

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Princ, Michael

Working Paper Multi-level analysis of dynamic portfolio formations: Central European countries

IES Working Paper, No. 12/2013

Provided in Cooperation with: Charles University, Institute of Economic Studies (IES)

Suggested Citation: Princ, Michael (2013) : Multi-level analysis of dynamic portfolio formations: Central European countries, IES Working Paper, No. 12/2013, Charles University in Prague, Institute of Economic Studies (IES), Prague

This Version is available at: https://hdl.handle.net/10419/83405

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Institute of Economic Studies, Faculty of Social Sciences Charles University in Prague

Multi-Level Analysis of Dynamic Portfolio Formations: Central European Countries

Michael Princ

IES Working Paper: 12/2013

Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague

[UK FSV – IES]

Opletalova 26 CZ-110 00, Prague E-mail : ies@fsv.cuni.cz <u>http://ies.fsv.cuni.cz</u>

Institut ekonomických studií Fakulta sociálních věd Univerzita Karlova v Praze

> Opletalova 26 110 00 Praha 1

E-mail : ies@fsv.cuni.cz http://ies.fsv.cuni.cz

Disclaimer: The IES Working Papers is an online paper series for works by the faculty and students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Czech Republic. The papers are peer reviewed, but they are *not* edited or formatted by the editors. The views expressed in documents served by this site do not reflect the views of the IES or any other Charles University Department. They are the sole property of the respective authors. Additional info at: <u>ies@fsv.cuni.cz</u>

Copyright Notice: Although all documents published by the IES are provided without charge, they are licensed for personal, academic or educational use. All rights are reserved by the authors.

Citations: All references to documents served by this site must be appropriately cited.

Bibliographic information:

Princ, M. (2013). "Multi-Level Analysis of Dynamic Portfolio Formations: Central European Countries" IES Working Paper 12/2013. IES FSV. Charles University.

This paper can be downloaded at: http://ies.fsv.cuni.cz

Multi-Level Analysis of Dynamic Portfolio Formations: Central European Countries

Michael Princ^a

^aIES, Charles University Prague E-mail: mp.princ@seznam.cz

August 2013

Abstract:

The paper focused on measuring efficiency of investment strategies and portfolio optimization based on dynamic portfolio formation using the global minimum variance approach in a region of central European countries. The paper analyses DCC GARCH model, which was employed in order to obtain conditional correlation matrices. The analysis includes a comparison of global minimum variance (GMV) and newly proposed least correlated assets (LCA) portfolio formations based on individual shares and market indexes. Performance of constituted portfolios showed that dynamic form of portfolio optimization is an efficient tool in profit maximization and volatility minimization. The study shows that there is a potential for improvements of proposed methods. LCA portfolio formation showed that the number of parameters could be effectively lowered without a loss of profit.

Keywords: dynamic modelling, portfolio selection, GMV, regional analysis

JEL: C32, E44, F36, G14, G15

Acknowledgements:

I would like to thank Oldřich Dědek and seminar participants at the Institute of Economic Studies of Charles University in Prague and the Institute of Information Theory and Automation for their helpful comments.

1 Introduction

Reasoning about possible investment opportunities has usually two main objectives. Investors have usually a desire to maximize profits, but on the other hand they also want to keep a volatility of the portfolio as low as possible. Following work is a practical econometric analysis applicable to portfolio and financial management, economic valuation or investment planning.

In a case of the technical analysis of stock markets, the goals are usually achieved by portfolio diversification, which offers lowering of unsystemic risk as in Markowitz (1952), Markowitz (1995) or DeMiguel et al. (2009).

We can find several studies focused on portfolio analysis, which are either dedicated to various financial indexes (e.g. Antzoulatos – Tsoumas (2010), Banerjee - Doran - Peterson (2007), Liao - Chou (2013) or Konno - Kobayashi (1997)) or individual stocks (e.g. Balcilar et al. (2013), Nanda et al. (2010) or Lan et al. (2012)). Following text focuses on synergic analysis, which combines indexes with individual stocks in order to offer a more complex overview. We would like to offer insight into dynamic portfolio formation methods applied on data series from Central Europe based on a multi-level analysis.

The multi-level analysis consists from two different points of view. The low-level or rather microlevel analysis is devoted to portfolio diversification strategies focused on particular firms, while index-level or so called macro-level analysis deals with diversification based on stock market indexes in the international framework as in Aiello - Chieffe (1999) or Rapach – Wohar (2009). The multi-level analysis is proposed in order to compare the effectiveness of portfolio diversification strategies focused either on indexes or individual shares. Thanks to the employed aggregation of individual shares on a national level all outcomes are directly comparable, which further increase the scientific impact of the work in a context of the researched region.

Consistent with the widely used CAPM model, proposed by Sharpe (1964) or Lintner (1965), market indexes serve as the best proxies of actual development of markets or even whole economies and thus we regard it as appropriate to speak about macro-level point of view, when market indexes are analysed. The micro-level portfolios consist of most liquid stock traded on analysed markets; they are constructed in order to reveal potential of individual shares focusing on actual firm developments, which is consistent with a microeconomic type of analysis.

The main objective of the work is a description of possible strategies, which can investor use to optimize portfolio in terms of dynamic analysis based on DCC GARCH model proposed by Engle (2002).

Following optimization techniques are inspired by Markowitz (1952) and proposed approaches to the optimum portfolio selection problem. The full list of used strategies includes equally weighted (EW), global minimum variance (GMV), unbounded (or leveraged) global minimum variance (UGMV) and least correlated assets (LCA) portfolios. The main advantage of the newly proposed LCA portfolio is that it eliminates a possible problem with hardly predictable volatility components. This offer a further possibility to test a hypothesis whether the volatility component included in the portfolio selection method can improve or downgrade actual performance.

While these portfolio optimization methods are usually used in a standard static mean-variance approach, the paper applies them into a new dynamic framework, which is a totally new method never used in the central European region.

The work is trying to confirm hypothesis that proposed dynamic portfolio formation methods can lead to improved returns or lower volatility. The hypothesis is tested for both micro- and macrolevel portfolios in a central European region, in order to compare the effectiveness of diversification methods on various levels.

In this study word dynamic is understood as continuously changing of evolving in terms of dynamic econometric models. This is in a slight contrast to the traditional understanding of connotation "dynamic portfolio", which usually means "more risky". In this case the purpose of dynamically created portfolios is rather to decrease overall volatility with respect to maintained level of returns, which is consistent with a modern portfolio theory.

Following chapter recapitulates a short literature review; next chapter is devoted to methodological approaches; then analysis of data sample including model estimations is conducted; the final chapter includes graphical and statistical comparisons of actual portfolio performance.

2 Literature Review

As was mentioned during the introduction, there are usually two types of studies. The first type of studies is devoted to various financial indexes (e.g. Antzoulatos – Tsoumas (2010), Banerjee - Doran - Peterson (2007), Liao - Chou (2013) or Konno - Kobayashi (1997)), while the second type is focused on individual stocks (e.g. Balcilar et al. (2013), Nanda et al. (2010) or Lan et al. (2012)). We would like to include a synergic point of view, which includes both perspectives, thus we would like to offer a multi-level approach, which combines individual stocks with respective stock indexes.

The work also focuses on various portfolio strategies. The equally weighted (EW) portfolio selection was employed e.g. in Solnik (1974) or Solnik (1991) which described portfolio performance on a basis of the classical covariance matrix approach. In this case it will serve as a kind of benchmark, which can indicate lowest bound of performance attainable by relatively simple diversification strategy.

In our study we will research GMV portfolios, which optimize investment with respect to the minimized variance (for further details see Bodnar - Okhrin (2013) or Yilmaz (2010)).

In a comparison to traditional mean-variance approach initially established in Markowitz (1995), methods used in following study focus primarily on a variance of portfolio, dynamic correlations and respective dynamic covariances.

The study is analysing similar method like in Yilmaz (2010), which proved that the DCC GARCH model can be successfully used as an enhancing tool for portfolio creation, but a focus was kept only on Istanbul Stock Exchange, which was a single domestic market. In this case primary objective is to analyse more countries and stock markets emphasizing international dimension of a possible portfolio formation as in previously mentioned index-based studies, which is a new and inspiring approach in the central European region.

Following study is building its methodology on previous successful identification of GARCH processes in financial series. The existence of respective GARCH processes was proved e.g. in Bollerslev (1986) in a case of well-developed markets or in Vošvrda - Žikeš (2004) in a case of central European markets.

A dynamic approach offers more possibilities than classic portfolio measures like in Markowitz (1952), where a simplified and static approach was employed. Proposed dynamization can show an evolution of underlying processes and reveal possible diversification opportunities.

A dynamic model using conditional correlation/covariance matrix based on GARCH modelling was developed by Engle (2002), who designed the DCC GARCH model and started also an application to portfolio formation processes. The model was justified and widely used in many interesting studies e.g. Engle - Sheppard (2001) or Cappiello et al. (2006).

We can conclude that the work aims at a well proven methods, which are put together in order to deliver synergic outputs aimed at local and international levels. The paper is trying to extend previous methods and to offer more methodological tools how to interpret the outcomes of dynamic models.

3 Methodology

3.1 GARCH

The generalized autoregressive conditional heteroskedasticity model proposed by Bollerslev (1986) could be briefly described either as an error variance model incorporating autoregressive moving average or as a generalization of ARCH model by Engle (1982). The GARCH model approach allows for an empirical assessment of the relationship between risk and returns in a setting that is consistent with the characteristics of a leptokurtosis and a volatility clustering observed in the stock market data series. In the univariate GARCH model, proposed in Bollerslev (1986), we assume conditional variance is defined as in (1).

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-1}^2 + \sum_{i=1}^q \beta_i \sigma_{t-1}^2, \, p \ge 0, \, q > 0, \, i > 0 \tag{1}$$

$$y_t = \mu + \varepsilon_t \tag{2}$$

$$\varepsilon_t = \sigma_t z_t \tag{3}$$

$$z_t \sim iid(0,1) \tag{4}$$

Equation (1) has following restrictions $\omega, \alpha_i \ge 0, \beta_i \ge 0$; it is necessary to ensure non-negative variance σ_i^2 . We can derive vector \mathcal{E}_t from the equation (2) and following conditions (3) and (4).

The model used in the study is GARCH (1,1), which has a following form:

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \tag{5}$$

In order to ensure stationarity of the process it is necessary that $\alpha + \beta < 1$.

3.2 DCC GARCH Model

The dynamic conditional correlation multivariate GARCH model, which will be used as a tool for derivation of actual correlations, was originally designed in Engle (2002). The definition is as follows:

$$r_t / \Psi_{t-1} \sim N(0, H_t) \tag{6}$$

$$H_t = D_t R_t D_t \tag{7}$$

$$D_t^2 = diag\left\{\omega_i\right\} + diag\left\{\kappa_i\right\}r_{t-1}r'_{t-1} + diag\left\{\gamma_i\right\}D_{t-1}^2$$
(8)

$$\varepsilon_t = D_t^{-1} r_t \tag{9}$$

$$Q_{t} = S(u' - A - B) + A\varepsilon_{t-1}\varepsilon'_{t-1} + BQ_{t-1}$$
(10)

$$R_t = diag \left\{ Q_t \right\}^{-1} Q_t diag Q_t^{-1} \tag{11}$$

At first it is necessary to assume normality and stationarity of the underlying process as described in (6), while denoted matrix H_t can be further decomposed using a method described in (7). An equation (8) expresses that each subset follows a univariate GARCH process as defined in (1) (or (5) in a case of applied GARCH (1,1) model). Testing of stationarity and normality was employed

using Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, Shapiro-Wilk (S-W) test and finally Augmented Dickey-Fuller (ADF) test. For further information we refer to Kwiatkowski et al. (1992), Shapiro - Wilk (1965) and Said-Dickey (1984) or Banerjee (1993).

The equation (9) describes behaviour of residual terms with respect to input data and describes its relation to analysed returns. Finally relations (10) and (11) describe the matrix composition necessary for the estimation and iteration processes. When the assumption of normality in (6) is not fulfilled, the estimator could be marked only as a quasi-maximum likelihood estimator (QMLE). The log likelihood function for the proposed estimator is described as follows in a relation (12)¹:

$$\log(L) = -\frac{1}{2} \sum_{t=1}^{T} \left(n \log\left(2\pi\right) + 2 \log\left(D_t\left(r_t' D_t^{-1} D_t^{-1} r_t - \varepsilon_t' \varepsilon_t + \log\left(R_t\left(\varepsilon_t' R_t^{-1} \varepsilon_t\right)\right)\right) \right) \right)$$
(12)

In order to maximize described parameters it is necessary to fulfil conditions from (6) to (11). One of main advantages of the DCC GARCH model is that the log-likelihood function can be divided into two separate parts (13) and (14), where relation to individual GARCH processes is resolved and can be maximized separately:

$$\log(L)(\theta,\varphi) = \log(L_V)(\theta) + \log(L_C)(\theta,\varphi)$$
(13)

$$\log(L_{V})(\theta) = -\frac{1}{2} \sum_{t=1}^{T} \sum_{i=1}^{n} \left(\log(2\pi) + \log(h_{i,t}) + \frac{r_{i,t}^{2}}{h_{i,t}} \right)$$
(14)

The equation (14) reflects volatility in a term $\log(L_v)(\theta)$, which is a sum of individual univariate GARCH log-likelihood functions. This step urges a need of prior estimations of all involved univariate GARCH models. A second term of (13) $\log(L_c)(\theta, \varphi)$ describes conditional correlation parameters, which are also maximized individually, which results to relatively lower needs for computational power. Final two stage estimation in equations (15) and (16) describes a relation of maximized parameters.

$$\hat{\theta} = \arg \max \left\{ L_{V}(\theta) \right\}$$
(15)

$$\max_{\phi} \left\{ L_C(\hat{\theta}, \phi) \right\} \tag{16}$$

For further information about estimation of proposed parameters see also Engle (2002), Pelagatti -Rondena (2004) or Princ (2010).

3.3 Diversification Strategies

.

Investment strategies may differ; they are dependent on initial assumptions, which comply with a goal of the investor. Further text uncovers differences between a simple benchmark method represented by EW portfolio, which minimizes effort exercised in the optimization process, and other portfolios, which use re-weighting techniques.

The DCC GARCH model provides conditional correlation/covariance matrices, which are necessary to achieve the dynamic analysis of all following approaches, namely GMV, UGMV and LCA portfolios. While we compute dynamic conditional correlations and variances, we are able to

¹ for further details see Engle (2002) or Pelagatti - Rondena (2004)

do portfolio optimization process at every day of researched sample, thus we include time index t to all following mentioned equations.

A general example of GMV portfolio in the context of the Capital Market Line (CML) model is depicted in the Figure 1. In our case constructed portfolios use DCC GARCH model output as a premise for further calculations (see below).

Fig. 1: GMV Representation in Capital Market Line Model

The variance of portfolios is computed on a basis of estimated of various processes and computed correlation/covariance matrices, which were estimated through DCC GARCH models. The concrete definition of a variance of assumed portfolios is as follows:

$$\sigma_{P_{t}}^{2} = \sum_{i=1}^{n} w_{i_{t}}^{2} \hat{\sigma}_{i_{t}}^{2} + \sum_{i=1}^{n} \sum_{j=1 \neq j}^{n} \hat{\rho}_{ij_{t}} w_{i_{t}} w_{j_{t}} \hat{\sigma}_{i_{t}} \hat{\sigma}_{j_{t}}$$
(17)

The formula is a classic form of a portfolio variance mentioned in e.g. Elton - Gruber (1991). Specific values of weights w_{i_t}, w_{j_t} are defined in the next part, which is devoted to specific investment strategies. In this general framework we can state that variance components $\hat{\sigma}_{i_t}^2$ can be estimated by GARCH (1,1) model and correlation components $\hat{\rho}_{ij_t}$ can be estimated by the DCC GARCH model.

3.3.1 Equally Weighted Portfolio

The equally weighted portfolio (sometimes also marked as 1/n or 1-n portfolio) is a common diversification tool used in portfolio theory. Because the method presumes simple assumptions, it is plausible to mark it as a benchmark for more sophisticated methods. Any other way achieving lesser variance or possible higher yield can be marked as more effective as a benchmark and thus achieving a higher bound of portfolio effectiveness. In an opposite way a portfolio with higher values of volatility or lower yield could be marked as ineffective.

The weights for EW portfolio are defined in a following way:

$$w_{i_t} = 1/n \text{ or } w_t = [1/n, 1/n, \dots, 1/n],$$
 (18)

$$\sum_{i}^{n} w_{i_{t}} = 1 \quad \text{or} \ w_{t} \,' \mathbf{1} = 1 \tag{19}$$

$$\mathbf{1} = (1, 1, \dots, 1)' \tag{20}$$

3.3.2 Global Minimum Variance Portfolio

While all efficient portfolios lie on the efficient frontier, GMV is the one that is exactly at the beginning of perceived frontier. Ex ante GMV has the lowest possible volatility amongst other efficient portfolios, but it does not mean that it should achieve better performance in a term of higher returns, because solely the variance is optimized (see Figure 1). The mathematical construction of the GMV portfolio can be expressed in a following way²:

$$min_{w_{gmv}} = \frac{1}{2} w_t' \Sigma_t w_t$$
(21)

$$w_t = \frac{\boldsymbol{\Sigma}_t^{-1} \mathbf{1}}{\mathbf{1}' \boldsymbol{\Sigma}_t^{-1} \mathbf{1}}$$
(22)

$$w_t \,{}^t\mathbf{1} = 1 \tag{23}$$

$$\Sigma_{GMV_{t}} = \begin{bmatrix} \hat{\sigma}_{1_{t}}^{2} & \hat{\rho}_{12_{t}} \hat{\sigma}_{1_{t}} \hat{\sigma}_{2_{t}} & \cdots & \hat{\rho}_{1n_{t}} \hat{\sigma}_{1_{t}} \hat{\sigma}_{n_{t}} \\ \hat{\rho}_{12_{t}} \hat{\sigma}_{2_{t}} \hat{\sigma}_{1_{t}} & \hat{\sigma}_{2_{t}}^{2} & \vdots \\ \vdots & \ddots & \vdots \\ \hat{\rho}_{1n_{t}} \hat{\sigma}_{n_{t}} \hat{\sigma}_{1_{t}} & \cdots & \cdots & \hat{\sigma}_{n_{t}}^{2} \end{bmatrix}$$
(24)

We can assume that we have an opportunity to invest in *n* assets; vector of weights *w* can be derived from equation (22) or when the minimization is employed in equation (21). It is also necessary to assume that when we add all individual weights together, the sum is equal to 1 as in equation (22); this is consistent with a previous condition in equation (19) of EW portfolio. Equation (24) shows a definition of matrix Σ_{GMV_i} , which is a basis for further estimations used in GMV portfolio optimizations defined in equation (21) and (22). Input values of Σ_{GMV_i} are estimated with DCC GARCH ($\hat{\rho}_{i_i}$) and GARCH (1,1) ($\hat{\sigma}_{i_i}^2$ and $\hat{\sigma}_{i_i}$) models.

In a case of GMV portfolio we also assume that all individual weights³ are greater or equal to 0. In a case of UGMV portfolio we assume that the condition, which prohibits weights from reach negative values, is released. UGMV portfolios thus include even negative amounts of individual stocks. We can conclude that in a case of UGMV portfolios there are possibilities to include short selling in portfolio strategies, which can result in a leveraged purchase of individual stocks or indexes.

² For further details see Bodnar – Okhrin (2013) or Yilmaz (2010).

³ or rather all individual values vector of weights.

3.3.3 Least Correlated Assets Portfolio

The least correlated assets (LCA) portfolio can be specified in a similar manner as GMV portfolio in (21), (22) and (23) with additionally imposed restrictions on equation (24). We assume that variance components of Σ matrix are constant during the whole time period as defined in equations (25), which results in Σ matrix described in (26). Newly imposed restrictions offer an opportunity to analyse improvements achieved solely by the DCC GARCH model without any negative effects caused by possibly improper design of evolving variance defined by GARCH (1,1) model.

The restriction is imposed in a part of portfolio variance estimation as specified in (17) or alternatively in Σ matrix, where conditional variances equal to a constant term; only conditional correlations are allowed to be variable as in (26). Input values of Σ_{LCA_r} matrix are estimated by DCC GARCH model.

$$\hat{\sigma}_{i_{t}}^{2} = \sigma_{i_{t}}^{2} = c, \hat{\sigma}_{j_{t}}^{2} = c \implies \hat{\sigma}_{i_{t}} \hat{\sigma}_{j_{t}} = \sigma_{i_{t}} \sigma_{j_{t}} = c$$

$$\begin{bmatrix} c & \hat{\rho}_{12} c & \cdots & \hat{\rho}_{1n} c \end{bmatrix}$$
(25)

$$\Sigma_{LCA_{i}} = \begin{vmatrix} \hat{\rho}_{12_{i}}c & c & \vdots \\ \vdots & \ddots & \vdots \\ \hat{\rho}_{1n_{i}}c & \cdots & \cdots & c \end{vmatrix}$$
(26)

4 Data

4.1 Description

All following data series are captured on a daily basis, which offer a suitable environment for investors optimizing their medium-to-long term strategies. The analysis is conducted on a macroeconomic level, which is represented by the analysis of aggregated indexes, and also on a macroeconomic level, which is described by individual shares.

Observed data samples start from 31st March 2006 and end at 30th March 2011. This means that also a financial crisis is included into data sample and thus overall performance is rather negative due to worsening economic conditions in the region.

The macro-level analysis consists of BUX for Hungary, PX for Czech Republic and WIG 20 for Poland, while micro-level analysis is made for 5 companies in every state. The complete list of companies including their full names can be found in the Appendices. Slovak market was excluded from the analysis, because its nature is quite different from other described markets⁴. The most liquid Slovak stocks are traded less than normally traded stocks on other CE markets.

There were proposed several conditions for inclusion of individual stocks. The first condition was continuous trading during the whole time period. A next condition was that the individual share was a part of the national index through the whole period of time. Imposed conditions resulted in a limited number of shares in the Hungarian market. Thus the data series were also limited in case of other markets. We set data samples as equal for every country in order to offer similar space for investments and not to discriminate some specific national market. We have finally chosen 5 most liquid companies.

Data estimated in the routine were calculated in a logarithmic form of returns as is described in a relation (27).

⁴ Slovak market can be characterized rather as over-the-counter (OTC) market, majority transactions are off-exchange, average liquidity of stocks is very low; thus it is not directly comparable with other markets.

$$r_{t} = \log(p_{t} / p_{t-1}) \times 100, \qquad (27)$$

where P_t stands for a closing value of the computed index. This means that input values of national stock indexes were transformed into daily returns r_t computed as close-to-close value in percentage points.

4.2 Testing Data Series

The Appendix 1 shows that the KPSS test hypothesis cannot be rejected even at 10% significance level indicating that stationarity of all data series cannot be rejected. Results of ADF test indicate that the existence of unit root can be rejected in favour of alternative that data series do not contain unit roots even on 1 % level. We can thus conclude that all data series can be regarded as stationary and not having unit root. All tests were conducted in both cases of macro-level and also micro-level analyses (see more in Appendix 1).

The hypothesis that data series are normally distributed was rejected, this causes that all estimators have to be marked as QMLE instead of maximum likelihood estimators (for further details see Engle (2002)).

5 Model Estimations

The DCC GARCH model was estimated resulting in a complex correlation/covariance matrix including all the mentioned markets and individual shares. Estimation of GARCH (1,1) models for every time series confirmed the validity of stationarity condition i.e. that it was true that the sum of estimated parameters was lesser than 1 (α + β <1) for every GARCH (1,1) model, for further details see Bollerslev (1986). All following computations are conducted as in-sample analyses. Weights derived from diversification strategies were computed on a basis of previously mentioned methodology using computed conditional correlations and covariances, optimization techniques

used BFGS (Broyden-Fletcher-Goldfarb-Shanno) method using OxEdit, see also Doornik (2007).

5.1 Portfolio Formation Analysis

Individual dynamic conditional correlations (DCC) between observed markets and shares were computed using a DDC GARCH methodology computing defined strategies (GMV, UGMV, LCA). The basic difference between GMV and UGMV portfolio is that UGMV approach offers short-selling possibilities.

Because 15 individual weights would be not clearly visible for readers, weights arising from micro analysis were aggregated on a basis of country of origin and marked with a similar symbol as the stock market, where they are traded. This cause that weights are comparable in both types of analyses (micro vs. macro) and also the amount of investment put into specific country is directly comparable.

Fig. 2: Weights of GMV – Micro-level 0.8 0.7 0.6 0.5 BUX 0.4 PΧ 0.3 WIG20 0.2 0.1 0 31.3.2006 31.3.2007 31.3.2008 31.3.2009 31.3.2010

Source: Author's calculations

Fig. 4: Weights of UGMV – Micro-level

Source: Author's calculations

Fig. 6: Weights of LCA – Micro-level

31.3.2007 31.3.2008 31.3.2009 31.3.2010 31.3.2006

The only difference between GMV and LCA portfolios is exactly the existence of a volatility component described by GARCH (1,1) model. Figures 2 - 5 show that GMV and UGMV portfolios are not very stable. From Figures 6 and 7 it is clear that volatility component is the reason, why is it so, because LCA portfolios are much more stable and relatively close to the values of EW portfolio. Moreover there is just a mild difference between GMV and UGMV portfolios. This is a very interesting result. Although the weights of individual stocks were even negative, the whole aggregated weights for respective markets are really close in both micro- and macro-level analyses. It is probable that some other methods modelling volatility could improve stability and maybe even profitability of GMV and UGMV portfolios, because LCA portfolios derived solely from DCC GARCH model proved to be less volatile.

Fig. 3: Weights of GMV – Macro-level

Source: Author's calculations

Fig. 5: Weights of UGMV – Macro-level

BUX

PX

WIG20

Source: Author's calculations

Fig. 7: Weights of LCA – Macro-level

5.2 Performance Analysis

Computed weights were used as a basis for further calculations in order to construct portfolios held by a fictional investor. The strategy assumes that the portfolio is held for one day period, then sold and re-weighted according to new information. It means that observed indexes or stocks are bough using data obtained at time t and sold at time t+1, which means that a data sample is shortened by one observation. The amount received at time t+1 is fully reinvested in a same way as at time t. This recursive method is used for the whole data sample.

We assume that transaction costs are zero and there is no taxation. We are aware of a fact that these assumptions can decrease actual profitability, but we use these assumptions as a logical basis of our model, which can be extended in future works.

Figures 8 and 9 are describing a relative performance of constructed portfolios (GMV, UGMV and LCA) in a comparison with the benchmark EW portfolio from both micro- and macro-level perspective.

Source: Author's calculations

Fig.9: Relative performance of macro-level portfolios

Source: Author's calculations

Both Figures 8 and 9 show that LCA portfolio can be perceived as the best performing investment, which performed better than the EW portfolio benchmark. This means that DCC GARCH can be successfully used in order to optimize portfolios, but on the other hand worse performance of GMV and UGMV portfolios revealed that there is some space for improvements in case of volatility modelling; a usage of GARCH (1,1) in the portfolio optimization had an adverse effect in a comparison to LCA portfolio. It is also clear that GMV and UGMV portfolios are capable of higher growth, but there are troubles with periods of sudden drops.

At the time of sudden drops GMV portfolio formation should be probably accompanied by some safety mechanism, which would be capable of recognition of sudden decreases in market prices. It is also probable that in bull markets proposed strategies could achieve much higher returns than the benchmark, which would be fully consistent with Yilmaz (2010). These statements could be explanations of perceived properties, but final statements have to be based on a further research using econometric methods.

The final outcome of the comparison is described in Table 1, basic descriptive statistics are depicted. The Table 1 describes performance statistics on a day-to-day basis.

	Micro-level Analysis				Macro-level Analysis			
	EW	GMV	UGMV	LCA	EW	GMV	UGMV	LCA
mean	0.9999	0.9999	0.9999	1	1	1	1	1
skewness	-0.07065	0.04545	0.02563	-0.05886	0.07634	-0.1249	-0.1275	0.07654
kurtosis	5.673	8.542	7.843	4.047	5.51	3.972	3.964	5.466
st. dev.	0.0165	0.01931	0.01945	0.0164	0.01687	0.01596	0.01597	0.01684
minimum	0.898	0.8707	0.8739	0.9034	0.9046	0.9104	0.9104	0.9055
maximum	1.114	1.136	1.135	1.101	1.11	1.079	1.079	1.109

 Table 1: Day-to-Day Performance Comparison of Proposed Portfolio Strategies

Source: Author's calculations

Values in Table 1 show that LCA portfolio performed better than the benchmark in both scenarios (micro and macro). The mean of daily returns was higher, skewness was less negative or more positive and also standard deviations were lower than the outcomes of the benchmark. Using standard Student's t-statistic⁵, proposed in Gosset (1908) and described in equations (28) and (29), improved performance of the LCA portfolio over the benchmark can be marked as statistically significant on 95% confidence level in a case of micro-level analysis.

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S_{X_1 X_2} \cdot \sqrt{\frac{2}{n}}}$$
(28)

$$S_{X_1X_2} = \sqrt{\frac{1}{2}(S_{X_1}^2 + S_{X_2}^2)}$$
(29)

where $S_{X_1X_2}$ is pooled standard deviation of both compared groups (X_1, X_2) ; $S_{X_1}^2, S_{X_2}^2$ are variances of each group and *n* is the number of observations.

In a case of macro-level analysis LCA portfolio performed also better than the benchmark, alas this difference cannot be marked as statistically significant. The higher profit than in a case of the rest of portfolios is also connected with lower variance in returns than the benchmark. This can be also marked as a further performance improvement of the LCA portfolio over the benchmark.

⁵ The Student t-test was testing whether daily returns were statistically different among proposed portfolios during the whole modelled period.

GMV and UGMV portfolios offer mixed results. Profits are generally lower than in a case of benchmark, but there can be perceived a potential of quick growth, which can be confirmed by the highest day-to-day change, which is described in the Table 1. GMV and UGMV portfolios are capable of higher returns than a benchmark, alas they also suffered higher losses, the greatest loss in a comparison to benchmark was achieved in the year 2008 as can be perceived from Figures 8 and 9. In a case of micro-level analysis GMV and UGMV portfolios performed worse than the benchmark, which can be confirmed on 95% confidence level using Student t-statistic. In a case of macro-level analysis the difference is not statistically significant; we can thus make the conclusion that in the case of the macro - level portfolio the diversification opportunities are quite limited when a dynamic portfolio formation approach was employed.

The variable volatility component had mixed impact on a portfolio performance. Probably an existence of a reliable tool, which can forecast changes of a price direction, could significantly improve outcomes of these portfolios. This can lead to synergic analysis with other methods of technical analysis, which could be further analysed.

6 Conclusion

In the case of LCA portfolio it was shown that macro-level portfolio performed worse than microlevel portfolio in a comparison to the benchmark, which shows that the proposed dynamic portfolio formation method has probably a greater opportunity for diversification in a case of analysis of individual shares.

The study confirms positive effects of portfolio optimization based on dynamic analysis, which is consistent with findings of Yilmaz (2010). It can be concluded that a dynamic approach to portfolio theory has a substantial potential for improvements of optimization methods, which can be further analysed. Results in a case of LCA portfolios show promising results with a better performance than the benchmark. The DCC GARCH model proved its quality, but results of incorporating volatility components employed in GMV and UGMV portfolios are mixed. While portfolio formation based on dynamic conditional correlations showed statistically significant improvements over the benchmark, portfolio formation based on the dynamic evolution of variance based on GARCH (1,1) model did not perform so well. Thus it is probable that more complex models describing volatility processes could offer better outcomes and overall improved portfolio performance. The study shows that there is plenty of space for improvements regarding multiple criteria.

We proposed a new way of portfolio formation, which incorporated conditional correlations from the DCC GARCH model. The LCA method resulted in less volatile portfolio formation, which performed on par or even better than used benchmark. The proposed method showed that conditional correlations estimated by the DCC GARCH model can be successfully employed in portfolio formation based on GMV approach even without incorporation of volatility terms estimated GARCH (1,1) model. This offers opportunity how to simplify portfolio compositions and minimize the number of computed parameters needed in further portfolio formations.

References:

- Aiello, S. Chieffe N. (1999) International index funds and the investment portfolio, Financial Services Review, vol. 8 (1), 1999, pp. 27-35.
- Antzoulatos, A. A. Tsoumas, C. (2010), *Financial development and household portfolios Evidence from Spain, the U.K. and the U.S.*, Journal of International Money and Finance, vol. 29 (2), pp. 300-314.
- Balcilar, M. Demirer, R. Hammoudeh, S. (2013) *Investor herds and regime-switching: Evidence from Gulf Arab stock markets*, Journal of International Financial Markets, Institutions and Money, vol. 23, pp. 295-321.
- Banerjee, A. Dolado, J. J. Galbraith, J. W. Hendry, D. F. (1993), *Cointegration, Error Correction, and the Econometric Analysis of Non-Stationary Data*, Oxford University Press, Oxford.
- Banerjee, P. S. Doran, J. S. Peterson, D. R. (2007), *Implied volatility and future portfolio returns*, Journal of Banking & Finance, vol. 31 (10), pp. 3183-3199.
- Bodnar, T. Okhrin, Y., (2013) Boundaries of the risk aversion coefficient: Should we invest in the global minimum variance portfolio?, Applied Mathematics and Computation, Volume 219 (10), pp. 5440-5448.
- Bollerslev, T. (1986), *Generalized Autoregressive Conditional Heteroskedasticity*, Journal of Econometrics, vol. 31, pp. 307-327.
- Cappiello, L. Hördahl, P. Kadareja, A. Manganelli S. (2006) *The Impact of the Euro on Financial Markers*, European Central Bank, Working Paper Series, no. 598
- DeMiguel, V. Garlappi, L. Nogales, F.J. Uppal R. (2009) A generalized approach to portfolio optimization: improving performances by constraining portfolio norms, Management Science, vol. 55, pp. 798–812
- Doornik, J. A., (2007), *Object Oriented Matrix Programming Using Ox*, OxEdit 5.10, 3rd ed. London: Timberlake Consultants Press and Oxford: www.doornik.com
- Elton, E. J. Gruber, M. J. (1991), Modern Portfolio Theory and Investment Analysis (4th edition), New York, Wiley
- Engle, R. F. (1982), Autoregressive Conditional Heteroskedasticity With Estimates of the Variance of U.K. Inflation, Econometrica vol. 50, pp. 987-1008.
- Engle, R. F. Sheppard, K. (2001), *Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH*, NBER Working Papers, no. 8554, National Bureau of Economic Research, Inc.
- Engle, R. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate

Generalized Autoregressive Conditional Heteroskedasticity Models, Journal of Business & Economic Statistics, American Statistical Association, vol. 20, no. 3, pp. 339-350.

- Gosset, W. S. (1908). *The probable error of a mean*, Biometrika vol. 6 (1), pp. 1–25.
- Kwiatkowski, D. Phillips, P. C. B. Schmidt, P. Shin, Y. (1992): *Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root*, Journal of Econometrics vol. 54, pp. 159–178.
- Lagoarde-Segot, T., (2013) Does stock market development always improve firm-level financing? Evidence from Tunisia, Research in International Business and Finance, vol. 27 (1), pp. 183-208.
- Lan, W.- Wang, H. Tsai, Ch.-L., (2012) A Bayesian information criterion for portfolio selection, Computational Statistics & Data Analysis, vol. 56 (1), pp. 88-99.
- Liao, S.-H. Chou S.-Y. (2013) Data mining investigation of co-movements on the Taiwan and China stock markets for future investment portfolio, Expert Systems with Applications, Vol. 40 (5), pp. 1542-1554.
- Lintner, J. (1965). *The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets*, Review of Economics and Statistics, vol. 47 (1), pp. 13-37.
- Konno, H. Kobayashi, K., (1997) An integrated stock-bond portfolio optimization model, Journal of Economic Dynamics and Control, Volume 21, (8–9), pp. 1427-1444,
- Markowitz, H. (1952), *Portfolio Selection*, Journal of Finance, vol. 7, pp. 77–91.
- Nanda, S.R. Mahanty, B. Tiwari, M.K., (2010) Clustering Indian stock market data for portfolio management, Expert Systems with Applications, vol. 37 (12), pp. 8793-8798.
- Pelagatti, M. M. Rondena, S., (2004) Dynamic Conditional Correlation with Ellipticl Distributions, University of Milan - Bicocca, Working Paper
- Princ, M. (2010), Relationship between Czech and European Developed Stock Markets: DCC GARCH Analysis, IES Working Paper 9/2010, IES, Charles University in Prague.
- Rapach, D. E. Wohar, M. E., (2009) Multi-period portfolio choice and the intertemporal hedging demands for stocks and bonds: International evidence, Journal of International Money and Finance, vol. 28 (3), pp. 427-453.
- Said, S. E. Dickey, D. A. (1984), *Testing for Unit Roots in Autoregressive-Moving Average* Models of Unknown Order, Biometrika vol. 71, pp. 599–607.
- Shapiro, S. S. Wilk, M. B. (1965), An Analysis of Variance Test for Normality (Complete Samples), Biometrika, vol. 52, No. 3/4., pp. 591-611.
- Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, vol. 19 (3), 425-442
- Solnik, B. (1974), Why Not Diversify Internationally Rather Than Domestically? Financial

Analysts Journal, vol. 30, pp. 48 – 54.

- Solnik, B. (1991), *Finance Theory and Investment Management*, Swiss Journal of Economics and Statistics, vol. 127, pp. 303-324.
- Vošvrda, M. Žikeš, F. (2004), An Application of the GARCH-t Model on Central European Stock Returns, Prague Economic Papers 2004, no. 1
- Yilmaz, T. (2010), Improving Portfolio Optimization by DCC and DECO GARCH: Evidence from Istanbul Stock Exchange, MPRA Paper 27314, University Library of Munich, Germany.

Data sources:

- Thomson Reuters; *www.thomsonreuters.com*
- Akcie.cz; *www.akcie.cz*
- Yahoo! Finance; *finance.yahoo.com*

Appendix 1

	Value	es of test stat	istics	Calculated p-values		
Code	KPSS	ADF	S-W	KPSS	ADF	S-W
FOTH.BU	0.1612	-13.24	0.8514	>10%	1%	1%
MOLB.BU	0.1299	-14.16	0.8931	>10%	1%	1%
MTEL.BU	0.2521	-13.5	0.9164	>10%	1%	1%
OTPB.BU	0.1341	-12.73	0.8579	>10%	1%	1%
RABA.BU	0.1077	-13.14	0.9382	>10%	1%	1%
CEZP.PR	0.0495	-13.53	0.8828	>10%	1%	1%
ERST.PR	0.0679	-12.12	0.8769	>10%	1%	1%
BKOM.PR	0.0235	-14.24	0.9102	>10%	1%	1%
SPTT.PR	0.0194	-14.65	0.8642	>10%	1%	1%
UNPE.PR	0.0566	-12.39	0.8828	>10%	1%	1%
KGHM.WA	0.1224	-13.12	0.9644	>10%	1%	1%
PGNI.WA	0.0369	-15.15	0.9822	>10%	1%	1%
PKNA.WA	0.1219	-14.56	0.9872	>10%	1%	1%
PKOB.WA	0.0451	-14.05	0.9812	>10%	1%	1%
TPSA.WA	0.0153	-15.25	0.9762	>10%	1%	1%
BUX	0.1612	-13.24	0.8514	>10%	1%	1%
PX	0.1299	-14.16	0.8931	>10%	1%	1%
WIG20	0.2521	-13.5	0.9164	>10%	1%	1%

Appendix 2

Company code	Full name of company
FOTH.BU	FOTEX HOLDING SE
MOLB.BU	MAGYAR OLAJ GAZI
MTEL.BU	MAGYAR TELEKOM
OTPB.BU	OTP BANK
RABA.BU	RABA HOLDING
CETV.PR	CENTRAL EUROPEAN MEDIA ENTERPRISES LTD.
ERST.PR	ERSTE GROUP BANK A.G.
BKOM.PR	KOMERCNI BANKA A.S.
SPTT.PR	TELEFONICA O2 CZECH REPUBLIC A.S.
UNPE.PR	UNIPETROL A.S.
KGHM.WA	KGHM POLSKA MIEDZ S.A.
PGNI.WA	PGNIG S.A.
PKNA.WA	PKN ORLEN S.A.
PKOB.WA	PKO BANK POLSKI
TPSA.WA	TELEKOM POLSKA S.A.

IES Working Paper Series

2013

- 1. Jiří Witzany: A Note on the Vasicek's Model with the Logistic Distribution
- 2. Tomáš Havránek, Ondřej Kokeš: *Income Elasticity of Gasoline Demand: A Meta-Analysis*
- 3. Jiří Witzany: Estimating Default and Recovery Rate Correlations
- 4. Petra Valíčková, Tomáš Havránek, Roman Horváth: *Financial Development and Economic Growth: A Meta-Analysis*
- 5. Jan Soudek, Jiří Skuhrovec: *Public Procurement of Homogeneous Goods: the Czech Republic Case Study*
- 6. Martin Gregor: *Electoral competition for the 2+1 electoral rule and the close alternatives*
- 7. Aleš Čornanič, Jiří Novák: *Signaling by Underpricing the Initial Public Offerings of Primary Listings in an Emerging Market*
- **8**. Adrian Babin: *Bank Efficiency during the Current Economic Crisis: An International Comparison*
- 9. Radovan Parrák: *The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach*
- 10. Karel Janda, Eva Michalikova, Lucia Psenakova: *The Performance of Export Credit Agencies in Post-Communist Central European Countries*
- 11. Tomas Havranek, Roman Horvath, Zuzana Irsova, Marek Rusnak: *Cross-Country Heterogeneity in Intertemporal Substitution*
- 12. Michael Princ: *Multi-Level Analysis of Dynamic Portfolio Formations: Central European Countries*

All papers can be downloaded at: <u>http://ies.fsv.cuni.cz</u>.

