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1. Introduction

Since pioneering work of Gibrat ([15]) economists have been continuously interested
in the analysis of how firms form and grow and what is the long run distribution of
firms’ sizes. Recent empirical findings showed that like many natural and social pat-
terns (e.g. earthquake magnitudes, sizes of cities, word occurrences, etc.) and also
other economic variables (e.g. income and wealth distribution, stock market returns
and trading volumes) the firms’ sizes in various countries behave according to power
law ([25]). The existence of power law in economic data has an important practi-
cal implications both for the risk control and management ([31]) and policy makers
([14]). It thus seems interesting from the economist’s point of view to understand
how such patterns arise and persist in the economy.

Many previously proposed models that addressed this topic took the form of
simple statistical models based on the modifications of the so-called Gibrat law1

(e.g. [29], [20], [23]). Despite the fact that these models were relatively successful
in generating power-laws they provided little insights of how the power-laws emerge
from the interaction of economic agents (e.g. entrepreneurs, employees, managers
etc.).

To answer this question we follow a different approach. In this article we extend
the agent-based model of firms’ formation and growth proposed in [4]. In [4] the
firms creation, expansion or contraction results from the interaction of heterogeneous
utility maximizers. While the original model was able to replicate the power law
distribution in the firms’ sizes but agents in the model set their utility maximizing
effort levels completely freely and undetected. This led to the emergence of free
riding and influenced the overall dynamics of the model. Therefore, we would like
to extend the original model by introducing the monitoring which is seen in the
economic literature, besides for example the proper incentive scheme ([18]), as a
possible way how to make employees work harder. Our motivation is to compare
the extended model with both the original case without monitoring and empirical
data about firms sizes distribution.

Workers can be monitored in many different ways: by co-workers ([8]), by the
owner of the firm ([1]) or hired supervisor ([6]). Here we introduce a very simple
ad-hoc monitoring mechanism which uses central authority personified by the boss
of the firm who monitors and eventually punishes workers. The aim of this work
is to introduce and implement a relatively simple initial model not very distant
from reality, for which the outcomes might be easily analyzed and thus the effect of
monitoring on the process of firms’ formation and growth examined. We also treat
it as a first attempt in this direction and use it as a basis for the future research.

There exists a rich economic literature that considers different aspects of mon-
itoring that are omitted here. For example for the insightful discussion of the mo-
tivation for the monitoring in firms we would like to refer interested reader to [1],
[6] or [8]. We also simplify our analysis a lot by not considering barriers and costs
of monitoring which are discussed for example in [17], [30] and [32] and leave such

1Gibrat law states that if the growth rates of firms in a fixed population (i.e. with no entry and
exit) are uncorrelated and independent of size, the resulting distribution of firms sizes is lognormal
([15])



features for future work.
The structure of the article is following. After a brief introductory explanation

of power law (chapter 2.1.) and agent-based modeling (2.2.) an already existing
model being extended herein is presented (2.3.). To extend the model two differ-
ent monitoring mechanisms of the individuals’ effort levels are described and fully
implemented (3.). Finally, obtained results are statistically analyzed (4.).section 5.
concludes.

2. Used framework

2.1. Power law and company size distributions

Since the birth of modern statistics, scientists have introduced plenty of more or
less known probability distribution types. While some of them are useful mainly
in theory (e.g. chi-squared, F-distribution), others are to various extents being ob-
served in the real world environment as well (e.g. uniform, exponential, normal,
lognormal). This article concerns a (at least for an average student) less known
probability distribution type – Power law, also known as Scaling Law, Pareto distri-
bution or Zipf’s law. We will not go into details differing the terms and will simply
consider them identical.

A quantity x is said to follow a power law, when ”the probability of measuring
a particular value of the quantity varies inversely as a power of that value”([25], 1),
in other words where the probability density/mass function of the quantity x can
be written as follows:

p(x) = Cx−α (1)

where α is an exponent characterizing the power law. For (1) to be a density/mass
function, α > 1. The value of C is then given by α2. Besides being right skewed,
the power law distributions do have a notable feature of linearity in log-log scales3,
where α represents the negative slope.

Furthermore, there is a fascinating empirical evidence of observing such relations
in surprisingly many real phenomena, e.g. in word frequencies, intensities of wars,
populations of the cities, aspects of the Internet traffic, diameters of earthquakes4,
etc. ([5], 2;[25], 5) Knowledge of such a fact can become a very practical information,
for instance for predictions5. Significant for our work is that even the companies’
sizes distribution seems to follow a power law ([5],[25],[26],[28]). In this case, it is

2For the area beyond the p(x) curve to be equal to 1; see normalization in [25], page 9 and in
[12], page 2.

3Could be easily seen after taking a logarithm of both sides of the equation (1) : log p(x) =
log C − α log x

4For instance, an empirical evidence for Zipf’s law says that the occurrence of words used in
a natural language (especially English) follows p(n) = n−α, where n is the rank of a word in the
language with 1 being the most used word.

5Zipf’s law in the word frequencies could be used in an optimal data structures design in
computer science ([27], 31).



practical to employ a different version of (1)6:

p(x, x0, α) =

(
x

x0

)−α

(2)

where x0 (minimal company size, usually 1) is a constant and x > x0 is a random
variable of company size.

Studies vary in estimated value of α. On the data for 1997 from the U.S. Census
Bureau, Axtell ([5]) estimates α as 2.059 if size defined by number of employees and
1.994 if by receipts. In ([4], 41) he uses another reported values of 2.23 for US and
2.11 for UK of Simon and Ijiri and confirms that it is not significant which of the
two definitions is applied. Ramsden ([28]) successfully estimates the power value
parameter of a similar simple canonical law for 20 countries and tries to explain
the different results by a “temperature of the economy”7. Kaizoji ([19]) adds that
there is no universality in the size distributions of firms. Nevertheless, power law
distributions in company sizes are really generally observed, with different α for
different countries, usually around 28.
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Figure 1: US Companies sizes for 2005 in normal and log-log scales following the
powerlaw. Source of data: US Census Bureau([35])

For illustration purposes, the figure 1 displays a histogram of company sizes
frequencies across the US economy of 2005. Data were taken from the US Census
Bureau ([35]) in a form of counts of the companies in few categories. Despite the
need of relying on a much softer set of data and proper methods, an estimation of
α by OLS (similar to the one Axtell did in [5]) was applied. If the histogram is
redrawn in logarithmical scales (on the righthand side of the figure), some linearity
could be roughly really observed (and OLS gives α = 1.87). Such conclusions might
however be spurious9 and should be thus based on statistical methods with more

6As C is given by the normalization, it has been omitted.
7Pérez, Brown and Tun ([26]) receive similar results for a group of less developed countries.
8Clauset, Shalizi and Newman showed, that due to not using rigorous methods, sometimes ”the

power-law hypothesis is found to be incompatible with the observed data” ([12]). The results must
therefore be taken with caution.

9One should really not take similar results seriously. Data used is actually only few numbers,
while needed would be precise sizes of representative companies samples. In addition, the method
of ordinary least squares does not take into account the normalization condition and estimates are
”subject to systematic and potentially large errors”([12], 22).



accurate data only10.
Observing a behavior is clearly vital, yet the search for its causes is even more

important. In some probability distribution types, the occurrence is unambiguously
explained by the distribution’s character (e.g. uniform), or using the theoretical
concepts (e.g. central limit theorem for normal distributions). In power law dis-
tributions, finding the causes is however not so clear. This paper looks for the
roots of the observed power law in company sizes by a relatively new technique of
agent-based computational modeling. For sake of completeness, let us remind that
“there exists a body of stochastic process models in which random draws from a
symmetric distribution of growth rates yield distributions of firm sizes that are right
skewed, following a Pareto distribution”([4]). This approach to explain the power
law is based on so-called Gibrat’s law saying that once growth rates and sizes are
independent, company sizes distribution is right skewed. Growiec et al. present an
econophysical model of proportional growth of firms, where firms embody products
which grow proportionally to their count and sizes and so do the companies ([16]).
Distribution of firm sizes follows power law in upper tails11. Another explanations
might be also found (see for instance [25], page 12). Despite all those being rele-
vant, the following sections will be looking only for an agent-based way to examine
observed behavior.

2.2. Agent-based computational modeling

Economy is an unthinkably complicated and dynamic system. Models describing its
rules, (ir)regularities, patterns have to deal with it. To explain even a partial process,
complex, well-defined but cumbersome frameworks are often needed, though lighter
solutions might be formed when seen the problem from the “bottom up” perspective.
Plenty of global regularities arise from local interactions. Focusing on the “local”
level of a general behavior with the support of the current computational power it is
possible to let a complex system emerge from a plain set of given rules in a simulation.
This articles’s main methodology allowing such “bottom up” construction is called
Agent-based computational economics (or modeling) (ACE).

The key term in ACE is agent. Agents could be practically anything - individ-
uals (such as consumers), institutions (companies, states), physical entities or even
strategies - generally any interactive unit. Usually, agents are meant to be inde-
pendent, boundedly rational, heterogeneous, autonomous and interacting with little
or no central authority ([24], 4) - notions not often present in traditional methods.
Characteristics may vary12, however they define the environment and rules in which
the agents “live” and form a complex organism representing the complicated model
studied.

10In the following sections a more reliable method built on the maximum likelihood estimation
by Clauset, Shalizi and Newman ([12]) will be used (Appendix A). Besides α, it estimates the
lower bound for power law behavior x0 and can statistically say if the data indeed fit a power
law distribution (conclusions based on displaying a graph in log-log scale only could easily be
deceptive; the statistical test the authors introduced uses the Kolmogorov-Smirnov goodness-of-fit
test). Finally, thanks to a computer generation of sizes a trustworthy data set will be examined.

11Almost the same group of authors similarly confirms that growth rates display heavy tails
([9]).

12Adaptation, backward learning, social networks for instance may be relevant too.



A common approach for simulating agents’ life is to create an initial set of agents
and then to process in steps. In each step a (randomly or deterministically) selected
subset of agents is revived. Based on the defined rules agents then look around,
evaluate their environment (i.e. fellow agents) and perform the defined tasks. Con-
tinuously, or after a certain number of periods their characteristics are gathered and
examined. The initial parameters are commonly altered and the organism rerun.
Analyzing the gained information, the entire system is studied. An agent-based
model thus works simply as an affordable “economic laboratory” ([4]), where any
situation could be simulated13.

The ACE laboratories are constructed cheaply using programming languages.
Despite the possibility to implement it procedurally, an elegant way is to make use
of the object-oriented languages (such as Java, C++ or C#). Apart from other
advantages, object oriented programming allows programmers to formulate code
with a better resemblance of reality and suits the needs of ACE14. Based on the
requirements, different techniques, such as genetic programming15 may be applied,
although similarly to the agent model as such, the implementation is purely up to
the scientist and can vary from a model to another.

This section is not to be taken exhaustively. An agent-based model in its core
is simply just a program to simulate a certain economic system and can thus be
understood in many ways. Its main strength is that it may overcome the cum-
bersomeness of robust but complicated mathematical models, while still allowing to
study very complex and dynamic systems with no or little ”heroic assumptions”. No
assumption of rationality, continuity, aggregation, homogeneity of agents, equilib-
ria reaching ([4], 90) is required, which results in producing more realistic theories.
On the other hand, ACE models do not produce ultimate explanations, since these
are hidden within agents configurations ([4], 89). It ought not to be considered a
supplement, but rather a complement of other techniques ([33], 30).

A broad spectrum of different examples, where ACE is helpful could be presented.
A famous example is the artificial stock market created at the Santa Fe Institute
([22]). Cournot oligopoly might be studied ([2]), business process could be modeled
([7]), etc. Agent based approach is in fact far more general, and economy is just
one of the possible usages, so many other more or less practical simulations might
be run16.

Despite the existence of numerous fascinating examples, this article concerns
exclusively the topic of the companies’ sizes generation. Agent-based models might
offer different perspectives to the problematics studied once purely mathematically

13Described skeleton does not have to hold everywhere. The “life” or the data retrieval can
even be understood entirely differently and still be modeling the system. The purpose of this
introduction is just to outline the main properties.

14Concretely, the notion of objects and classes in this technique almost perfectly fits the notion
of agents in ACE. A class defines agents by variables and methods resembling the parameters and
rules of the agents, one object instance separately represents one agent, etc.

15In some agent-based models agents (when for instance representing strategies) are allowed to
alter their selves by selections, mutations or recombination (e.g. in [2]).

16Imagine a public transport studied off the streets, analysis of logistic design patterns, dis-
tributed computing, workforce or portfolio management, etc. Even a quaint example similar to
the article’s topic of the size of wars generation exists ([10]).



(as in already mentioned [16]). A spatial one-dimensional approach was introduced
by Kuscsik and Horváth ([21]). Companies are randomly placed in the market area
and have their own radii representing their sizes. The radii grow proportionally to
their value, however so-called negative feedback takes place when they intersect,
causing the firms to shrink. Power law distribution with α = 2.02 is under some
circumstances yielded.

In the followingsections, another ACE power law model is described ([4]) and
its modification then proposed and studied for power law occurrences. Since this
extended model had to be completely implemented, it can (together with the original
model) be seen as a herein missing extensive example of agent based modeling.

2.3. Axtell’s model

The underlying model subject to an extension proposed by our article in the section
3. is the one presented by Robert Axtell in [4]. It is a microeconomic approach able
to yield empirically observed power law in company sizes distribution17. Despite the
fact that it makes use of the production function, increasing returns on micro level,
utility maximization or individual preferences, it “does not stand on equal footing
with any of the conventional theories of the firm” – a firm is physically understood
as a group of individuals and does not maximize its profit, there are no transaction
costs or specialization. Moreover, it is an agent-based model facilitating bounded
rationality, individual heterogeneity, local interactions and most importantly, non-
equilibrium dynamics, a property widely present in the examined reality, but rarely
in the theory. Since this very model forms the article’s basis, allow now its detailed
description18.

An agent is meant to be an individual. Let A be the set of all agents. Agents
know few other agents. Let v be the count of known agents ∀i ∈ A. Each agent
out of A either forms a standalone company or joins a company of one of its kins.
The decision is based on the highest utility given by the possible companies’ output
shares. The output of any company Cj is defined by the production function in the
form of

O(Ej) = aEj + bEβ
j

where Ej is the sum of the efforts ei of the member agents put in it, Ej =
∑

i∈Cj
ei.

Parameters a, b and β are general for further analysis, with b > 0 ∧ β > 1 for
increasing returns to production. All the agents belonging to a company Cj get

equal shares of O(E)
|Cj | , which are then converted to their utilities19. Utility function

of an agent i ∈ Cj ⊆ A has a form of Coub-Douglas preferences

U i (ei; θi; Ej,∼i; N) =

(
O (ei + Ej,∼i)

N

)θi

(1− ei)
(1−θi)

17It also yields observed Laplace distribution of company growth rates, whose standard deviation
follows logarithmically a power law too. Axtell argues that there does not exist an equilibrium
microeconomic model explaining the causes; statistical solutions are however present (Gibrat’s
law).

18Axtell’s notation with small amendments has been preserved.
19Companis sets’ volumes and members change over time, term Cj is used just to indicate that

there might be (and usually are) plenty of companies.



with N = |Cj| being the count of agents in the company Cj 3 i and θi ∈ [0; 1]
meaning the agent’s preference for wage (first bracket’s term) over leisure (second
term). Agents may have different preferences. Agents do not know the efforts or
preferences of their colleagues. All they know is their count and their total remainder
effort Ej,∼i (which can in fact be derived from ei and O(Ej) of Cj).

Axtell shows mathematically that the model is dynamically unstable and conse-
quently the presented ACE model proves it too. The simulation works as follows:
Initially, 1000 agents forming 1000 different singleton companies are created. Then
a loop of single periods is executed. In each period, some agents are woken up
(each one with uniform probability). According to its θi, each selected agent then
computes possible utilities of staying in the company, forming a new company or
joining some of (to him) known companies and chooses the best option of his future
company and effort level. Only after all the selected agents have decided, changes
are made – outputs, shares and new remainder effort levels are calculated and the
next period starts. Program continuously gathers data for various statistics to be
calculated after the termination.

Agents’ bounded rationality and autonomy is hidden in not seeing all the com-
panies, not knowing other agents’ decisions and calculating with only aggregate
remainder effort levels of the previous period. Parameter θi values are the source
of heterogeneity, since they are uniformly distributed and do not change. Axtell
demonstrates that local decisions and movements among the firms yield power law
distributions of company sizes and it does not even matter how the size is defined –
power law exponent α in (2) has a value of 2.28 when by number of member agents
and 1.88 if by total output ([4], 40).

The power law is not the only remarkable result. Axtell presents a typical life
cycle of a company in the simulation. Thanks to increasing returns to production
on micro level, joining other companies in the beginnings pays out. As a firm grows
larger, problem of free riding takes place. Utility gained from the equal share of
agents becomes less sensitive to one’s effort level changes. Growth declines, occa-
sionally even collapses and the firm shrinks. Free riding limits a rampant expansion
and causes near constant returns to production at the aggregate level ([4], 43).

The author subsequently investigates the model parameterization. Values of b, β,
v, agents A count are separately altered. Distribution of θi and the utility functions
are modified, new aspects of loyalty, hiring standards and alternative compensations
schemes are introduced. Yielded properties, including the power law of company
sizes are robust to the modifications, slope α changes to various extents. Only the
change to entirely random decisions of agents impeded the distribution to arise.

All in all, an extensive work was done by Robert Axtell. What was left for future
investigations is that in the existing model “shirking goes completely undetected
and unpunished” ([4], 81). There is a potential of improving the output, since ”if
economic organization meters poorly, productivity will be poor” ([1]). An extension
to the Axtell’s model, where monitoring of agents by companies is considered, is
suggested in the next section.



3. Model with monitoring

”Clues to each input’s productivity can be secured by observing behavior
of individual inputs.” - A.A. Alchian, H. Demsetz ([1])

Despite already having introduced power law distributions and agent-based eco-
nomic modeling, the main goal of the article is to present a complete and to certain
extent unique ACE model. The model suggested herein emanates from the Axtell’s
model while it adds new features of monitoring of agents absent in the original.
Even two different approaches of limiting the free riding problem are proposed and
implemented – demandingness and least effort out. Both make use of a boss notion,
which means that the boss – head of each company able to dismiss detected shirking
agents is unambiguously defined.

In the following section, detailed description of the two approaches is given (3.1.).
Since the interpretation of results in ACE modeling lies within the simulation logic
itself, a more technical section 3.2. deals with the simulation implementation issues.
The results obtained are subsequently compared to the ones of Axtell’s (chapter 4.1.)
and subject to simple modifications (4.2.). A fully operating application capable of
running under different input conditions in one of three possible modes (axtell,
demandingness and least effort out) used for result analysis shown later can be
obtained by the request from the author.

3.1. Boss monitoring method principles

In order to explain both methods, the notion of boss needs to be explained. Among
all the agents in a company Cj, a boss is the one, who is in the company for the
longest time. In the beginnings, it surely is the founder, nevertheless as time passes
and woken agents join other companies, it does not have to be him, therefore the
oldest member is always said to be the boss.

In both presented boss-monitoring approaches, the boss has the means to dismiss
shirking member agents. If he is in his mother company for sufficiently long time,
he can watch the other agents (who are members for sufficient number of periods
too) working and thus estimate their individual effort levels put in the company
according to their past performances. To implement such ability, recent periods’
average effort levels of the members are visible to him. Based on their values, he
can then decide of dismissals. A new parameter m defining the number of periods
required to be in the company to monitor the average effort levels20, but also to be
monitored is added. Not only that the boss has to be in for m periods, but also
the observed members21. Said explicitly, for each period t, company Cj and agent

i ∈ A, let observed average effort level be ē
(t)
i (j) = 1

m

∑t−1
k=t−m e

(k)
i , where e

(k)
i is the

effort level of the agent i in the period k. Let ē
(t)
i (j) be undefined if not all the m

past periods were spent in the current company Cj. Value of the average is only
visible to the boss and only if he has been a member for the last m periods.

20The boss member does not have to be a boss for m periods, all he has to be is a boss in actual
period and to be a member for sufficient time. Such behavior seems to be in step with reality.

21Short-term members are left unnoticeable for couple of periods.



The definitions of boss and observed average effort levels are equal in both vari-
ations. A distinctive aspect is the way in which bosses dismiss member agents:

• In the simpler demandingness approach, each agent, including bosses has
another parameter defined - the demandingness level di ∈ [0; 1] assigned
randomly at the start of each simulation. In the existing implementation
values can be drawn from either uniform or truncated normal distribution
N(0.5, 0.52). Each time a boss agent n of a company Cj is woken up in a
period t, he looks at all the visible member agents’ average effort levels of the
past m periods and dismisses those, who have been recently giving less than
his actual effort multiplied by his demandingness – i.e. where ē

(t)
i (j) < e

(t)
n ·dn.

The method may be understood as if boss agents had some personal and time
shifting lower limits on the others’ efforts, which nobody would be allowed to
evade.

• In the least effort out approach, dismissals decisions will be based on possible
increase of the utility level of a boss. When a boss agent n of a company Cj

is woken up in a period t, he calculates his expected utility level Ûn without
monitored average effort level of members, however with the current amount
of his effort level. He proceeds from the least diligent agents to the hardest
workers. Each time the expected utility without agent’s i ∈ Cj effort level
increases, he decides to dismiss the agent. The first comparison (decision about
the member with the least average effort level) is with the current boss’s utility
level and the following ones iteratively with the expected utilities without
previously already dismissed agents. Said precisely, he decides to dismiss a
member agent i(k) if

Ûn(e(t)
n , θn, Ej,∼n−

k∑
z=1

ē
(t)
i(z)

, N
(t)
j −k) > Ûn(e(t)

n , θn, Ej,∼n−
k−1∑
z=1

ē
(t)
i(z)

, N
(t)
j −k+1)

where Ûn(e
(t)
n , θn, Ej,∼n, N

(t)
j ) = Un(e

(t)
n , θn, Ej,∼n, N

(t)
j ), i(k) is the member with

the kth least average effort level and N
(t)
j the current size. The boss stops

dismissing as soon as the utility without some agent does not increase. Since
examined members are ordered by average effort levels, he would not find any
other free rider. Note that effort levels of bosses are not optimized to the
changes in remainder effort levels since the current values are applied.

The least effort out dismissal method is just a calculation, whether a boss
would be better of without paying wages to the least active members even
without having their average efforts, all other conditions stayed unchanged. If
there are some free riders detected this way, there is no reason to keep them.

A woken boss looks at the averages only if he has been in the company for m
years and he would never fire himself; therefore he ignores himself in the calculations.
For sake of correctness of parallel decisions, boss calculations are done before agents
(and bosses) decisions of next period’s place of employment. Since not all the
dismissed agents have to decide in the period of their dismissal, unemployed agents



arise, nevertheless that is changed as soon as such agents are woken up in following
periods.

If number of neighbors were low, it would however be very likely that they
would join the same companies when woken up. In order to prevent this happening,
a concept of banned lists is suggested – a company simply bans such agents to join
again. As companies’ dismissal politics depend on their bosses, who can be replaced,
a ban lists is cleared whenever the company gets a new boss.

It is questionable if such extensions are conformable with reality. Especially the
existence of demandingness of bosses could be attacked, since evaluating the past
effort levels takes place in certain companies, e.g. in a way of monitoring the past
performances and outcomes of employees according to their charged hours. Perhaps
in smaller companies, there may exist an aspect such as demands of the founders on
newcomers.

The methods presented herein could be distantly seen as simplest implementa-
tions of free riders metering remarked by Alchian and Demsetz ([1]), moving Axtell’s
model ”in a useful and realistic direction” ([11]). Adding a monitoring might affect
firms’ sizes and persistences, especially of the bigger ones, and is studied later (chap-
ter 4.). Yet, it does not take into account any (certainly existing) monitoring costs,
or the fact that the one to monitor – the boss, who has the power of dismissal, can
not encourage or threaten agents in order to make them perform faithfully. More
sophisticated models might be considered, such as monitoring by “reciprocators” –
employees willing to monitor shirkers for some residual claim, when benefits out-
weigh costs by Bowles et al. ([8]), etc. One should however be aware of the fact,
that “all firms suffer, to a greater or lesser extent, from imperfect monitoring, and
therefore the creation of economic models in which perfect monitoring obtains in
equilibrium is a kind of quixotic undertaking, for which the only possible outcome
can be disagreement with empirical data” ([4], 82).

The aim of this work is not to perfectly reflect monitoring concepts, but to intro-
duce and implement a relatively simple initial agent-based model not very distant
from reality, for which the outcomes might be easily analyzed. And on which possi-
ble future improvements considering the aspects closer to metering free riders reality
might stand on.

3.2. Implementation notes

Similarly as in the approaches introduced, Axtell’s paper influenced the very ap-
plication of this work too. Nevertheless, it has been fully written from scratch
and contains several amendments and modifications. Its underlying requirements,
challenged briefly herein from programming point of view, were as follows:

• Despite being inspired, the application had to reflect new needs of the ap-
proaches of demandingness and least effort out.

• For giving a tool to compare all the methodologies with the original, it had to
be capable of being executed in three different modes, where so-called “axtell”
mode had to copy the originally presented program flow as much as possible.
This way, simulations’ outcomes under any admissible set of input parameters



might be trusted in terms of comparing ability. Furthermore, results would
not have to rely on Axtell’s data gained by OLS and more reliable method
(for power law estimations) of MLE of α and goodness-of-fit tests might be
applied for all the models22.

• As many as possible input parameters to be modifiable, so the outcomes might
be studied to various changes by anybody. Specifically, number of agents,
periods, neighbors v and average effort levels periods m as well as waking up
probability, preferences (θi) and demandingness (di) distribution types, a and
b output function parameters were chosen to be arbitrarily adjustable by users.

• Leaving β = 2 eliminated one dimension of possible modifications, however
allowed the application to compute agents’ optimal effort levels “precisely”23.

• Application’s output statistics to be stored in a clear format suitable for further
analysis in any reasonable tool. When asked, it would print a human readable
step-by-step process of agents’ and bosses’ thoughts and decisions.

All the above-mentioned requirements were successfully fulfilled in the applica-
tion implemented. The following paragraphs give few notes about the simulation
programming principles. Object-oriented language used is Java in version 5. Three
main classes are considered – classes for Agent, Company and Simulation object
instances24 which represent agents, companies in a simulation and the simulation
itself.

Agent instance contains information about the agent’s personal θ, current effort
value and current company reference. It can compute Coub-Douglas utility and the
optimal effort level in any given company if the remainder effort and size is given.
Using the internal neighborhood25 agents lists, decision about the next periods’
mother companies are then calculated. Additional aspects for the extensions include
the variables for pass effort level values and count of periods in the current company
as well as a method called after dismissals to handle unemployment correctly.

Similarly, instances of Company hold references to the actual member Agent in-
stances and know who the bosses are. Using the members’ variables, a company can
compute the total output and effort and can give information about the current size
and remainder for any agent. Main extended logic is hidden within two methods
returning actual lists of free riders according to the approaches’ definitions and will
be reviewed shortly. Finally, each company has a list of banned agents, which is
filled with agent references each time somebody is dismissed and cleared whenever
a boss leaves the company.

Agent-based model run flow is determined within Simulation class. For illus-
tration purposes, algorithm 1 depicts its main method’s skeleton. Logic is similar to

22See appendix A
23Not that it would consider exact values such as

√
2 instead of a rounded

float variable around 1.4142, but that optimal effort level formula e∗i (θi, E∼i) =

max
[
0,
−a−2b(E∼i−θi)+

√
a2+4abθ2

i (1+E∼i)+4b2θ2
i (1+E∼i)2

2b(1+θi)

]
would be applied. In the original Axtell’s

model, optimal effort levels were detected by a “line search over feasible range of efforts”([4], 26).
24There is also a class for input parameters representation, but that is irrelevant herein.
25Neighborhood does not have to necessarily be a symmetric relation.



Algorithm 1 Simulation logic in pseudocode
read input parameters
period ⇐ 1
initialize agents {randomizes their θ, d, neighbours as well}
found agents’ singleton companies
prepare statistical files
while period < totalPeriodsCount do

period ⇐ period + 1
wokenAgents ⇐ wake randomly some agents
for all wokenAgents do

if wokenAgent was in his current company a boss in the last m periods then
freeRiders ⇐ detect all free riders according to the current simulation mode
dismiss and ban all the agents in freeRiders

end if
end for
for all wokenAgents do

currentUtil ⇐ compute expected optimal utility in the current company
neighbourUtil, neighbour ⇐ compute highest expected optimal utility among the neighborhood companies

newCompanyUtil ⇐ compute expected optimal utility for a newly founded company
decide to stay/join/found according to the highest among currentUtil, neighbourUtil, newCompanyUtil
values

end for
for all Agents do

finalize decision{stores current company and effort levels variables, handles unemployed passive agents
correctly}

end for
write period’s period entries into aggregate companies and agents statistical files

end while
generate final company sizes data

Axtell’s, with free riders dismissal being processed prior to any new decision takes
place. If mode is set to “axtell”, freeRiders set of agents returned is empty and
the simulation almost precisely emulates the original. Otherwise, the appropriate
free riders detection method of the boss current company is called. Note that when
deciding, new decisions are not finalized immediately, but only after all the woken
agents have done so too. Such conduct is necessary for correct parallel execution to
avoid affecting the still not decided agents unpredictably.

Algorithm 2 Free riders detection in demandingness mode of a Company instance
bossEffort ⇐ get current effort of this company’s boss
bossDemandingness ⇐ get demandingness level of this company’s boss
acceptableThreshold ⇐ bossEffort ∗ bossDemandingness
freeRiders ⇐ empty Agents list
for all memberAgents in this Company except the boss and those not members in the m last periods do

agentAvEffort ⇐ get average effort of the agent
if agentAvEffort < acceptableThreshold then

add agent to the freeRiders list
end if

end for
return freeRiders list

Algorithms 2 and 3 explain how the free riders are detected. In the demanding-
ness mode, the boss of a company straightforwardly looks at its members´ effort av-
erages and selects those agents, whose values are less than the acceptableThreshold.
Shirkers under the least effort out are found differently. Starting from the lowest
averages, utility of the boss without certain members, but with the current (and
possibly not optimal) boss´s effort is calculated. Searching stops as soon as dis-
missing an agent would not make the boss better off. In both methods, bosses and



agents not in the firm for sufficient time are ignored. Agents are finally banned and
in the main Simulation method immediately dismissed. Those free riders, who are
among the woken agents, decide of their future in the same period shortly after,
whereas the others later.

Algorithm 3 Free riders detection in least effort out mode of a Company instance
utilityPossible ⇐ get current utility of this company’s boss
bossCurrEffort ⇐ get current effort level of this company’s boss
bossTheta ⇐ get theta value of this company’s boss
sumEffort ⇐ get company’s total effort level
size ⇐ get company size
freeRiders ⇐ empty Agents list
for all memberAgents upwardly sorted by average effort levels, excluding the boss and not members in the m
last periods do

agAvEffort ⇐ get average effort of the agent
utilityWOAnother ⇐ compute boss utility with bossCurrEffort, sumEffort − agAvEffort, size − 1,
bossTheta
if utilityWOAnother < utilityPossible then

utilityPossible ⇐ utilityWOAnother
sumEffort ⇐ sumEffort− agentAvEffort
size ⇐ size− 1
add agent to the freeRiders list

else
break and leave the forall cycle

end if
end for
return freeRiders list

4. Results

After the introductory and explanatory parts, results may finally be presented. At
first, Axtell’s set of parameters is applied to all the three modes (section 4.1.). The
new approaches outputs are correctly, although indirectly, compared to the original
through “axtell” mode, since maximum likelihood estimation of α instead of ordinary
least squares was applied. Secondly, few parameters are subject to a modification
analysis (4.2.).

All the data used can be obtained by the request from the authors. For it is
an output of a program, it contains no measurement error or noise, what may be
slightly unusual. For exponent estimations, application was always run exactly one
hundred times with the same input parameters and the power law fit functions were
then applied on the aggregated final company sizes26. On the other hand, companies
and agents statistics (companies lifetimes, agent average effort levels, etc.) shown
are derived from single application runs only.

4.1. Initial parameters’ results

Default parameter settings are summarized in the table 1. All the values are shared,
demandingness level distribution type takes place only in demandingness mode.

26Single run outputs vary because of the differences in randomly assigned θ values and the dif-
ferences in waking order. Aggregating unique final company sizes means aggregating independent
values and suppressing deviant behaviors too.



parameter value

Number of agents, |A| 1000
Number of periods 2000
Output function parameters a and b 1.0, 1.0
Probability of waking up 0.2
Boss monitoring periods m 2
Number of neighbors v 2
Distribution of θ preferences uniform
(Distribution of demandingness levels d) normal

Table 1: Initial parameters settings

Having run the application with this set of parameters in each mode one hundred
times and aggregating the final company sizes, exponent α was estimated using MLE
as 2.92 (Axtell), 3.23 (demandingness) and 3.28 (least effort out). Lower bound x0

was estimated to be 7, 6 and 5 respectively27. Figure 2 depicts the data gained
together with the best power law fits graphically. It shows cumulative distribution
functions, therefore the right-hand ends are distorted less than in mass functions
(such as in the figure 1)28.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
D

F
 P

r(
X

 ³
 x

)

x

Axtell’s model

 

 

sizes
plfit

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
D

F
 P

r(
X

 ³
 x

)

x

Demandingness

 

 

sizes
plfit

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
D

F
 P

r(
X

 ³
 x

)

x

Least effort out

 

 

sizes
plfit

Figure 2: Power law MLE α and x0 estimates for Axtell (2.92, 7), demandingness
(3.23, 6) and leasteffort out modes (3.28, 5) in default environment

Note that the first exponent (2.92) is different to the one published by Robert
Axtell (2.28), what may have been caused by applying MLE instead of OLS, dif-

27Example of such estimations (concretely of 3.23) using the power law functions for Matlab and
R (available in [13]) is illustrated in the Appendix A.

28Cumulative power law distribution is similar to line in log-log scales too - see [25].



ferent aggregation of the runs’ outputs, random events, as well as the applications’
variances themselves. Yet, the Axtell mode results are comparable to the new ap-
proaches through using the same application in different modes. For both of them,
exponents are estimated to be higher, even above 3 - 3.23 and 3.28. Since the new
methodologies generally adopt dismissing and banning the shirkers, this is not so
surprising. Higher α means more small and less bigger companies operating on a
market, causing the line slope in log log scales to rise absolutely, which may be the
case. Around 101.8 .

= 63, a drastic fall of the companies sizes CDF in both models
takes place and it is even less likely to observe a larger company.
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Figure 3: Single run statistics about agents in default environment

Free riders dismissals and bans to rejoin seem to create barriers not possible to
be overstepped. Larger companies are extinct and work as ”exclusive clubs”. Such
behavior is strengthened by a further data analysis. Figures 3 and 4 show single
run statistics of agents and companies29. Effect of boss monitoring introduction
looks alike for both new approaches, since all the graphs in the second and third
columns are almost identical. Companies count always stabilizes at around 400 and
the average size at around 2.5, even though ways there are different to the Axtell’s
(figure 4). Company average lifetimes are higher for the new approaches, what is
clearly caused by unlimited maximum lifetime (probably of the biggest company;
notice the constantly linear increases in the second row of 4), contrast to the oldest
company changes in the original version. In addition, maximum company sizes do
not fluctuate that rapidly30 and stabilize around 40 (it fluctuates around 40 in the
first mode too). Average values do not differ even for agents statistics (see 3),
whereas maximal agent utilities do. The value is from a certain point constant,
meaning that the highest utility agent’s firm (very likely the maximum sized one)
found its optimal employment structure. It does not let in anyone else and works
as an “exclusive club”. Banned agents are left to work in the remainder space.

Although estimating higher exponents in the effort levels monitoring approaches
may sound logical, limiting the total dynamics is not a desirable feature. One way
to relieve seen strong constraints could be in changing the monitoring effort level
methodology, e.g. considering a completely different approach or at least allowing
bosses to forget about banned agents after a certain number of periods. Another way
is to change the underlying parameters. Having only 2 neighbors in the environment
of dismissals and banning may be too harsh, since for some agents, being dismissed
twice is relatively easy. If such pairs of neighborhood companies stabilize in time

29Tenth out of one hundred runs was selected in all three cases.
30Finding another run with from some point constant maximum size is in fact very easy.



300

400

500

600

700

800

900

1000

0 500 1000 1500 2000

C
om

pa
ni

es
 c

ou
nt

Period

Axtell’s model

200

400

600

800

1000

50 100 150 200

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000

C
om

pa
ni

es
 c

ou
nt

Period

Demandingness

200

400

600

800

1000

50 100 150 200

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000

C
om

pa
ni

es
 c

ou
nt

Period

Least effort out

200

400

600

800

1000

50 100 150 200

0

50

100

150

200

250

300

0 500 1000 1500 2000

Li
fe

tim
e

Period

Axtell’s model

maximum
average

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 500 1000 1500 2000
Li

fe
tim

e

Period

Demandingness

maximum
average

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 500 1000 1500 2000

Li
fe

tim
e

Period

Least effort out

maximum
average

1.0

1.5

2.0

2.5

3.0

3.5

0 500 1000 1500 2000

A
ve

ra
ge

 fi
rm

 s
iz

e

Period

Axtell’s model

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 500 1000 1500 2000

A
ve

ra
ge

 fi
rm

 s
iz

e

Period

Demandingness

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 500 1000 1500 2000

A
ve

ra
ge

 fi
rm

 s
iz

e

Period

Least effort out

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

M
ax

im
um

 fi
rm

 s
iz

e

Period

Axtell’s model

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

M
ax

im
um

 fi
rm

 s
iz

e

Period

Demandingness

0

50

100

150

200

250

300

0 500 1000 1500 2000

M
ax

im
um

 fi
rm

 s
iz

e

Period

Least effort out

Figure 4: Single run statistics about companies in default environment

– meaning that their bosses would not want to leave them, it is impossible for the
dismissed agents to join any company. Allowing to have more neighbors may then
help and so may an alternation of another parameters.

4.2. Parameters adjustments analysis

Modifying various parameters may or may not have a significant impact on the
model dynamics and therefore the output. This section deals specifically with the
values of neighbors count v, average effort levels calculation periods count m and d
demandingness levels and θ values distribution types31 adjustments.

Exponents of all the variations were once again calculated using MLE applied on
one hundred independent runs aggregates. Lower bound is always selected to be the
value, from which the estimated power law distribution fits generated data the best in
terms of Kolmogorov-Smirnov distance. P-values estimates of Kolmogorov-Smirnov
goodness-of-fit tests are in the outline tables presented as well32. For comparison,

31In the existing version of the software, truncated normal and uniform distributions on [0; 1]
are selectable.

32See Appendix A.



initial parameter results from the previous section are in the greyed rows.

Axtell Demandingness Least effort out
m α x0 p-value OLS α α x0 p-value OLS α α x0 p-value OLS α

3 2.92 7 0 2.42 3.23 6 0.049 2.54 3.28 5 0 2.70
4 3.39 15 0.172 2.59 3.13 9 0.457 2.40 3.06 6 0.045 2.53
5 3.17 12 0.177 2.49 2.81 5 0 2.92 2.47 6 0.022 2.52
6 3.31 14 0.36 2.44 3.5 18 0.396 3.04 2.52 9 0.042 2.41

Table 2: Monitored periods count adjustments

Table 2 summarizes the results gained when changing the m parameter. Note
that the exponents are not always higher for the Axtell’s mode, and that they de-
crease in general for the new approaches with higher m. From the first column,
it is clear, that the values vary among estimations all other conditions stayed un-
changed even when aggregating one hundred different runs. Parameter m does not
affect the logic of the simulation in the Axtell’s mode, therefore the first column
represents four equivalent simulations, although all leading to different estimations.
One can consider it an error, nevertheless the estimations of x0 vary much as well.
Data sets are sensitive enough in terms of that even a small shift in few values can
cause a better resemblance to power law from higher lower bounds, which causes the
increases of α33. That is the root of comparing difficulties when x0 differ a lot. De-
spite not guaranteeing normalization, unbiasedness and not meeting the theoretical
requirements ([12]), OLS comes herein handy, therefore the ordinary least squares
estimations were calculated too34. Roughly sad, the estimates are not very sensitive
to the changes of m for the first mode, slightly more for the other two. In addition,
the first column values are closer to Axtell’s 2.28 now, while the ”better” MLE α
differ significantly. That only underlines the need for careful applications, especially
of the OLS estimator often used incontinently.

Axtell Demandingness Least effort out
d α x0 p-value OLS α α x0 p-value OLS α α x0 p-value OLS α

normal 2.92 7 0 2.42 3.23 6 0.049 2.54 3.28 5 0 2.70
uniform - - - - 3.17 6 0.192 2.50 - - - -

Table 3: Demandingness levels distribution adjustments

Axtell Demandingness Least effort out
θ α x0 p-value OLS α α x0 p-value OLS α α x0 p-value OLS α

uniform 2.92 7 0 2.42 3.23 6 0.049 2.54 3.28 5 0 2.70
normal 3.5 7 0 3.18 3.5 6 0 2.74 3.5 5 0 3.39

Table 4: Preferences distribution adjustments

As seen from the table 3, a change in demandingness levels distribution type
from normal to truncated uniform does not have any influence to the outputs. On

33For instance, on the pictures 3 or 6 even a small shift of x0 means higher α.
34OLS was applied on all the logarithmic sizes and frequencies and therefore does always assume

lower bound to be x0 = 1.



the other hand, modifying the distribution of preferences expressed by θ values to
truncated normal instead of uniform increases the exponents and not only when
applying OLS, but even MLE (table 4; x0 estimates stayed unchanged). A lower
number of “extreme” and a higher count of “average” agents (with θ around 0.5)
has a positive absolute impact on the slope.

Axtell Demandingness Least effort out
v α x0 p-value OLS α α x0 p-value OLS α α x0 p-value OLS α

2 2.92 7 0 2.42 3.23 6 0.049 2.54 3.28 5 0 2.70
3 2.49 7 0 2.10 2.59 7 0 2.21 2.35 4 0 2.34
4 2.55 14 0 1.98 2.48 9 0 2.02 2.54 10 0 2.18
5 3.24 67 0.14 1.76 2.66 14 0 2.00 3.5 31 0 2.13
6 3.06 56 0.05 1.75 3.5 67 0.43 1.91 3.5 35 0 2.03
7 3.32 80 0.35 1.63 3.5 43 0.18 1.90 3.5 36 0.12 1.91

Table 5: Neighbors count adjustments
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Figure 5: Power law MLE α and x0 estimates for Axtell (3.06, 56), demandingness
(3.5, 67) and leasteffort out modes (3.5, 35) in six neighbours environment

The most promising parameter to be analyzed is the neighbors count summarized
in the table 5. Where x0 estimate stayed small (the first three rows of the table),
α decreased with increased neighbors count bringing in more joining possibilities
for agents. It is once again tricky to compare it with the remaining estimates,
where lower bounds raised rapidly causing exponents to jump up. Having minimum
company size for power law fit well above 50 within 1000 agents’ environments
undermines any estimation result, since it speaks only about a fragment of data set,



even though it might be the best fit. Nonetheless, α OLS approximations there also
imply substantial decreases of exponents with neighbor counts increases as it was
already predicted in the previous section. Figure 5 demonstrates the reason of OLS
and MLE with lower bound selection differences. While latter considers only the
best right-hand part of the graph, former uses all the values for linear fit causing
slope to fall down.
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Figure 6: Single run statistics about agents in six neighbors environment

Relaxing the tight constraint of having only two neighbors creates a wider possi-
bilities space. A dismissed and banned agent may still have a chance to join another
company. It is questionable then, whether blocking all the new possibilities might be
only a matter of time or if the possibilities’ relief results also in a greater dynamics
in bosses’ career movements outweighing the blockages. The figures 6 and 7 depict
the same set of agents and companies statistics for all the three methodologies as
in the figures 3 and 4. Once again, the tenth simulation runs of six neighbors were
selected. Interestingly, company average sizes amplified everywhere causing compa-
nies counts fell down proportionally. Maximum firm sizes show no stagnation for
demandingness and least effort out approaches anymore. The biggest companies
are opened to new employees. Would that prevail even in a longer run? Note that
maximum lifetime varies now for demandingness too, while for least effort out it
does not. If more graphs with number of neighbours greater than 2 were plotted, it
would not be uncommon to see some mixture of such two behaviors. Dynamics in
the beginnings occasionally turning into linear segments in the ends, meaning that
an “exclusive” company has arisen35, strengthened by the maximum agent utilities
graph (see the last two charts of the figure 7). Unfortunately, all that one can say
is that with higher neighbors count dynamics improve36, however may be overcome
observing more periods.

4.3. Final remarks and future work

More than 3000 simulations were run in order to aggregately quantify exponents
and lower bounds of power law distribution fitting along with 11 different sets of
parameters. Comparing solely the MLE α values is problematic in the situations
where x0 is determined to be higher causing the upward shift of the corresponding
exponents. If we accept OLS outputs as being reliable (while still not forgetting their

35For the given least effort out example, “exclusive” company does not have to be the largest
company now, as maximum firm size fluctuates a lot.

36Even the data on the figure 5 do not fell down as drastically as they did on the 2.
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Figure 7: Single run statistics about companies in six neighbors environment

insufficiency for power law fitting), then a decent reduction of α can be observed
with higher number of neighbors relieving the tight constrains levied on agents in 2
neighbors mode. Adjusting the boss monitoring periods and demandingness levels
distribution types does not affect the estimations.

Tables and 2, 3, 4 and 5 contain values, which have been constantly ignored up to
this point – p-values of goodness-of-fit tests. P-value “quantifies the probability that
generated data were drawn from the hypothesized power law distribution” ([12]).
Having selected a statistical significance level as for instance 5%, this hypothesis
can be rejected if corresponding p-value falls below it. In the presented results, it
unfortunately happens quite often. Only few MLE results have high p-values – for
instance in Axtell’s approach with m = 4, 5, 6 or in demandingness with m = 4, 6,
uniform d values and in few others cases. The highest p-value obtained is within
demandingness with six neighbors - 0.43, meaning that the null hypothesis of fitting
the power law with α = 3.5 and x0 = 67 cannot be rejected at 5% significance
level. Second chart of the figure 5 shows a nice fit there. Yet, two problems are still
persistent: not rejecting is not equal to accepting and fitting from 67 covers only a
fragment of data.

One can see such results rather unsatisfactory. It may be so, however the work



only confirmed Clauset’s warning of relying solely on OLS ([12]). If this fitting
methodology had been used herein exclusively, results would have unambiguously
conformed the ones of Axtell. Applying the recommended MLE reveals the existing
problems in power law fitting procedures.

In the agent-based models, economic roots lie within the simulations’ logics and
so it is in the model analyzed. Heterogeneous boundedly rational agents maximizing
their own utilities lead to company size distributions. Since the results depend on
indeterministic factors such as random θ assignment and waking order, it is only
the interaction rules that explain the results. In the model described, interactions
do not regularly bring in power law firm sizes, when applying the proper estimation
methodology.

5. Conclusion

Agent-based computational modeling offers new ways of examining economic pat-
terns from the bottom-up perspective, where microeconomic interactions lead to an
aggregate dynamics. A scientist focuses in particular on correct definition of agents’
behavior and programming languages offer him unlimited spectrum of usable pos-
sibilities. Relatively recent economic notions of bounded rationality, individuals’
heterogeneity, etc. are often natural characteristics of an agent-based simulation,
whereas including these in traditional economic models is usually a hard nut to
crack.

In this article, an own agent-based computational model for company sizes dis-
tribution generation based on the ideas of Robert Axtell ([4]) was proposed and
even fully implemented. Motivation for examining this economic and statistical
pattern comes from numerous empirical studies, which have observed power law
distributions in real firms’ sizes. The idea behind the implemented model is to let
agents form various sized companies in search for utility maximization. As compa-
nies grow, free-riders problem arises. The article adds a notion of aggregate effort
levels detectability by bosses, who are given the right to dismiss the shirkers.

Simulation always generates a distribution, where it is much more likely to see
a small than a big company, however fit to a power law is irregular. Applying
correct statistical methodologies, only certain parameter settings led to power law,
attenuated by the sensitivity of indeterministic factors. Even running the simulation
one hundred times and then once again may result in different exponents when lower
bounds are estimated too. Widely used OLS neglects these problems and since its
theoretical requirements are not met, it should be avoided. Nevertheless, if one
accepts it, then the results are similar to the ones of Axtell and others. Including
the monitoring, dynamics tightens and power law estimated exponents increase. As
predicted, relaxing default constraints of neighbor counts on the other hand supports
the dynamics. Both OLS and MLE (to certain extent) prove that exponents decrease
and a higher number of bigger companies is observable.

Future offers few paths in order to further study company sizes distribution using
agent-based modeling - either an improvement of proposed monitoring approaches or
building a new one. Dynamics enhancing features, such as banned agents’ memory
continual clearing, bosses rotations or elections, more complex hierarchic structures



and different methods of dismissals might be added. Interesting idea would be the
mutual monitoring by “reciprocators” of Bowles et el. ([8]) and considering the
monitoring costs.
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A Power law exponent α estimation

For reliable analysis of data generated by the application, methods presented by
Clauset, Shalizi and Newman in [12] were used. The authors proved that well-
founded methods, such as least squares fitting, produce biased estimates and what
is even worse, they can not be trusted in power law presence conclusions drawn.

Their method makes use of:

• Maximum likelihood estimation of α from a dataset given37.

• Estimating the lower bound x0 by selecting the value from which on the prob-
ability distribution of generated data and the best fitting power law MLE
estimation is the closest possible measured by Kolmogorov-Smirnov statistic.

• Assessing if the data following the estimated power law distribution hypothesis
can not be rejected by means of Kolmogorov-Smirnov goodness-of-fit test38.

For the details, see their excellent paper [25]. The authors implemented R and
Matlab functions for estimations following the methodology39, which came very
useful for this work as well. Example power law estimations using their functions on
the aggregated final data of demandingness mode under the default set of parameters
(chapter 4.1.) is given in the listings 1 and 2.

>> company_sizes_raw_combined = csvread(’company_sizes_raw_combined.csv’);
>> [alpha , xmin , D] = plfit(company_sizes_raw_combined );
>> [alpha , xmin , D]

ans =
3.2300 6.0000 0.0138

>> [p,gof]=plpva(company_sizes_raw_combined , xmin , ’silent ’);
>> plplot(company_sizes_raw_combined ,xmin ,alpha)

ans =
380.0015
381.0010

>> p
p =

0.0490
>> gof

gof =
0.0138

Listing 1: Matlab power law estimation procedure example

> data <-read.table("company_sizes_raw_combined.csv");
> plfit(data [,1]);

$xmin
[1] 6

$alpha

37For the discrete case of power law distribution, approximation of α̂ = 1 + n
[∑n

i=i ln xi

x0− 1
2

]
is

used.
38They present even a method of deciding whether the data were not drawn from competing

distributions, e.g. lognormal or exponential.
39See Aaron Clauset webpage at http://www.santafe.edu/~aaronc/powerlaws/.



[1] 3.23

$D
[1] 0.01376551

Listing 2: R power law estimation procedure example

Exponent of α = 3.23, lower bound of x0 = 6 were estimated. Kolmogorov-
Smirnov distance to the fitted power law is 0.01376551 and p-value of the corre-
sponding goodness-of-fit test is 0.0490 meaning that the power law hypothesis can
be rejected even on the significance level of 5%.
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