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Abstract: 
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1 Introduction

In this article we extend our previous work on isoquantile applications in economics [15]. The main
result of this article is the introduction of a novel measure of stock market efficiency that agrees with
previously-used visual examinations.

The notion of an efficient market was introduced in Fama [8]. In an efficient market investors exercise
rational behavior and important information is available to all of them, which means that no one has
an advantage over the others. The efficient market hypothesis (EMH) describes the case of an “ideal”
stock market where actual prices fully reflect all relevant information. Consequently, the price (and
corresponding return) fluctuations are not predictable and it’s impossible to make gains systematically.

The efficient market hypothesis has three forms according to the degree of reflected information:

• The strong form of the EMH states that all information (public or private) in a market is reflected
in current stock prices. No investor can profit from any new information.

• The semi-strong form of the EMH states that all public information is reflected in current stock
prices. Investors cannot benefit by trading on publicly available new information, thus, examining
related economic, financial and other qualitative and quantitative factors cannot help.

• The weak form of the EMH states that all past prices of a stock are reflected in the current stock
price. Returns should be independent, which means that the history of stocks cannot be used for
predictions of their future performance.

Chuvakhin [3] and Akintoye [1] summarize the development of currently used efficient market hypothesis
varieties and of their evaluation.

Weak-form EMH tests can be divided into trading tests (i.e. whether rules that traders follow yield
profit) and tests of return predictability (such as classic randomness tests, runs tests, autocorrelation tests
and variance ratio tests).

Lagoarde-Segot and Lucey [19] uses unit root analysis, non-parametric multiple variance ratio analysis
and trading simulations (variable moving average rule, trade range breaking rule) to study efficiency in
emerging Middle-Eastern North African stock markets. Chordia et al. [2] applies regression and variance
ratios to study short-horizon returns on NYSE stocks; they find out that decreasing the minimum tick size
and periods of greater liquidity reduces predictability. Griffin et al. [12] use trading strategies over a wide
range of emerging and developed markets and show that applying common tests without accounting for
private and public informational efficiency aspects can give misleading results. McPherson and Palardy
[13] develops generalized spectral tests for testing of linear and non-linear predictability and examines
predictability of data from large markets.

Another method of disproving the weak EMH is to discover systematic empirical periodic deviations
(anomalies). Rozeff and Kinney [22] introduced a seasonal effect called the January effect: in the beginning
of every year, small stocks returns tend to be higher than in any other month. As a result of tax-related
moves, it has been shown that investors profit by buying stocks in December when they are sold at a lower
price and then selling them again in January. Gibbons and Hess [10] found the weekly Monday effect:
stock prices tend to go down on Mondays and there is a negative average return because of weekend
non-trading days.

Finally, articles [9, 11, 23, 16] discuss alternative contemporary approaches for testing the EMH.
Formosa [9] introduces a composite index of market efficiency with particular reference to the goods
market, the labour market and the financial market. Giglio et al. [11] and Shmilovici et al. [23] each
develop a method for efficiency testing by computing compressibility with universal coding methods. For
testing long-term memory of returns one can also use various methods for estimating the Hurst exponent
[16].

In our work we study the particular version of the weak form of the efficient market hypohesis stating
that returns of indices inferred from efficient stock markets follow the behaviour of Brownian motion. As
for this article, closeness to this ideal will be understood as a measure of efficiency.

The first section discusses isoquantiles (originally called isobars). Isoquantiles were concieved [4] as a
tool for dimensional reduction: they represent an ordering on multidimensional data based on quantile



functions defined in polar coordinates. Following [17], we use nonparametric regression to estimate the
isoquantile shapes. We make use of further theoretical extensions presented in [18]. Further research on
isoquantiles has been performed in [5, 6, 7].

In the second section we describe the analysis of isoquantile shapes using the Fourier transform, a
fundamental tool in signal processing. We compare various ways of frequency magnitude weighting and
combining into a single measure characterizing the efficiency of a single stock market index.

We apply the approach on seven chosen indices and discuss the results in the third section.

2 Isoquantiles

Isoquantiles are defined in polar coordinates. The transformation of a non-zero vector x ∈ Rd to generalized
polar coordinates is given by

r = ‖x‖2 , θ =
x

‖x‖2
,

where ‖x‖2 is the Euclidean norm of the vector x. Observe that the generalized angle θ is just a point on
Sd−1, the sphere of unit radius in Rd.
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Figure 1: Illustrations of both isoquantile definitions.
The mapping (θ 7→ r) on the left: we compute r from the inverse distribution function along a fixed
direction θ as r = F−1

R |Θ=θ(u).

The surface Su on the right is formed by the images of all direction mappings with fixed u. The portion
of the distribution enclosed within the isoquantile is u.

We’ll use the definition of isoquantile as it appears in Delcroix [4]: For every u ∈ (0, 1), the u-level
isoquantile is defined as a mapping of a fixed θ to the value of the inverse distribution function of the
Euclidean distance from the origin: θ → F−1

R |Θ(u). The name “u-level isoquantile” will also be used

interchangeably for the image of the mapping—the surface Su = F−1
R |Θ(u). See Figure 1.

We’ll assume our sample to originate from the random variable X = (R,Θ) where R is a random
variable with range R+ and Θ is a random variable with range Sd−1. We’ll futher assume continuity
of the marginal density fΘ(θ), conditional density fR |Θ(r | θ) and the conditional distribution function
FR |Θ(r | θ), invertibility of the distribution function and continuity and strict positivity of the introduced
mapping.

The mapping can be used to order multidimensional data in its domain by the levels of isoquantiles
containing each datum. Formally: given a sample of n independent realizations of the random variable X,
e.g. Xi = (Ri,Θi), 1 ≤ i ≤ n, for each i there exists an unique isoquantile containing Xi. Denoting Xi,n

the realizations ordered by their respective isoquantile levels ui, the maximum value is given by the point
Xn,n which belongs to the upper-level isoquantile with level max1≤i≤n ui.



In practice, we’ll assess the 1-level isoquantile on the grounds of the asymptotical location property as
described in [18]. For large n, the furthest points from the origin lie near the n−1

n -level isoquantile. The
1-level isoquantile is then simply the edge of the bounded support.

Isoquantile estimation is performed by the non-parametric regression of [17, 18]. For the estimation
we’ll assume homotheticity of isoquantiles, e.g. for some strictly positive continuous function v(θ) and a
distribution function G,

FR |Θ(r | θ) = G

(
r

v(θ)

)
for r ∈ [0, v(θ)].

The function v(θ) corresponds to the 1-level isoquantile and unambiguously describes the shape of all
isoquantiles. The distribution of x

v(θ) is spherically symmetric and it can be fully described by G on [0, 1].

We estimate v(θ) using radial regression:

w(θ) = E(R |Θ = θ) =

v(θ)∫
0

(
1−G

( r

v(θ)

))
dr = c v(θ),

where c is the expected value of G. The estimate of the expected value of R given Θ = θ describes the
shape of 1-level isoquantile up to a multiplicative constant. This constant is chosen in a way that the
estimated expected value shape ŵ(θ) contains the whole data after scaling:

v̂(θ) =
ŵ(θ)

ĉ
, where 1/ĉ = max

1≤i≤n
Ri

ŵ(Θi)

For practical estimation we’ll use the two parametrizations introduced in [17] (hyperspherical) and
[15] (unit sphere projection)1. For details and rationale see our previous work [15], where we develop
the methodology using a simulation study, apply it on the NASDAQ and PX stock market indices and
visually assess the isobar shapes.

3 The Fourier transform and power means

In this section we compute a relative efficiency measure from weighted frequency coefficient magnitudes
of an isoquantile shape. Given a periodic sequence f(j), j ∈ {0, . . . ,m − 1}, where m is the sequence
length, the result of applying the discrete Fourier transform to f(j) are complex frequency coefficients
F (k), k ∈ {0, . . . ,m− 1}, defined by

F (k) =

m−1∑
j=0

f(j) e−2πijk/m.

In our case we sample f(j) from ŵ(θ),

f(j) = ŵ(2πj/m) for m = 211, j ∈ {0, . . . ,m− 1},
and compute the discrete Fourier transform using the R project for scientific computing [21]. The chosen
value of m represents a sweet spot for our data sizes.

Since Brownian motion has independent and normally distributed increments, the isoquantile shape for
ideally efficient markets converges to a circle. This is reflected by constant w(θ) and vanishing frequencies
F (k), k > 0. We take the magnitudes of frequency coefficients (normalized to cancel out the effect of
different market volumes),

hk =
|F (k)|
F (0)

,

and average the remaining normalized coefficients using power (Hölder) means

Mp(h) = lim
α→p

(
1

m

m∑
k=1

hαk

)1/α

.

These quantify the similarity of the isoquantile shape to a circle; values of p = {−∞, 0, 1, 2,∞} correspond
respectively to the minimum, geometric mean, arithmetic mean, root mean squared and maximum of hk

2.
1For computations we make use of the nonparametric regression package np for the R project [14, 21].
2We’ve also tried the weighted median and other order statistics, but power means have proven to be more adequate for



1 2 5 10 20 50 100 200

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

frequency

am
pl

itu
de

DFT coefficients

−40 −20 0 20

−
40

−
20

0
20

40

−40 −20 0 20

−
60

−
40

−
20

0
20

40

−60 −40 −20 0 20

−
80

−
60

−
40

−
20

0
20

40

−100 −50 0 50

−
15

0
−

10
0

−
50

0
50

Figure 2: Examples of isoquantile shapes along with their lowest discrete Fourier coefficients. Observe
that coefficients of smooth shapes vanish quicker than the coefficients of explosions.

4 Application

According to Osborne [20], the Efficient Market Hypothesis states that returns (the opening price
subtracted from the closing price) of market indices in efficient markets behave like Brownian motion. In
practice, this assumption is violated mostly by the periodic structure (day, week, quarter, year) of agent
behaviour. Further bias reveals non-rational behaviour, non-zero information costs or delayed reactions.

Our data consists of weekly closing and opening prices for the past ten years (sample size around 500)
obtained from the Reuters Wealth Manager service. We will follow the usual practice and compute weekly
returns as differences between the opening price on Monday and Friday’s closing price, which eliminates
the influence of non-trading days (information obtained during weekends can’t be reflected in prices).

In all isoquantile figures, the vertical axis will denote the current value of stock market index returns
and the horizontal axis their lagged values (we’ve considered lags from one to sixteen weeks). As an
example, Figure 2 shows examples of various isoquantile shapes for the assessed stock market indices and
their discrete Fourier coefficients (from representative lags of the PX index). Additionally, the shapes for
all sixteen lags for the most and least effecient index (ASPI and JSX Composite, respectively) can be
inspected in Figures 5 and 6.

We’ve applied the methods on seven stock market indices. We’ll shortly summarize them before
presenting the results of visual examination:

• The All Share Price Index (ASPI): 241 Sri Lankan stocks of the Colombo Stock Exchange

• The BET Index: 10 Romanian stocks of the Bucharest Stock Exchange.

• The BUX Index: 13 Hungarian stocks of the Budapest Stock Exchange.

the evaluation of isoquantile shapes.
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Root−mean−square – parametrization 1
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1/k−weighted mean – parametrization 1
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1/k−weighted mean – parametrization 2
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Figure 3: Measuring similarity to circles with different power means for lags 1–16. Darker cells correspond
to smaller measure values, which indicates that the corresponding shape is closer to a circle.

• The JSX Composite Index: 379 Indonesian stocks of the Indonesia Stock Exchange.

• The NASDAQ Composite Index is comprised of 2742 stocks of the NASDAQ Stock Market.

• The PX Index is comprised of 14 stocks of the Prague Stock Exchange (only five of which are Czech).

• S&P500: 500 stocks traded on NYSE or NASDAQ.

Isoquantile shapes for the All Share Price Index, NASDAQ Composite Index and S&P500 are very
close to circles. Small deviations from the circle shape can be observed in ASPI (lags 1, 3 and 5), NASDAQ
(lags 12, 13 and 16) and in S&P500 (lags 12, 13 and 16). Deviations in the 13-week lag can be explained
by the expected quarterly periodicity of agent behaviour. Based on visual examination, the underlying
markets of ASPI, NASDAQ and S&P500 may follow the efficient market hypothesis.

Isoquantile shapes for BET differ from circles in multiple lags (of 2, 3, 4, 11 and 13 weeks): the
deviations are distinctive, which suggests short-time dependency in the data.

The isoquantile shapes of the PX Index, BUX and JSX Composite Index deviate from circles constantly:
for PX it’s the longer lags of 4, 7, and 9–15 weeks, for BUX it’s 3 and 5–16 weeks. Isoquantiles for the JSX
Composite Index don’t resemble a circle for any lag. Observing a systematic deviation from independence
between current values and lagged ones, we can postulate that the efficient market hypothesis doesn’t
apply to markets described by these three indices.

After computing intermediate isoquantile scores for all lags using the procedure described in Section
2, we have to combine them into a single value. To this end we’ve chosen to use another power mean
(possibly with a different p).

We’ve evaluated many power means for both stages augmented with various coefficient weighting
schemes. For closer examination we’ve chosen M1/2, M1, M2 and M1 weighted by 1/k for the first
stage (isoquantile shape evaluation), and M0, M1/2, M1 for the second stage (lag combination). Finer
quantization of p didn’t produce measurable distincions and powers outside of these intervals were not
robust enough for our purposes.

The results for both isoquantile parametrization methods can be seen in Figures 3 and 4; green refers
to the first (hyperspherical) and brown to the second (unit sphere projection) parametrization. Figure 3
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Figure 4: Measures for lags 1–16 combined into measures for the whole index, using different power means.
Similarity to circles was computed via the arithmetic mean (M1): smaller values correspond to circle
isoquantiles.

depicts the intermediate scores for all combinations of lag and index—a darker shade represents a value
closer to zero. Figure 4 lays out the relative combined scores for each index and method.

The first parametrization prefers rounder shapes; isoquantiles resemble a circle more often. The second
parametrization follows the data shape better. Thus, for the final measure of stock market efficiency
we’ve chosen the second parametrization, the arithmetic M1 mean for combining normalized frequency
coefficients and the M1/2 power mean for mixing all sixteen lags, both means with uniform coefficient
weights. This combination is robust to isoquantile shape estimation errors and closely follows visual shape
assessment.

5 Conclusion

We’ve introduced a novel measure of stock market efficiency. This measure is inferred from frequency
representations of homothetic isoquantile shapes estimated from lagged index returns. We’ve described the
algorithm to compute this measure, rationalizing the choice of parameters for each step: nonparametric
regression for the estimation of isoquantile shapes, computing a numerical representation of “circle-ness”
of the shapes, and combining these representations from various lags to form a final measure.

We’ve evaluated seven indices and ascertained that the measure corresponds well to visual assessment:
while the All Share Price Index, NASDAQ Composite Index and S&P500 follow the EMH closely, the
PX, BUX and JSX Composite indices do not. The BET index exhibited some degree of dependency, but
only in shorter lags. Our future research can now focus on quantitative comparisons to other methods of
evaluating the Efficient Market Hypothesis and pinpointing the relative strenghts and weaknesses of the
isoquantile efficiency measure.
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[16] Ivanková, K., Krǐstoufek, L., and Vošvrda, M.: Evaluating the Efficient Market Hypothesis by means
of isoquantile surfaces and the Hurst exponent. Mathematical Methods in Economics Proceedings
(2011), 300–305.

[17] Jacob, P., and Suquet, C.: Regression and edge estimation. Stat. Prob. Lett. 27 (1996), 11–15.

[18] Jacob, P., and Suquet, C.: Regression and asymptotical location of a multivariate sample. Stat. Prob.
Lett. 35 (1997), 173–179.

[19] Lagoarde-Segot, T., nad Lucey, B. M.: Efficiency in emerging markets—Evidence from the MENA
region. Journal of International Financial Markets, Institutions and Money 18 (2008), 94–105.

[20] Osborne, M. F. M.: Brownian motion in the stock market. Operations research March-April 1959,
145–173.

[21] R Development Core Team: R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria (2011).

[22] Rozeff, M., and Kinney, W.: Capital Market Seasonality: The Case of Stock Returns. Journal of
Financial Economics 3 (1976), 379–402.

[23] Shmilovici, A. et al.: Using a Stochastic Complexity Measure to Check the Efficient Market Hypothesis.
Computational Economics 2/22 (2003), 273–284.



−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=1

re
tu

rn
s

−200 0 200 400

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

returns with lag=2

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=3

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=4

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=5

re
tu

rn
s

−300 −200 −100 0 100 200 300 400

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=6

re
tu

rn
s

−200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=7

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=8

re
tu

rn
s

−200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=9

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=10

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=11

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=12

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=13

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=14

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=15

re
tu

rn
s

−300 −200 −100 0 100 200 300

−
20

0
−

10
0

0
10

0
20

0
30

0

returns with lag=16

re
tu

rn
s

Figure 5: Estimated isoquantile shapes for the All Share Price Index, lags from one to sixteen weeks.
Green curves are the first parametrization (hyperspherical), brown curves the second one (unit sphere
projection). This is the most effective index from the data set (isoquantiles are closer to circles).
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Figure 6: Estimated isoquantile shapes for the JSX index, lags from one to sixteen weeks. Green curves
are the first parametrization (hyperspherical), brown curves the second one (unit sphere projection). This
is the least effective index from the data set (isoquantiles differ from circles the most).
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