as a 
function of PD ( 0.1ρ = , 0.999α = ) 
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Table 2: Normal and logistic Vasicek unexpected default rates (UDR) for selected PD values 
( 0.1ρ = , 0.999α = ) 

PD 0.0100 0.0200 0.0300 0.0400 0.0500 0.0700 0.1000 0.1500 0.2000 
Normal UDR 0.0775 0.1282 0.1704 0.2074 0.2408 0.2996 0.3742 0.4751 0.5568 
Logistic UDR 0.0730 0.1418 0.2039 0.2597 0.3097 0.3955 0.4965 0.6163 0.6987 
Difference -0.0045 0.0136 0.0335 0.0522 0.0689 0.0959 0.1224 0.1412 0.1418 

Figure 3 shows that the relative differences are more than 20% for PD values in the range 
from 3% to 25%. 

Figure 3: The ratio between the logistic and the normal Vasicek UDRs 
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However, such a comparison is not really consistent since the regulatory correlations have 
been calibrated so that the model (2) fits a representative dataset. Unfortunately, the regulator 
(i.e. BCBS – the Basel Committee for Banking Supervision) does not disclose the exact 
method or the dataset used for the calibration. BCBS (2005) only indicates that the correlation 
is chosen so that it fits the variability of a historical series of default rates. 

Let us consider a series of historical default rates 1,..., np p observed over one-year, or possibly 
quarter of a year, or even over shorter time-horizons. Assume, that the default rate realizations 
are given by the model 

1( );( )
1

t
t t

PD vp Fg v F ρ
ρ

ρ

−

=
 −



=  −



, 

where F = Φ or F = Λ , 
1

1 n

t
t

PD p
n =

= ∑  is just the average observed default rate (i.e. a long 

term PD estimate), and the systematic factors tv are iid (0,1)N or logistically distributed, 
respectively. In order to fit this simple model we just need to estimate the correlation 
ρ maximizing the likelihood function (or rather its logarithm) 
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 ( )
1

( ; ,  wh ere ( ; ,
( ;

) )
)

n
t

t t
t tL L p L p

g
F v

v
ρ ρ

ρ= ′
′

==∏  (8) 

1 1
1 () ( )( ) 1; t

t t
F pv F PDg p ρ

ρ
ρ

− −
− − −

== , and 

( )
1

1( ) (
1 1 1

( ); )t
t

t
t

Fgg PD vv F F F p
v

ρ ρ ρ
ρ

ρ ρ ρ

−
− −∂′ ′ ′=  − 

= =
∂ − −

. 

A more sophisticated model used by Hamerle et al. (2003) or Hamerle, Rosch (2006) takes 
into consideration all the account level and general economic information available at time 

1t − . Let , 1i t−x denote all the covariates available for the receivable i at time 1t − . In line with 

the credit scoring model (5) the credit variable , 1 1i i t t itY Vρ ρζ−= + −+′β x is decomposed 

into a known predictable part, a latent systematic factor, and an idiosyncratic factor. The 
probability of default conditional on , 1i t−x and conditional on a realization of the systematic 

factor then is 

, 1 , 1
'Pr[ 0 | ] Pr 1 0,

1
i t

i i t t i t t it
VFV VY ρ

ρ ρζ
ρ− −

 − −
+ ′≤ = − ≤ =     −

+
 

β xxβ x . 

Hamerle et al. (2003) or Hamerle, Rosch (2006) use the normal distribution F = Φ , but we 
argue that it is more appropriate to use the logistic distribution F = Λ . In order to estimate the 
parameters β and ρ we need to know the default indicators {0,1}itd ∈ and the covariates 

, 1i t−x on the level of each receivable 1,..., ti N=  and for 1,...,t n= . The likelihood function in 

this case involves integrations over the latent factors tv : 

( )1
1 1

; , ) 1( ( ); , ) (
t

itit

Nn

t i

dd
t i t i tL v dFg v vgρ ρ

+∞

= =

−

−∞

= −∏ ∏∫ x x , where 

, '(
1

; ) i t
t i

vvg F ρ
ρ

ρ

 −
=   − 

−β xx . 

According to Hamerle, Rosch (2006) the integral can be approximated by a Gaussian 
quadrature and the likelihood needs to be maximized numerically. The confidence intervals 
need to be estimates using the Fisher information matrix that is evaluated numerically. 

 

3 Empirical Study 
In order to compare the potential impact of the normal and logistic Vasicek’s formulas we use 
the data provided by the U.S. Federal Reserve1

                                                 
1 

. The dataset contains quarterly delinquency 
rates on loans and leases at all U.S. commercial banks from 1985(Q1) until 2012(Q1). 
Delinquent loans are defined as those past due thirty days or more and still accruing interest 

http://www.federalreserve.gov/releases/chargeoff/  

http://www.federalreserve.gov/releases/chargeoff/�


 9 

as well as those in nonaccrual status. They are measured as a percentage of end-of-period 
loans. Since delinquent loans are regularly charged-off the delinquency rate can be considered 
to be a proxy of an ordinary default rate. The exposures are segmented as Real estate loans 
(Residential, Commercial, Farmland), Consumer loans, Credit cards, Leases, Commercial & 
Industrial loans, and Agricultural loans. The delinquency rates are given as seasonally 
adjusted and non-adjusted. Figure 4 shows the volatile development of the overall 
delinquency rate. 

Although the notion of delinquency is not fully compatible with the Basel concept of default 
(ninety or more days past due) we will use the seasonally adjusted delinquency rate in order to 
indicatively compare the two alternative Vasicek’s formulas.  

Figure 4: Seasonally adjusted delinquency rates of U.S. commercial bank loans 1987 – 2012 
(Business Loans – BL, Consumer Loans – CL, Mortgage Loans – ML, Credit Cards – CC) 

1985 1990 1995 2000 2005 2010 2015
0

2

4

6

8

10

12

D
ef

au
lt 

R
at

e 
(%

)

 

 

BL
CL
ML
CC

 
Since Basel II is based on segmentation we estimate the correlation parameters separately for 
a few most important segments, namely: residential mortgages, credit cards, consumer loans, 
and corporate loans. Because we do not have transaction level data, we implement just the 
simple estimation method outlined in Section 2. 
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Table 3: Estimation results (correlations and unexpected default rates; estimation errors of the 
correlation parameter are shown in parentheses) 

 Mortgages 
Consumer 
Loans 

Credit Cards 
Corporate 
Loans 

Exposure (2012 
Q1, USD mil) 

2 071 042  580 497   595 894    1 326 836    

Average PD 
 

0.0357 0.0350 0.0449 0.0309 

Correlation 
(normal) 

0.0751 
(0.0101) 

0.0034 
(0.0005) 

0.0057 
(0.0008) 

0.0470 

Log-likelihood 
(normal) 

219.4560 402.8462 299.9271 289.02 

Correlation 
(logistic) 

0.1209 
(0.0158) 

0.0056 
(0.0009) 

0.0086 
(0.0015) 

0.0899 

Log-likelihood 
(logistic) 

225.47 402.83 300.53 284.68 

Likelihood ratio 
(normal/logistic) 

12.03 -0.03 1.21 -8.69 

UDR-PD 
(normal) 

0.1243 0.0161 0.0263 0.0791 

UDR-PD 
(logistic) 

0.2423 0.0219 0.0362 0.1606 

Relative 
difference 

94.9% 36.0% 37.6% 103.0% 

 Table 3 shows the estimation results. For each of the four segments we have estimated 
the correlation maximizing (8) with F = Φ or F = Λ (normal and logistic). The estimation 
error is given by the inversion of the second derivative of the log-likelihood function at the 
estimated correlation parameter. The two models can be compared, for example, by using the 
ordinary likelihood ratio  

( ) ( )normal
normal logistic

logistic

2 ln 2ln 2lnLD L L
L

 
= − = − +  

 
. 

The ratio shows a significantly better fit of the logistic model in case of the most important 
mortgage loans segment. The normal distribution model performs better for the corporate 
segments, and the results are mixed for credit cards and consumer loans. The estimated 
correlation of the logistic model is higher than the one of the normal model in case of all the 
segments. While the correlations for the mortgage and corporate segments are at expected 
levels, the credit cards and consumer loans correlations are unusually low and would be 
probably replaced by a minimum threshold. The differences between the unexpected default 
rate increments (UDR PD− ) for the two models are even higher due to the effect indicated by  
Figure 2. Since the unexpected default rate increment UDR PD− is a multiplicative factor of 
the Basel II formula (1) we may conclude that the capital requirement would be almost 
doubled for the mortgage and corporate segments if the normal Vasicek formula was replaced 
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by the logistic one. The exposure weighted difference between the normal Vasicek and 
logistic Vasicek formula capital requirement turns out to be 93.4%. 

4 Conclusion 
We have argued that the Vasicek’s formula presenting a quantitative core of the Basel II 
regulation should be based rather on the logistic than on the normal distribution in line with 
standard logistic regression PD estimation approach. Based on an empirical analysis, the 
standard normal cumulative distribution function in the Vasicek’s formula can be simply 
replaced by the logistic function. If the correlation parameters were kept on the current 
regulatory level the capital requirement could be 20-30% higher compared to the current 
formula results. Nevertheless, if the correlation parameters were re-estimated for the logistic 
distribution model capturing better extreme events (like the recent financial crisis) than, 
according to our empirical study, the differences are even more dramatic reaching 90-100%. 

The result shows a significant model risk of the current Basel II regulation. The proposed 
logistic Vasicek’s formula is not just a formula based on a special distribution or a copula 
function. In our view, it is the most natural choice related choice in the context of current PD 
modeling standards. The differences indicate that the global banking system might be 
seriously undercapitalized and vulnerable in times of a financial crisis.   
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